Documentation Verification Report

End

📁 Source: Mathlib/Algebra/Group/End.lean

Statistics

MetricCount
Definitionsconj, instGroup, instInhabited, toPerm, AddAutAdditive, equivUnitsEnd, extendDomainHom, instInv, instMul, instOne, instPowNat, ofSubtype, permCongrHom, permGroup, sigmaCongrRightHom, subtypeCongrHom, subtypeEquivSubtypePerm, subtypePerm, sumCongrHom, permCongrHom, toHomPerm, MulAut, conj, instGroup, instInhabited, toPerm, MulAutMultiplicative, instInhabitedEnd, instMonoidEnd
29
Theoremsapply_inv_self, coe_inv, coe_mul, coe_one, congr_apply, congr_symm_apply, conj_apply, conj_inv_apply, conj_symm_apply, inv_apply, inv_apply_self, inv_def, inv_symm, mul_apply, mul_def, neg_conj_apply, one_apply, one_def, symm_inv, AddAutAdditive_apply_apply, AddAutAdditive_apply_symm_apply, AddAutAdditive_symm_apply_apply, AddAutAdditive_symm_apply_symm_apply, apply_inv_self, coe_inv, coe_mul, coe_one, coe_pow, default_eq, eq_inv_iff_eq, equivUnitsEnd_symm_apply_apply, equivUnitsEnd_symm_apply_symm_apply, extendDomainHom_apply, extendDomainHom_injective, extendDomain_eq_one_iff, extendDomain_inv, extendDomain_mul, extendDomain_one, extendDomain_pow, extendDomain_zpow, inv_apply_self, inv_def, inv_eq_iff_eq, inv_subtypePerm, inv_trans_self, iterate_eq_pow, mul_apply, mul_def, mul_refl, mul_symm, ofSubtype_apply_coe, ofSubtype_apply_mem_iff_mem, ofSubtype_apply_of_mem, ofSubtype_apply_of_not_mem, ofSubtype_injective, ofSubtype_subtypePerm, ofSubtype_subtypePerm_of_mem, ofSubtype_subtypePerm_of_not_mem, one_apply, one_def, one_symm, one_trans, permCongr_eq_mul, refl_inv, refl_mul, self_trans_inv, sigmaCongrRightHom_apply, sigmaCongrRightHom_injective, sigmaCongrRight_inv, sigmaCongrRight_mul, sigmaCongrRight_one, subtypeCongrHom_apply, subtypeCongrHom_injective, subtypeEquivSubtypePerm_apply_coe, subtypeEquivSubtypePerm_apply_of_mem, subtypeEquivSubtypePerm_apply_of_not_mem, subtypeEquivSubtypePerm_symm_apply, subtypePerm_apply, subtypePerm_inv, subtypePerm_mul, subtypePerm_ofSubtype, subtypePerm_one, subtypePerm_pow, subtypePerm_zpow, sumCongrHom_apply, sumCongrHom_injective, sumCongr_inv, sumCongr_mul, sumCongr_one, sumCongr_one_swap, sumCongr_swap_one, symm_mul, trans_one, val_equivUnitsEnd_apply, val_inv_equivUnitsEnd_apply, zpow_apply_comm, addLeft_add, addLeft_zero, addRight_add, addRight_zero, inv_mulLeft, inv_mulRight, mulLeft_mul, mulLeft_one, mulRight_mul, mulRight_one, mul_swap_eq_iff, mul_swap_eq_swap_mul, mul_swap_involutive, mul_swap_mul_self, neg_addLeft, neg_addRight, nsmul_addLeft, nsmul_addRight, permCongrHom_coe, permCongrHom_coe_equiv, permCongrHom_symm, permCongrHom_trans, permCongr_eq_mul, permCongr_mul, pow_mulLeft, pow_mulRight, swap_apply_apply, swap_eq_one_iff, swap_inv, swap_mul_eq_iff, swap_mul_eq_mul_swap, swap_mul_involutive, swap_mul_self, swap_mul_self_mul, swap_mul_swap_mul_swap, zpow_mulLeft, zpow_mulRight, zsmul_addLeft, zsmul_addRight, toHomPerm_apply_apply, toHomPerm_apply_symm_apply, apply_inv_self, coe_inv, coe_mul, coe_one, congr_apply, congr_symm_apply, conj_apply, conj_inv_apply, conj_symm_apply, inv_apply, inv_apply_self, inv_def, inv_symm, mul_apply, mul_def, one_apply, one_def, symm_inv, MulAutMultiplicative_apply_apply, MulAutMultiplicative_apply_symm_apply, MulAutMultiplicative_symm_apply_apply, MulAutMultiplicative_symm_apply_symm_apply
159
Total188

