Documentation Verification Report

Defs

πŸ“ Source: Mathlib/Algebra/Group/Commute/Defs.lean

Statistics

MetricCount
DefinitionsAddCommute
1
TheoremsaddSemiconjBy, add_add_add_comm, add_left, add_neg, add_neg_cancel, add_neg_cancel_assoc, add_nsmul, add_right, all, eq, instRefl, left_comm, neg, nsmul_left, nsmul_nsmul, nsmul_nsmul_self, nsmul_right, nsmul_self, on_refl, refl, right_comm, self_nsmul, symm_iff, zero_left, zero_right, zsmul_add, all, eq, instRefl, inv, left_comm, mul_inv, mul_inv_cancel, mul_inv_cancel_assoc, mul_left, mul_mul_mul_comm, mul_pow, mul_right, mul_zpow, on_refl, one_left, one_right, pow_left, pow_pow, pow_pow_self, pow_right, pow_self, refl, right_comm, self_pow, semiconjBy, symm_iff, addCommute_iff_eq, commute_iff_eq
54
Total55

AddCommute

Theorems

NameKindAssumesProvesValidatesDepends On
addSemiconjBy πŸ“–mathematicalAddCommuteAddSemiconjByβ€”β€”
add_add_add_comm πŸ“–β€”AddCommute
AddSemigroup.toAdd
β€”β€”add_assoc
left_comm
add_left πŸ“–β€”AddCommute
AddSemigroup.toAdd
β€”β€”AddSemiconjBy.add_left
add_neg πŸ“–mathematicalAddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
SubNegMonoid.toNegβ€”eq
neg_add_rev
add_neg_cancel πŸ“–mathematicalAddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SubNegMonoid.toNegβ€”eq
add_neg_cancel_right
add_neg_cancel_assoc πŸ“–mathematicalAddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SubNegMonoid.toNegβ€”add_assoc
add_neg_cancel
add_nsmul πŸ“–mathematicalAddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoid.toNatSMulβ€”zero_nsmul
zero_add
succ_nsmul'
add_assoc
right_comm
nsmul_left
add_right πŸ“–β€”AddCommute
AddSemigroup.toAdd
β€”β€”AddSemiconjBy.add_right
all πŸ“–mathematicalβ€”AddCommute
AddCommMagma.toAdd
β€”add_comm
eq πŸ“–β€”AddCommuteβ€”β€”β€”
instRefl πŸ“–mathematicalβ€”AddCommuteβ€”refl
left_comm πŸ“–β€”AddCommute
AddSemigroup.toAdd
β€”β€”add_assoc
eq
neg πŸ“–mathematicalAddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
SubNegMonoid.toNegβ€”eq
neg_add_rev
nsmul_left πŸ“–mathematicalAddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoid.toNatSMulβ€”symm
nsmul_right
nsmul_nsmul πŸ“–mathematicalAddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoid.toNatSMulβ€”nsmul_right
nsmul_left
nsmul_nsmul_self πŸ“–mathematicalβ€”AddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoid.toNatSMul
β€”nsmul_nsmul
refl
nsmul_right πŸ“–mathematicalAddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoid.toNatSMulβ€”AddSemiconjBy.nsmul_right
nsmul_self πŸ“–mathematicalβ€”AddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoid.toNatSMul
β€”nsmul_left
refl
on_refl πŸ“–mathematicalβ€”AddCommuteβ€”refl
refl πŸ“–mathematicalβ€”AddCommuteβ€”β€”
right_comm πŸ“–β€”AddCommute
AddSemigroup.toAdd
β€”β€”add_assoc
eq
self_nsmul πŸ“–mathematicalβ€”AddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoid.toNatSMul
β€”nsmul_right
refl
symm_iff πŸ“–mathematicalβ€”AddCommuteβ€”symm
zero_left πŸ“–mathematicalβ€”AddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddZero.toZero
β€”AddSemiconjBy.zero_left
zero_right πŸ“–mathematicalβ€”AddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddZero.toZero
β€”AddSemiconjBy.zero_right
zsmul_add πŸ“–mathematicalAddCommute
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
SubNegMonoid.toZSMulβ€”natCast_zsmul
add_nsmul
negSucc_zsmul
eq
nsmul_nsmul
neg_add_rev

