Documentation Verification Report

Pretransitive

📁 Source: Mathlib/Algebra/Group/Action/Pretransitive.lean

Statistics

MetricCount
DefinitionsIsPretransitive, IsPretransitive
2
Theoremsexists_vadd_eq, of_vaddAssocClass, of_vadd_eq, isPretransitive, isPretransitive_addOpposite, exists_vadd_eq, instIsPretransitiveOfSubsingleton, isPretransitive_iff, surjective_vadd, addAction_isPretransitive, exists_smul_eq, of_isScalarTower, of_smul_eq, isPretransitive, isPretransitive_mulOpposite, exists_smul_eq, instIsPretransitiveOfSubsingleton, isPretransitive_iff, surjective_smul, mulAction_isPretransitive
20
Total22

AddAction

Definitions

NameCategoryTheorems
IsPretransitive 📖CompData
31 mathmath: IsPretransitive.of_embedding, IsPretransitive.of_vaddAssocClass, SeparationQuotient.instIsPretransitiveVAdd, IsPretransitive.of_surjective_map, pretransitive_iff_unique_quotient_of_nonempty, isPretransitive_compHom, IsQuasiPreprimitive.isPretransitive_of_normal, SubAddAction.ofStabilizer.isPretransitive_iff, pretransitive_iff_subsingleton_quotient, Regular.isPretransitive, Set.powersetCard.isPretransitive_of_isMultiplyPretransitive', isPretransitive_of_is_two_pretransitive, zeroEmbedding_isPretransitive_iff, isPretransitive_iff_orbit_eq_univ, is_zero_pretransitive, IsPreprimitive.toIsPretransitive, IsPretransitive.of_embedding_congr, IsPretransitive.of_compHom, instIsPretransitiveOfSubsingleton, IsPretransitive.of_vadd_eq, instIsPretransitiveElemOrbit, isPretransitive_iff, isPretransitive_congr, Regular.isPretransitive_addOpposite, Additive.addAction_isPretransitive, instIsPretransitiveElemOrbit_1, is_zero_pretransitive_iff, IsQuasiPreprimitive.toIsPretransitive, isPretransitive_quotient, isPretransitive_iff_base, SubAddAction.ofStabilizer.isPretransitive_iff_of_conj

Theorems

NameKindAssumesProvesValidatesDepends On
exists_vadd_eq 📖mathematicalHVAdd.hVAdd
instHVAdd
IsPretransitive.exists_vadd_eq
instIsPretransitiveOfSubsingleton 📖mathematicalIsPretransitive
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
toAddSemigroupAction
zero_vadd
isPretransitive_iff 📖mathematicalIsPretransitive
HVAdd.hVAdd
instHVAdd
surjective_vadd 📖mathematicalHVAdd.hVAdd
instHVAdd
exists_vadd_eq

AddAction.IsPretransitive

Theorems

NameKindAssumesProvesValidatesDepends On
exists_vadd_eq 📖mathematicalHVAdd.hVAdd
instHVAdd
of_vaddAssocClass 📖mathematicalAddAction.IsPretransitive
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
of_vadd_eq
vadd_zero_vadd
of_vadd_eq 📖mathematicalHVAdd.hVAdd
instHVAdd
AddAction.IsPretransitiveexists_vadd_eq

AddAction.Regular

Theorems

NameKindAssumesProvesValidatesDepends On
isPretransitive 📖mathematicalAddAction.IsPretransitive
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
neg_add_cancel_right
isPretransitive_addOpposite 📖mathematicalAddAction.IsPretransitive
AddOpposite
Add.toVAddAddOpposite
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
add_neg_cancel_left

Additive

Theorems

NameKindAssumesProvesValidatesDepends On
addAction_isPretransitive 📖mathematicalAddAction.IsPretransitive
Additive
vadd
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulAction.exists_smul_eq