AddAut

Definitions

NameCategoryTheorems
conj 📖CompOp
12 mathmath: AddAction.stabilizer_vadd_eq_stabilizer_map_conj, Set.conj_mem_fixingAddSubgroup, conj_symm_apply, AddAction.stabilizerEquivStabilizer_symm_apply, conj_inv_apply, SubAddAction.fixingAddSubgroup_vadd_eq_fixingAddSubgroup_map_conj, AddAction.IsBlock.of_addSubgroup_of_conjugate, conj_apply, SubAddAction.fixingAddSubgroupEquivFixingAddSubgroup_coe_apply, AddAction.stabilizerEquivStabilizer_apply, SubAddAction.fixingAddSubgroup_map_conj_eq, neg_conj_apply
instGroup 📖CompOp
38 mathmath: inv_symm, apply_inv_self, AddAutAdditive_apply_symm_apply, mul_apply, AddAction.stabilizer_vadd_eq_stabilizer_map_conj, AddAutAdditive_apply_apply, AddAutAdditive_symm_apply_symm_apply, MulAutMultiplicative_symm_apply_apply, ZMod.AddAutEquivUnits_symm_apply, MulAutMultiplicative_apply_apply, conj_symm_apply, coe_inv, MulAutMultiplicative_symm_apply_symm_apply, coe_mul, AddAction.stabilizerEquivStabilizer_symm_apply, conj_inv_apply, ZMod.AddAutEquivUnits_apply, AddAction.IsBlock.of_addSubgroup_of_conjugate, coe_one, apply_faithfulSMul, conj_apply, inv_apply, DistribMulAction.toAddAut_apply, inv_def, AddAction.stabilizerEquivStabilizer_apply, symm_inv, mulLeft_apply_apply, MulAutMultiplicative_apply_symm_apply, one_def, one_apply, mulLeft_apply_symm_apply, smul_def, neg_conj_apply, mul_def, AddAutAdditive_symm_apply_apply, congr_apply, inv_apply_self, congr_symm_apply
instInhabited 📖CompOp
toPerm 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
apply_inv_self 📖mathematicalDFunLike.coe
AddEquiv
EquivLike.toFunLike
AddEquiv.instEquivLike
AddAut
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
AddEquiv.apply_symm_apply
coe_inv 📖mathematicalDFunLike.coe
AddEquiv
EquivLike.toFunLike
AddEquiv.instEquivLike
AddAut
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
AddEquiv.symm
coe_mul 📖mathematicalDFunLike.coe
AddEquiv
EquivLike.toFunLike
AddEquiv.instEquivLike
AddAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
coe_one 📖mathematicalDFunLike.coe
AddEquiv
EquivLike.toFunLike
AddEquiv.instEquivLike
AddAut
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
congr_apply 📖mathematicalDFunLike.coe
MulEquiv
AddAut
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
EquivLike.toFunLike
MulEquiv.instEquivLike
congr
AddEquiv.trans
AddEquiv.symm
congr_symm_apply 📖mathematicalDFunLike.coe
MulEquiv
AddAut
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
congr
AddEquiv.trans
AddEquiv.symm
conj_apply 📖mathematicalDFunLike.coe
AddEquiv
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
EquivLike.toFunLike
AddEquiv.instEquivLike
Equiv
Additive
AddAut
Equiv.instEquivLike
Additive.toMul
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Additive.addZeroClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
AddMonoidHom.instFunLike
conj
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
conj_inv_apply 📖mathematicalDFunLike.coe
AddEquiv
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
EquivLike.toFunLike
AddEquiv.instEquivLike
AddAut
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
Equiv
Additive
Equiv.instEquivLike
Additive.toMul
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Additive.addZeroClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddMonoidHom.instFunLike
conj
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
conj_symm_apply 📖mathematicalDFunLike.coe
AddEquiv
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
Equiv
Additive
AddAut
Equiv.instEquivLike
Additive.toMul
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Additive.addZeroClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
AddMonoidHom.instFunLike
conj
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
inv_apply 📖mathematicalDFunLike.coe
AddEquiv
EquivLike.toFunLike
AddEquiv.instEquivLike
AddAut
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
AddEquiv.symm
inv_apply_self 📖mathematicalDFunLike.coe
AddEquiv
EquivLike.toFunLike
AddEquiv.instEquivLike
AddAut
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
AddEquiv.apply_symm_apply
inv_def 📖mathematicalAddAut
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
AddEquiv.symm
inv_symm 📖mathematicalAddEquiv.symm
AddAut
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
mul_apply 📖mathematicalDFunLike.coe
AddEquiv
EquivLike.toFunLike
AddEquiv.instEquivLike
AddAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
mul_def 📖mathematicalAddAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
AddEquiv.trans
neg_conj_apply 📖mathematicalDFunLike.coe
AddEquiv
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
EquivLike.toFunLike
AddEquiv.instEquivLike
Equiv
Additive
AddAut
Equiv.instEquivLike
Additive.toMul
Additive.neg
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Additive.addZeroClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddMonoidHom.instFunLike
conj
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
one_apply 📖mathematicalDFunLike.coe
AddEquiv
EquivLike.toFunLike
AddEquiv.instEquivLike
AddAut
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
one_def 📖mathematicalAddAut
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
AddEquiv.refl
symm_inv 📖mathematicalAddEquiv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
AddEquiv.symm

