Documentation Verification Report

Units

📁 Source: Mathlib/Algebra/Group/Action/Units.lean

Statistics

MetricCount
DefinitionsaddAction', instAddAction, instVAdd, instMulAction, instSMul, mulAction', mulDistribMulActionRight
7
TheoremsinstFaithfulVAdd, instVAddAssocClass, vaddAssocClass', vaddAssocClass'_left, vaddCommClass', vaddCommClass_left, vaddCommClass_right, vadd_def, vadd_mk_apply, vadd_neg, val_vadd, neg_vadd, vadd, inv_smul, smul, coe_inv_smul, coe_smul, instFaithfulSMul, instIsScalarTower, isScalarTower', isScalarTower'_left, smulCommClass', smulCommClass_left, smulCommClass_right, smul_def, smul_eq_mul, smul_inv, smul_isUnit, smul_mk_apply, val_smul
30
Total37

AddUnits

Definitions

NameCategoryTheorems
addAction' 📖CompOp
5 mathmath: vaddAssocClass', val_vadd, vaddAssocClass'_left, vadd_neg, vaddCommClass'
instAddAction 📖CompOp—
instVAdd 📖CompOp
13 mathmath: vadd_def, instFaithfulVAdd, vaddCommClass_left, isIsometricVAdd, vaddAssocClass'_left, measurableVAdd, continuousVAdd, vaddCommClass_right, instVAddAssocClass, IsAddUnit.neg_vadd, continuousConstVAdd, instMeasurableConstVAdd, vadd_mk_apply

Theorems

NameKindAssumesProvesValidatesDepends On
instFaithfulVAdd 📖mathematical—FaithfulVAdd
AddUnits
instVAdd
—ext
FaithfulVAdd.eq_of_vadd_eq_vadd
instVAddAssocClass 📖mathematical—VAddAssocClass
AddUnits
instVAdd
—vadd_assoc
vaddAssocClass' 📖mathematical—VAddAssocClass
AddUnits
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
addAction'
—ext
vadd_assoc
vaddAssocClass'_left 📖mathematical—VAddAssocClass
AddUnits
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
addAction'
instVAdd
—vadd_assoc
vaddCommClass' 📖mathematical—VAddCommClass
AddUnits
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
addAction'
—ext
VAddCommClass.vadd_comm
vaddCommClass_left 📖mathematical—VAddCommClass
AddUnits
instVAdd
—VAddCommClass.vadd_comm
vaddCommClass_right 📖mathematical—VAddCommClass
AddUnits
instVAdd
—VAddCommClass.vadd_comm
vadd_def 📖mathematical—HVAdd.hVAdd
AddUnits
instHVAdd
instVAdd
val
——
vadd_mk_apply 📖mathematicalAddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddZero.toZero
HVAdd.hVAdd
AddUnits
instHVAdd
instVAdd
——
vadd_neg 📖mathematical—AddUnits
instNeg
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
addAction'
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
—ext
val_vadd 📖mathematical—val
HVAdd.hVAdd
AddUnits
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
addAction'
——

IsAddUnit

Theorems

NameKindAssumesProvesValidatesDepends On
neg_vadd 📖mathematicalIsAddUnitHVAdd.hVAdd
AddUnits
instHVAdd
AddUnits.instVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
AddUnits.instNeg
addUnit
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
—val_neg_add
vadd 📖mathematicalIsAddUnitHVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
—AddUnits.val_vadd

IsUnit

Theorems

NameKindAssumesProvesValidatesDepends On
inv_smul 📖mathematicalIsUnitUnits
Units.instSMul
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toMulAction
Units.instInv
unit
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
—val_inv_mul
smul 📖mathematicalIsUnitSemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
—Units.val_smul

