Documentation Verification Report

Conj

πŸ“ Source: Mathlib/Algebra/Group/Conj.lean

Statistics

MetricCount
DefinitionsConjClasses, carrier, instDecidableEqOfDecidableRelIsConj, instInhabited, instOne, map, mk, mkEquiv, IsConj, setoid, Β«slow-failing_instance_priorityΒ», conjugatesOf
12
Theoremscarrier_eq_preimage_mk, exists_rep, forall_isConj, map_surjective, mem_carrier_iff_mk_eq, mem_carrier_mk, mk_bijective, mk_eq_mk_iff_isConj, mk_injective, mk_surjective, one_eq_mk_one, quot_mk_eq_mk, quotient_mk_eq_mk, conjugatesOf_eq, pow, refl, trans, map_isConj, conj_injective, conj_inv, conj_mul, conj_pow, conj_zpow, isConj_comm, isConj_iff, isConj_iff_conjugatesOf_eq, isConj_iff_eq, isConj_one_left, isConj_one_right, mem_conjugatesOf_self
30
Total42

ConjClasses

Definitions

NameCategoryTheorems
carrier πŸ“–CompOp
10 mathmath: carrier_eq_preimage_mk, mem_carrier_iff_mk_eq, sum_conjClasses_card_eq_card, mem_noncenter, ConjAct.orbit_eq_carrier_conjClasses, Group.nat_card_center_add_sum_card_noncenter_eq_card, Group.card_center_add_sum_card_noncenter_eq_card, card_carrier, mem_carrier_mk, Group.sum_card_conj_classes_eq_card
instDecidableEqOfDecidableRelIsConj πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
instOne πŸ“–CompOp
1 mathmath: one_eq_mk_one
map πŸ“–CompOp
1 mathmath: map_surjective
mk πŸ“–CompOpβ€”
mkEquiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
carrier_eq_preimage_mk πŸ“–mathematicalβ€”carrier
Set.preimage
ConjClasses
Set
Set.instSingletonSet
β€”Set.ext
mem_carrier_iff_mk_eq
exists_rep πŸ“–β€”β€”β€”β€”β€”
forall_isConj πŸ“–β€”β€”β€”β€”β€”
map_surjective πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
ConjClasses
map
β€”mk_surjective
mem_carrier_iff_mk_eq πŸ“–mathematicalβ€”Set
Set.instMembership
carrier
β€”forall_isConj
IsConj.conjugatesOf_eq
carrier.eq_1
mk_eq_mk_iff_isConj
mem_carrier_mk πŸ“–mathematicalβ€”Set
Set.instMembership
carrier
β€”IsConj.refl
mk_bijective πŸ“–mathematicalβ€”Function.Bijective
ConjClasses
CommMonoid.toMonoid
β€”mk_injective
mk_surjective
mk_eq_mk_iff_isConj πŸ“–mathematicalβ€”IsConjβ€”β€”
mk_injective πŸ“–mathematicalβ€”ConjClasses
CommMonoid.toMonoid
β€”mk_eq_mk_iff_isConj
isConj_iff_eq
mk_surjective πŸ“–mathematicalβ€”ConjClassesβ€”forall_isConj
one_eq_mk_one πŸ“–mathematicalβ€”ConjClasses
instOne
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”
quot_mk_eq_mk πŸ“–mathematicalβ€”IsConj.setoidβ€”β€”
quotient_mk_eq_mk πŸ“–mathematicalβ€”IsConj.setoidβ€”β€”

IsConj

Definitions

NameCategoryTheorems
setoid πŸ“–CompOp
2 mathmath: ConjClasses.quotient_mk_eq_mk, ConjClasses.quot_mk_eq_mk

Theorems

NameKindAssumesProvesValidatesDepends On
conjugatesOf_eq πŸ“–mathematicalIsConjconjugatesOfβ€”Set.ext
trans
symm
pow πŸ“–mathematicalIsConjMonoid.toNatPowβ€”SemiconjBy.pow_right
refl πŸ“–mathematicalβ€”IsConjβ€”SemiconjBy.one_left
trans πŸ“–β€”IsConjβ€”β€”SemiconjBy.mul_left

LibraryNote

Definitions

NameCategoryTheorems
Β«slow-failing_instance_priorityΒ» πŸ“–CompOpβ€”

MonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
map_isConj πŸ“–mathematicalIsConjDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
instFunLike
β€”Units.coe_map
SemiconjBy.eq_1
map_mul
SemiconjBy.eq

(root)

Definitions

NameCategoryTheorems
ConjClasses πŸ“–CompOp
16 mathmath: ConjClasses.carrier_eq_preimage_mk, ConjClasses.one_eq_mk_one, card_comm_eq_card_conjClasses_mul_card, ConjClasses.mk_injective, sum_conjClasses_card_eq_card, ConjClasses.mem_noncenter, ConjClasses.mk_bijOn, ConjClasses.mk_surjective, DihedralGroup.card_conjClasses_odd, ConjClasses.mk_bijective, commProb_def', Group.nat_card_center_add_sum_card_noncenter_eq_card, instFiniteConjClasses, Group.card_center_add_sum_card_noncenter_eq_card, Group.sum_card_conj_classes_eq_card, ConjClasses.map_surjective
IsConj πŸ“–MathDef
25 mathmath: isConj_one_left, isConj_iff, IsArithFrobAt.exists_primesOver_isConj, GroupWithZero.isConj_iffβ‚€, Equiv.Perm.isConj_of_cycleType_eq, isConj_iff_conjugatesOf_eq, Equiv.Perm.card_isConj_eq, Equiv.Perm.isConj_swap, isConj_one_right, ConjClasses.mk_eq_mk_iff_isConj, isConj_iff_eq, Group.mem_conjugatesOfSet_iff, Equiv.Perm.isConj_of_support_equiv, IsConj.refl, Equiv.Perm.isConj_iff_cycleType_eq, ConjAct.mem_orbit_conjAct, alternatingGroup.isConj_swap_mul_swap_of_cycleType_two, ConjAct.orbitRel_conjAct, Equiv.Perm.partition_eq_of_isConj, alternatingGroup.isThreeCycle_isConj, Equiv.Perm.card_isConj_mul_eq, isConj_comm, Equiv.Perm.IsCycle.isConj_iff, Equiv.Perm.IsCycle.isConj, isConj_arithFrobAt
conjugatesOf πŸ“–CompOp
4 mathmath: Group.conjugates_subset_normal, isConj_iff_conjugatesOf_eq, mem_conjugatesOf_self, IsConj.conjugatesOf_eq

Theorems

NameKindAssumesProvesValidatesDepends On
conj_injective πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”MulEquiv.injective
conj_inv πŸ“–mathematicalβ€”InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”map_inv
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
conj_mul πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”map_mul
MonoidHomClass.toMulHomClass
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
conj_pow πŸ“–mathematicalβ€”Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”pow_zero
mul_one
mul_inv_cancel
pow_succ
conj_mul
conj_zpow πŸ“–mathematicalβ€”DivInvMonoid.toZPow
Group.toDivInvMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”zpow_natCast
conj_pow
zpow_negSucc
mul_inv_rev
inv_inv
mul_assoc
isConj_comm πŸ“–mathematicalβ€”IsConjβ€”IsConj.symm
isConj_iff πŸ“–mathematicalβ€”IsConj
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”mul_inv_eq_iff_eq_mul
mul_inv_cancel
inv_mul_cancel
isConj_iff_conjugatesOf_eq πŸ“–mathematicalβ€”IsConj
conjugatesOf
β€”IsConj.conjugatesOf_eq
mem_conjugatesOf_self
isConj_iff_eq πŸ“–mathematicalβ€”IsConj
CommMonoid.toMonoid
β€”mul_one
Units.mul_inv
mul_assoc
Units.mul_inv_eq_iff_eq_mul
mul_comm
SemiconjBy.eq_1
IsConj.refl
isConj_one_left πŸ“–mathematicalβ€”IsConj
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”IsConj.symm
isConj_one_right
isConj_one_right πŸ“–mathematicalβ€”IsConj
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”IsUnit.mul_eq_right
Units.isUnit
mul_one
SemiconjBy.eq_1
IsConj.refl
mem_conjugatesOf_self πŸ“–mathematicalβ€”Set
Set.instMembership
conjugatesOf
β€”IsConj.refl

---

← Back to Index