Commute

Theorems

NameKindAssumesProvesValidatesDepends On
all πŸ“–mathematicalβ€”Commute
CommMagma.toMul
β€”mul_comm
eq πŸ“–β€”Commuteβ€”β€”β€”
instRefl πŸ“–mathematicalβ€”Commuteβ€”refl
inv πŸ“–mathematicalCommute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
DivInvMonoid.toInvβ€”eq
mul_inv_rev
left_comm πŸ“–β€”Commute
Semigroup.toMul
β€”β€”eq
mul_inv πŸ“–mathematicalCommute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
DivInvMonoid.toInvβ€”eq
mul_inv_rev
mul_inv_cancel πŸ“–mathematicalCommute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivInvMonoid.toInvβ€”eq
mul_inv_cancel_right
mul_inv_cancel_assoc πŸ“–mathematicalCommute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivInvMonoid.toInvβ€”mul_assoc
mul_inv_cancel
mul_left πŸ“–β€”Commute
Semigroup.toMul
β€”β€”SemiconjBy.mul_left
mul_mul_mul_comm πŸ“–β€”Commute
Semigroup.toMul
β€”β€”mul_assoc
left_comm
mul_pow πŸ“–mathematicalCommute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Monoid.toNatPowβ€”pow_zero
one_mul
pow_succ'
right_comm
pow_left
mul_right πŸ“–β€”Commute
Semigroup.toMul
β€”β€”SemiconjBy.mul_right
mul_zpow πŸ“–mathematicalCommute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
DivInvMonoid.toZPowβ€”zpow_natCast
mul_pow
zpow_negSucc
eq
pow_pow
mul_inv_rev
on_refl πŸ“–mathematicalβ€”Commuteβ€”refl
one_left πŸ“–mathematicalβ€”Commute
MulOne.toMul
MulOneClass.toMulOne
MulOne.toOne
β€”SemiconjBy.one_left
one_right πŸ“–mathematicalβ€”Commute
MulOne.toMul
MulOneClass.toMulOne
MulOne.toOne
β€”SemiconjBy.one_right
pow_left πŸ“–mathematicalCommute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Monoid.toNatPowβ€”symm
pow_right
pow_pow πŸ“–mathematicalCommute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Monoid.toNatPowβ€”β€”
pow_pow_self πŸ“–mathematicalβ€”Commute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Monoid.toNatPow
β€”pow_pow
refl
pow_right πŸ“–mathematicalCommute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Monoid.toNatPowβ€”SemiconjBy.pow_right
pow_self πŸ“–mathematicalβ€”Commute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Monoid.toNatPow
β€”pow_left
refl
refl πŸ“–mathematicalβ€”Commuteβ€”β€”
right_comm πŸ“–β€”Commute
Semigroup.toMul
β€”β€”mul_assoc
eq
self_pow πŸ“–mathematicalβ€”Commute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Monoid.toNatPow
β€”pow_right
refl
semiconjBy πŸ“–mathematicalCommuteSemiconjByβ€”β€”
symm_iff πŸ“–mathematicalβ€”Commuteβ€”symm

(root)

Definitions

NameCategoryTheorems
AddCommute πŸ“–MathDef
45 mathmath: AddOpposite.addCommute_op, AddCommute.self_nsmul, AddMonoidHom.noncommPiCoprod_apply, Pi.addCommute_iff, AddUnits.addCommute_iff_neg_add_cancel_assoc, OrderAddMonoidHom.addCommute_inlβ‚—_inrβ‚—, addCommute_iff_eq, OrderAddMonoidHom.addCommute_inl_inr, AddUnits.addCommute_coe_neg, AddCommute.symm_iff, AddCommute.addUnits_val_iff, AddSubgroup.addCommute_subtype_of_addCommute, AddCommute.self_zsmul, AddCommute.zsmul_self, AddCommute.of_addOrderOf_dvd_two, AddCommute.nsmul_nsmul_self, AddCommute.addUnits_neg_left_iff, Finsupp.addCommute_of_disjoint, AddUnits.addCommute_iff_add_neg_cancel_assoc, AddCommute.conj_iff, AddUnits.addCommute_iff_neg_add_cancel, AddCommute.refl, AddCommute.nsmul_self, Pi.single_apply_addCommute, AddCommute.zsmul_zsmul_self, AddCommute.neg_right_iff, AddSubgroup.addCommute_of_normal_of_disjoint, AddCommute.neg_left_iff, AddCommute.zero_right, AddMonoidHom.addCommute_inl_inr, AddCommute.neg_neg_iff, Finsupp.addCommute_iff_inter, AddCommute.all, AddCommute.addUnits_neg_right_iff, IsAddCentral.comm, AddCommute.on_refl, Prod.addCommute_iff, AddCommute.zero_left, addCommute_map_iff, AddUnits.addCommute_iff_add_neg_cancel, isAddCentral_iff, AddCommute.instRefl, AddUnits.addCommute_neg_coe, AddOpposite.addCommute_unop, AddAction.not_addCommute_of_disjoint_movedBy_preimage

Theorems

NameKindAssumesProvesValidatesDepends On
addCommute_iff_eq πŸ“–mathematicalβ€”AddCommuteβ€”β€”
commute_iff_eq πŸ“–mathematicalβ€”Commuteβ€”β€”

---

← Back to Index