Units

Definitions

NameCategoryTheorems
instMulAction 📖CompOp
33 mathmath: WeierstrassCurve.Projective.nonsingularLift_some, WeierstrassCurve.Projective.Point.zero_point, WeierstrassCurve.Projective.addMap_of_Z_eq_zero_left, WeierstrassCurve.Jacobian.Point.fromAffine_some, WeierstrassCurve.Jacobian.negMap_of_Z_ne_zero, WeierstrassCurve.Jacobian.nonsingularLift_iff, WeierstrassCurve.Projective.smul_eq, WeierstrassCurve.Jacobian.negMap_of_Z_eq_zero, WeierstrassCurve.Jacobian.nonsingularLift_some, WeierstrassCurve.Projective.addMap_eq, WeierstrassCurve.Jacobian.addMap_of_Z_ne_zero, WeierstrassCurve.Jacobian.addMap_of_Z_eq_zero_right, WeierstrassCurve.Projective.Point.fromAffine_some, WeierstrassCurve.Projective.negMap_of_Z_ne_zero, WeierstrassCurve.Projective.nonsingularLift_iff, Module.stabilizer_units_eq_bot_of_ne_zero, WeierstrassCurve.Jacobian.nonsingularLift_zero, WeierstrassCurve.Projective.addMap_of_Y_eq, WeierstrassCurve.Projective.negMap_eq, WeierstrassCurve.Jacobian.addMap_of_Z_eq_zero_left, WeierstrassCurve.Projective.addMap_of_Z_eq_zero_right, WeierstrassCurve.Projective.Point.zero_def, WeierstrassCurve.Projective.negMap_of_Z_eq_zero, WeierstrassCurve.Projective.addMap_of_Z_ne_zero, WeierstrassCurve.Jacobian.Point.zero_point, WeierstrassCurve.Jacobian.Point.zero_def, orbitRel_nonZero_iff, WeierstrassCurve.Jacobian.smul_eq, WeierstrassCurve.Jacobian.addMap_eq, WeierstrassCurve.Jacobian.negMap_eq, smul_eq_mul, WeierstrassCurve.Jacobian.addMap_of_Y_eq, WeierstrassCurve.Projective.nonsingularLift_zero
instSMul 📖CompOp
172 mathmath: CochainComplex.HomComplex.δ_units_smul, AlternatingMap.domCoprod.summand_mk'', Polynomial.ascPochhammer_smeval_neg_eq_descPochhammer, Matrix.det_apply, CochainComplex.HomComplex.Cochain.δ_single, AffineSubspace.affineSpan_pair_parallel_iff_exists_unit_smul', ContinuousMultilinearMap.alternatization_apply_apply, AlternatingMap.map_perm, CategoryTheory.Pretriangulated.Triangle.shiftFunctor_map_hom₁, spectrum.units_smul_resolvent_self, CochainComplex.shiftShortComplexFunctorIso_hom_app_τ₃, smul_coe, Module.Basis.repr_isUnitSMul, HomologicalComplex.mapBifunctor₂₃.d₂_eq, CategoryTheory.Pretriangulated.Triangle.shiftFunctor_obj, HomologicalComplex₂.totalAux.d₂_eq, HomologicalComplex₂.D₂_totalShift₁XIso_hom_assoc, HomologicalComplex₂.D₂_totalShift₂XIso_hom_assoc, CochainComplex.HomComplex.Cocycle.coe_units_smul, CochainComplex.HomComplex.Cochain.units_smul_comp, autAdjoinRootXPowSubCEquiv_symm_smul, HomologicalComplex.mapBifunctor₂₃.d₃_eq, quasispectrum.mem_iff_of_isUnit, CochainComplex.ι_mapBifunctorShift₂Iso_hom_f_assoc, Polynomial.monic_of_isUnit_leadingCoeff_inv_smul, CochainComplex.HomComplex.δ_v, HomologicalComplex₂.ιTotal_totalFlipIso_f_inv_assoc, smulCommClass_left, CategoryTheory.Linear.units_smul_comp, instStarModule, CochainComplex.HomComplex.Cochain.rightUnshift_units_smul, smul_mk0, isIsometricSMul, IsUnit.inv_smul, GradedTensorProduct.tmul_coe_mul_coe_tmul, Matrix.inv_smul', CliffordAlgebra.map_mul_map_of_isOrtho_of_mem_evenOdd, Ring.choose_neg, HomologicalComplex₂.ι_totalShift₂Iso_inv_f_assoc, CochainComplex.HomComplex.Cochain.leftShift_comp, CategoryTheory.Preadditive.smul_iso_hom, instIsScalarTower, AlternatingMap.map_congr_perm, spectrum.smul_mem_smul_iff, CochainComplex.HomComplex.Cochain.leftShift_rightShift_eq_negOnePow_rightShift_leftShift, HomologicalComplex₂.d₁_eq, CochainComplex.HomComplex.Cochain.leftShift_rightShift, CategoryTheory.Preadditive.smul_iso_inv, MultilinearMap.domCoprod_alternization_coe, smul_isUnit, LinearMap.CompatibleSMul.units, CochainComplex.shiftShortComplexFunctor'_hom_app_τ₁, HomologicalComplex.units_smul_f_apply, CochainComplex.HomComplex.Cochain.leftUnshift_v, Submodule.IsLattice.smul, CochainComplex.HomComplex.Cochain.rightShift_leftShift, HomologicalComplex₂.totalShift₁Iso_hom_totalShift₂Iso_hom, HomologicalComplex₂.totalAux.d₂_eq', HomologicalComplex₂.totalAux.d₁_eq, smul_mk_apply, HomologicalComplex₂.D₁_totalShift₂XIso_hom_assoc, HomologicalComplex.mapBifunctor.d₂_eq, HomologicalComplex.ι_mapBifunctorFlipIso_inv_assoc, Matrix.inv_adjugate, CategoryTheory.Linear.comp_units_smul, HomologicalComplex₂.D₁_totalShift₁XIso_hom_assoc, Projectivization.mk_eq_mk_iff, CochainComplex.HomComplex.δ_comp, measurableSMul, instMeasurableConstSMul, smulCommClass_right, Ring.choose_neg', AbsoluteValue.map_units_int_smul, HomologicalComplex₂.