| Name | Category | Theorems |
compAddMonoidHom 📖 | CompOp | 4 mathmath: compAddMonoidHom_injective_left, coe_compAddMonoidHom, compAddMonoidHom_apply, compAddMonoidHom_injective_right
|
doubleDualEmb 📖 | CompOp | 8 mathmath: doubleDualEmb_injective, doubleDualEmb_apply, doubleDualEmb_bijective, coe_doubleDualEquiv, doubleDualEquiv_symm_doubleDualEmb_apply, doubleDualEmb_inj, doubleDualEmb_eq_zero, doubleDualEmb_doubleDualEquiv_symm_apply
|
instAddCommGroup 📖 | CompOp | 8 mathmath: sub_apply, neg_apply, neg_apply', zsmul_apply, coe_doubleDualEquiv, doubleDualEquiv_symm_doubleDualEmb_apply, doubleDualEmb_doubleDualEquiv_symm_apply, sub_apply'
|
instAddCommMonoid 📖 | CompOp | 20 mathmath: mul_eq_add, doubleDualEmb_injective, add_apply, sum_apply, doubleDualEmb_apply, doubleDualEmb_bijective, coe_doubleDualEquiv, toMonoidHomEquiv_add, pow_eq_nsmul, prod_eq_sum, coe_add, toMonoidHomEquiv_symm_mul, doubleDualEquiv_symm_doubleDualEmb_apply, doubleDualEmb_inj, doubleDualEmb_eq_zero, doubleDualEmb_doubleDualEquiv_symm_apply, coe_nsmul, zmodAddEquiv_apply, nsmul_apply, coe_sum
|
instCommGroup 📖 | CompOp | 14 mathmath: zmod_add, gaussSum_frob, mul_gaussSum_inv_eq_gaussSum, pow_mulShift, div_apply, inv_apply, mulShift_mul, inv_apply', starComp_apply, starComp_eq_inv, gaussSum_mul_gaussSum_eq_card, zpow_apply, div_apply', inv_mulShift
|
instCommMonoid 📖 | CompOp | 9 mathmath: mul_eq_add, coe_mul, prod_apply, pow_apply, coe_pow, mul_apply, pow_eq_nsmul, prod_eq_sum, coe_prod
|
instDecidableEq 📖 | CompOp | 2 mathmath: wInner_cWeight_eq_boole, expect_eq_ite
|
instFunLike 📖 | CompOp | 159 mathmath: Polynomial.rightInverse_ofMultiset_roots, Real.hasFDerivAt_fourierChar_neg_bilinear_left, AddDissociated.randomisation, ZMod.LFunction_stdAddChar_eq_expZeta, Subgroup.HasDetPlusMinusOne.isParabolic_iff_of_upperTriangular, map_nsmul_eq_pow, Real.fourierIntegral_eq, Real.fderiv_fourierChar_neg_bilinear_right_apply, ZMod.invDFT_apply, wInner_cWeight_self, sum_mulShift, coe_mul, Circle.starRingEnd_addChar, prod_apply, add_apply, directSum_apply, tendsto_integral_exp_inner_smul_cocompact_of_continuous_compact_support, ZMod.stdAddChar_coe, zero_apply, IsPrimitive.zmod_char_eq_one_iff, sum_eq_ite, sub_apply, map_neg_eq_inv, map_zsmul_eq_zpow, gaussSum_mul, neg_apply, sum_apply, coe_compAddMonoidHom, wInner_cWeight_eq_zero_iff_ne, sum_apply_eq_ite, toMonoidHomEquiv_symm_apply, ext_iff, sum_eq_zero_iff_ne_zero, Matrix.GeneralLinearGroup.upperRightHom_apply, sum_eq_card_of_eq_one, coe_toMonoidHomEquiv, tendsto_integral_exp_smul_cocompact, map_add_eq_mul, PadicInt.coe_addChar_of_value_at_one, pow_apply, Real.fourier_real_eq, Real.fourierIntegral_convergent_iff', expect_apply_eq_zero_iff_ne_zero, doubleDualEmb_apply, forall_apply_eq_zero, Real.continuous_probChar, sum_apply_eq_zero_iff_ne_zero, coe_toAddMonoidHom, neg_apply', zsmul_apply, map_zero_eq_one, zmodChar_apply', Matrix.GeneralLinearGroup.isParabolic_iff_of_upperTriangular_of_det, fourierIntegral_eq_half_sub_half_period_translate, div_apply, Matrix.GeneralLinearGroup.continuous_upperRightHom, coe_pow, mulShift_apply, coe_toAddMonoidHomEquiv, toMonoidHom_apply, sum_eq_zero_of_ne_one, Circle.star_addChar, inv_apply, wInner_cWeight_eq_one_iff_eq, ZMod.dft_apply, val_mem_rootsOfUnity, bijective_rootsOfUnityAddChar, one_apply, Real.fourier_eq, expect_eq_zero_iff_ne_zero, tendsto_integral_exp_smul_cocompact_of_inner_product, toAddMonoidHomEquiv_symm_apply, surjective_rootsOfUnityCircleEquiv_comp_rootsOfUnityAddChar, inv_apply', Polynomial.roots_ofMultiset, val_isUnit, mulShift_spec', zmodChar_apply, starComp_apply, PadicInt.continuous_addChar_of_value_at_one, mul_apply, coe_zero, PadicInt.continuousAddCharEquiv_of_norm_mul_symm_apply, eq_zero_iff, toMonoidHomEquiv_apply, norm_apply, Real.probChar_apply', MonoidHom.coe_compAddChar, Polynomial.ofMultiset_apply, Real.fourierIntegral_convergent_iff, Real.hasDerivAt_fourierChar, compAddMonoidHom_apply, Real.fourierChar_apply, Real.fourier_bilin_convolution_eq_integral, Real.tendsto_integral_exp_smul_cocompact, fourierIntegral_half_period_translate, coe_prod, toAddMonoidHom_apply, coe_add, Real.fourierChar_apply', Real.differentiable_fourierChar, Real.continuous_fourierChar, Subgroup.mem_strictPeriods_iff, rootsOfUnityCircleEquiv_comp_rootsOfUnityAddChar_val, ZMod.toCircle_intCast, ZMod.toCircle_natCast, Real.deriv_fourierChar, ZMod.invDFT_def, Real.differentiable_fourierChar_neg_bilinear_right, ZMod.injective_toCircle, VectorFourier.fourierIntegral_comp_add_right, tendsto_integral_exp_inner_smul_cocompact, Fourier.fourierIntegral_def, PadicInt.continuousAddCharEquiv_symm_apply, linearIndependent, Real.hasFDerivAt_fourierChar_neg_bilinear_right, ZMod.toCircle_apply, fwdDiff_addChar_eq, Real.differentiable_fourierChar_neg_bilinear_left, wInner_cWeight_eq_boole, map_neg_eq_conj, coe_complexBasis, Real.fourierInv_eq, toAddMonoidHomEquiv_apply, MonoidHom.compAddChar_apply, map_sub_eq_div, complexBasis_apply, coe_nsmul, Polynomial.ofMultiset_injective, Real.probChar_apply, injective_iff, zmod_intCast, coe_eq_one, expect_apply_eq_ite, Matrix.GeneralLinearGroup.injective_upperRightHom, VectorFourier.hasFDerivAt_fourierChar_smul, Real.fourierIntegral_real_eq, ZMod.injective_stdAddChar, coe_one, Real.fourierIntegralInv_eq, zpow_apply, Real.fderiv_fourierChar_neg_bilinear_left_apply, ZMod.dft_def, eq_one_iff, Fourier.fourierIntegral_comp_add_right, inv_apply_eq_conj, nsmul_apply, div_apply', sub_apply', ZMod.rootsOfUnityAddChar_val, ZMod.toCircle_eq_circleExp, ZMod.stdAddChar_apply, coe_mk, expect_eq_ite, MeasureTheory.charFun_eq_integral_probChar, coe_toMonoidHomEquiv_symm, coe_toAddMonoidHomEquiv_symm, PadicInt.addChar_of_value_at_one_def, coe_sum
|
instInhabited 📖 | CompOp | — |
instOne 📖 | CompOp | 8 mathmath: exists_divisor_of_not_isPrimitive, mulShift_unit_eq_one_iff, one_apply, one_eq_zero, mulShift_zero, zmod_zero, coe_one, eq_one_iff
|
instZero 📖 | CompOp | 14 mathmath: toMonoidHomEquiv_zero, expect_ne_zero_iff_eq_zero, zero_apply, sum_eq_ite, sum_ne_zero_iff_eq_zero, toAddMonoidHomEquiv_symm_zero, toMonoidHomEquiv_symm_one, one_eq_zero, coe_zero, eq_zero_iff, toAddMonoidHomEquiv_zero, doubleDualEmb_eq_zero, coe_eq_one, expect_eq_ite
|
mulShift 📖 | CompOp | 15 mathmath: mulShift_one, exists_divisor_of_not_isPrimitive, mulShift_unit_eq_one_iff, pow_mulShift, to_mulShift_inj_of_isPrimitive, mulShift_apply, gaussSum_mulShift_of_isPrimitive, mulShift_mul, mulShift_spec', mulShift_zero, DirichletCharacter.fourierTransform_eq_gaussSum_mulShift, not_isPrimitive_mulShift, mulShift_mulShift, inv_mulShift, gaussSum_mulShift
|
toAddMonoidAddEquiv 📖 | CompOp | — |
toAddMonoidHom 📖 | CompOp | 2 mathmath: coe_toAddMonoidHom, toAddMonoidHom_apply
|
toAddMonoidHomEquiv 📖 | CompOp | 7 mathmath: directSum_apply, coe_toAddMonoidHomEquiv, toAddMonoidHomEquiv_symm_zero, toAddMonoidHomEquiv_symm_apply, toAddMonoidHomEquiv_zero, toAddMonoidHomEquiv_apply, coe_toAddMonoidHomEquiv_symm
|
toFun 📖 | CompOp | 2 mathmath: map_zero_eq_one', map_add_eq_mul'
|
toMonoidHom 📖 | CompOp | 1 mathmath: toMonoidHom_apply
|
toMonoidHomEquiv 📖 | CompOp | 8 mathmath: toMonoidHomEquiv_zero, toMonoidHomEquiv_symm_apply, coe_toMonoidHomEquiv, toMonoidHomEquiv_symm_one, toMonoidHomEquiv_apply, toMonoidHomEquiv_add, toMonoidHomEquiv_symm_mul, coe_toMonoidHomEquiv_symm
|
toMonoidHomMulEquiv 📖 | CompOp | — |