MulAction

Definitions

NameCategoryTheorems
IsPretransitive 📖CompData
54 mathmath: SubMulAction.ofStabilizer.isPretransitive_iff_of_conj, isPretransitive_iff_orbit_eq_univ, CategoryTheory.FintypeCat.Action.pretransitive_of_isConnected, Set.powersetCard.isPretransitive, IsQuasiPreprimitive.isPretransitive_of_normal, SubMulAction.ofStabilizer.isPretransitive_iff, instIsPretransitiveElemOrbit_1, Set.powersetCard.isPretransitive_alternatingGroup, Multiplicative.mulAction_isPretransitive, CategoryTheory.PreGaloisCategory.IsFundamentalGroup.transitive_of_isGalois, isPretransitive_iff_base, oneEmbedding_isPretransitive_iff, Regular.isPretransitive_mulOpposite, is_zero_pretransitive, isPretransitive_compHom, isPretransitive_quotient, instIsPretransitiveOfSubsingleton, Ideal.isPretransitive_of_isGalois, CategoryTheory.PreGaloisCategory.FiberFunctor.isPretransitive_of_isConnected, IsQuasiPreprimitive.toIsPretransitive, Ideal.isPretransitive_of_isGaloisGroup, IsPretransitive.of_isScalarTower, Subgroup.isPretransitive_of_stabilizer_lt, instIsPretransitiveElemOrbit, SeparationQuotient.instIsPretransitiveSMul, CategoryTheory.PreGaloisCategory.isPretransitive_of_surjective, IsPretransitive.of_embedding, isPretransitive_congr, IsPretransitive.of_compHom, Equiv.Perm.isPretransitive_of_isCycle_mem, CategoryTheory.PreGaloisCategory.instIsPretransitiveCarrierObjFintypeCatOfIsConnected, CategoryTheory.FintypeCat.Action.isConnected_iff_transitive, IsPretransitive.of_smul_eq, Polynomial.Gal.galAction_isPretransitive, AlternatingGroup.isPretransitive_of_three_le_card, isPretransitive_of_is_two_pretransitive, CategoryTheory.PreGaloisCategory.isGalois_iff_pretransitive, Set.powersetCard.isPretransitive_of_isMultiplyPretransitive, IsPretransitive.of_surjective_map, pretransitive_iff_subsingleton_quotient, Sylow.isPretransitive_of_finite, alternatingGroup.isPretransitive_of_three_le_card, Equiv.Perm.instIsPretransitive, CategoryTheory.PreGaloisCategory.FiberFunctor.isPretransitive_of_isGalois, IsPreprimitive.toIsPretransitive, CategoryTheory.PreGaloisCategory.isPretransitive_of_isGalois, is_one_pretransitive_iff, isPretransitive_iff, pretransitive_iff_unique_quotient_of_nonempty, Regular.isPretransitive, CategoryTheory.PreGaloisCategory.instIsPretransitiveAutCarrierVFintypeCatFunctorObjActionFunctorToActionOfIsGalois, IsPretransitive.of_embedding_congr, IsPretransitive.of_partition, SubMulAction.IsPretransitive.isPretransitive_ofFixingSubgroup_inter

Theorems

NameKindAssumesProvesValidatesDepends On
exists_smul_eq 📖IsPretransitive.exists_smul_eq
instIsPretransitiveOfSubsingleton 📖mathematicalIsPretransitive
SemigroupAction.toSMul
Monoid.toSemigroup
toSemigroupAction
one_smul
isPretransitive_iff 📖mathematicalIsPretransitive
surjective_smul 📖exists_smul_eq

MulAction.IsPretransitive

Theorems

NameKindAssumesProvesValidatesDepends On
exists_smul_eq 📖
of_isScalarTower 📖mathematicalMulAction.IsPretransitive
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
of_smul_eq
smul_one_smul
of_smul_eq 📖mathematicalMulAction.IsPretransitiveexists_smul_eq

MulAction.Regular

Theorems

NameKindAssumesProvesValidatesDepends On
isPretransitive 📖mathematicalMulAction.IsPretransitive
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Monoid.toMulAction
inv_mul_cancel_right
isPretransitive_mulOpposite 📖mathematicalMulAction.IsPretransitive
MulOpposite
Mul.toSMulMulOpposite
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
mul_inv_cancel_left

Multiplicative

Theorems

NameKindAssumesProvesValidatesDepends On
mulAction_isPretransitive 📖mathematicalMulAction.IsPretransitive
Multiplicative
smul
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddAction.exists_vadd_eq

---

← Back to Index