ιTotal_totalFlipIso_f_hom_assoc, CochainComplex.shiftFunctor_map_f, HomologicalComplex₂.ι_totalShift₂Iso_hom_f_assoc, CochainComplex.shiftShortComplexFunctorIso_hom_app_τ₁, Projectivization.exists_smul_eq_mk_rep, HomologicalComplex.mapBifunctor₂₃.d₁_eq, CochainComplex.HomComplex.Cochain.shift_units_smul, CochainComplex.ι_mapBifunctorShift₂Iso_hom_f, HomologicalComplex₂.D₁_totalShift₁XIso_hom, HomologicalComplex₂.D₂_totalShift₁XIso_hom, Matrix.submatrix_succAbove_det_eq_negOnePow_submatrix_succAbove_det', nnnorm_units_zsmul, MultilinearMap.alternatization_apply, CochainComplex.HomComplex.Cochain.units_smul_v, CochainComplex.HomComplex.Cochain.δ_toSingleMk, IsCompactOperator.smul_unit_iff, continuousConstSMul, HomologicalComplex.mapBifunctorMapHomotopy.ιMapBifunctor_hom₂, neg_smul, CategoryTheory.Functor.map_units_smul, CochainComplex.HomComplex.Cochain.rightShift_units_smul, mem_skewAdjointMatricesLieSubalgebra_unit_smul, ContinuousMultilinearMap.alternatization_apply_toContinuousMultilinearMap, smul_def, CochainComplex.HomComplex.Cochain.δ_shift, CochainComplex.shiftShortComplexFunctor'_hom_app_τ₃, CochainComplex.HomComplex.Cochain.comp_units_smul, HomologicalComplex₂.d₂_eq, CategoryTheory.CatCenter.app_neg_one_zpow, CochainComplex.HomComplex.Cochain.δ_rightUnshift, CochainComplex.HomComplex.Cochain.leftUnshift_units_smul, GradedTensorProduct.comm_coe_tmul_coe, CochainComplex.HomComplex.Cochain.δ_rightShift, HomologicalComplex₂.ι_totalShift₂Iso_inv_f, CochainComplex.HomComplex.Cochain.leftShift_v, LinearIndependent.units_smul, Matrix.submatrix_succAbove_det_eq_negOnePow_submatrix_succAbove_det, CategoryTheory.Pretriangulated.Triangle.shiftFunctor_map_hom₃, HomologicalComplex.mapBifunctorMapHomotopy.comm₁_aux, MultilinearMap.alternatization_coe, CochainComplex.HomComplex.Cochain.δ_leftUnshift, AffineSubspace.affineSpan_pair_parallel_iff_exists_unit_smul, HomologicalComplex₂.ιTotal_totalFlipIso_f_hom, HomologicalComplex.mapBifunctor.d₁_eq', instFaithfulSMul, TensorProduct.tmul_of_gradedMul_of_tmul, CochainComplex.shiftFunctor_obj_d', FractionalIdeal.spanSingleton_eq_spanSingleton, HomologicalComplex₂.totalShift₁Iso_hom_totalShift₂Iso_hom_assoc, CochainComplex.HomComplex.Cochain.leftShift_units_smul, HomologicalComplex.ι_mapBifunctorFlipIso_hom, LinearIndependent.units_smul_iff, Matrix.det_neg_eq_smul, HomologicalComplex.mapBifunctorMapHomotopy.ιMapBifunctor_hom₁_assoc, map_zsmul_unit, CochainComplex.shiftShortComplexFunctor'_inv_app_τ₃, HomologicalComplex.mapBifunctor.d₂_eq', AlternatingMap.domDomCongr_perm, HomologicalComplex₂.ι_totalShift₂Iso_hom_f, TensorProduct.gradedCommAux_lof_tmul, CategoryTheory.NatTrans.app_units_zsmul, CochainComplex.mappingCone.δ_descCochain, HomologicalComplex₂.d₂_eq', CategoryTheory.Pretriangulated.Triangle.shiftFunctor_map_hom₂, HomologicalComplex₂.d₁_eq', continuousSMul, spectrum.unit_smul_eq_smul, CochainComplex.shiftShortComplexFunctor'_inv_app_τ₁, CochainComplex.shiftShortComplexFunctorIso_inv_app_τ₃, HomologicalComplex₂.D₁_totalShift₂XIso_hom, HomologicalComplex.mapBifunctor₁₂.d₁_eq, HomologicalComplex₂.D₂_totalShift₂XIso_hom, norm_units_zsmul, Module.Basis.repr_unitsSMul, spectrum.units_smul_resolvent, HomologicalComplex.mapBifunctor₁₂.d₃_eq, HomologicalComplex.mapBifunctorMapHomotopy.ιMapBifunctor_hom₁, Module.Basis.units_smul_span_eq_top, TensorProduct.gradedComm_of_tmul_of, exteriorPower.toTensorPower_apply_ιMulti, HomologicalComplex.mapBifunctor₁₂.d₂_eq, Module.Basis.unitsSMul_apply, LinearEquiv.smul_refl, Module.Basis.coord_unitsSMul, CochainComplex.HomComplex.Cochain.δ_leftShift, HomologicalComplex₂.totalAux.d₁_eq', HomologicalComplex.ι_mapBifunctorFlipIso_hom_assoc, Submodule.span_singleton_eq_span_singleton, CochainComplex.HomComplex.δ_zero_cochain_comp, isScalarTower'_left, CochainComplex.shiftShortComplexFunctorIso_inv_app_τ₁, HomologicalComplex.mapBifunctor.d₁_eq, HomologicalComplex.mapBifunctorMapHomotopy.ιMapBifunctor_hom₂_assoc, CochainComplex.shiftFunctor_obj_d, MultilinearMap.alternatization_def, CategoryTheory.ObjectProperty.smul_mem_trW_iff, HomologicalComplex.ι_mapBifunctorFlipIso_inv, HomologicalComplex₂.ιTotal_totalFlipIso_f_inv, Matrix.GeneralLinearGroup.fin_two_smul_prod
mulAction' 📖CompOp
6 mathmath: smul_inv, val_smul, smulCommClass', isScalarTower', smul_eq_mul, isScalarTower'_left
mulDistribMulActionRight 📖CompOp
2 mathmath: coe_smul, coe_inv_smul

Theorems

NameKindAssumesProvesValidatesDepends On
coe_inv_smul 📖mathematical—val
Units
instInv
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulDistribMulAction.toMulAction
instMonoid
mulDistribMulActionRight
——
coe_smul 📖mathematical—val
Units
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulDistribMulAction.toMulAction
instMonoid
mulDistribMulActionRight
——
instFaithfulSMul 📖mathematical—FaithfulSMul
Units
instSMul
—ext
FaithfulSMul.eq_of_smul_eq_smul
instIsScalarTower 📖mathematical—IsScalarTower
Units
instSMul
—smul_assoc
isScalarTower' 📖mathematical—IsScalarTower
Units
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
mulAction'
—ext
smul_assoc
isScalarTower'_left 📖mathematical—IsScalarTower
Units
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
mulAction'
instSMul
—smul_assoc
smulCommClass' 📖mathematical—SMulCommClass
Units
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
mulAction'
—ext
SMulCommClass.smul_comm
smulCommClass_left 📖mathematical—SMulCommClass
Units
instSMul
—SMulCommClass.smul_comm
smulCommClass_right 📖mathematical—SMulCommClass
Units
instSMul
—SMulCommClass.smul_comm
smul_def 📖mathematical—Units
instSMul
val
——
smul_eq_mul 📖mathematical—Units
CommMonoid.toMonoid
SemigroupAction.toSMul
Monoid.toSemigroup
instMonoid
MulAction.toSemigroupAction
mulAction'
instGroup
instMulAction
Monoid.toMulAction
smulCommClass_left
smulCommClass_self
instIsScalarTower
IsScalarTower.left
instMul
—ext
smulCommClass_left
smulCommClass_self
instIsScalarTower
IsScalarTower.left
smul_inv 📖mathematical—Units
instInv
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
mulAction'
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
—ext
smul_isUnit 📖mathematicalIsUnitUnits
instSMul
IsUnit.unit
——
smul_mk_apply 📖mathematicalMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toOne
Units
instSMul
——
val_smul 📖mathematical—val
Units
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
mulAction'
——

---

← Back to Index