Equiv

Definitions

NameCategoryTheorems
permCongrHom 📖CompOp
4 mathmath: permCongrHom_coe, permCongrHom_symm, permCongrHom_coe_equiv, permCongrHom_trans

Theorems

NameKindAssumesProvesValidatesDepends On
addLeft_add 📖mathematicaladdLeft
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Perm
Perm.instMul
ext
add_assoc
addLeft_zero 📖mathematicaladdLeft
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Perm
Perm.instOne
ext
zero_add
addRight_add 📖mathematicaladdRight
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Perm
Perm.instMul
ext
add_assoc
addRight_zero 📖mathematicaladdRight
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Perm
Perm.instOne
ext
add_zero
inv_mulLeft 📖mathematicalPerm
Perm.instInv
mulLeft
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
inv_mulRight 📖mathematicalPerm
Perm.instInv
mulRight
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
mulLeft_mul 📖mathematicalmulLeft
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Perm
Perm.instMul
ext
mul_assoc
mulLeft_one 📖mathematicalmulLeft
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Perm
Perm.instOne
ext
one_mul
mulRight_mul 📖mathematicalmulRight
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Perm
Perm.instMul
ext
mul_assoc
mulRight_one 📖mathematicalmulRight
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Perm
Perm.instOne
ext
mul_one
mul_swap_eq_iff 📖mathematicalPerm
Perm.instMul
swap
mul_eq_left
LeftCancelSemigroup.toIsLeftCancelMul
swap_eq_one_iff
mul_swap_eq_swap_mul 📖mathematicalPerm
Perm.instMul
swap
DFunLike.coe
EquivLike.toFunLike
instEquivLike
swap_mul_eq_mul_swap
symm_apply_apply
mul_swap_involutive 📖mathematicalFunction.Involutive
Perm
Perm.instMul
swap
mul_swap_mul_self
mul_swap_mul_self 📖mathematicalPerm
Perm.instMul
swap
mul_assoc
swap_mul_self
mul_one
neg_addLeft 📖mathematicalPerm
Perm.instInv
addLeft
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
neg_addRight 📖mathematicalPerm
Perm.instInv
addRight
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
nsmul_addLeft 📖mathematicalPerm
Perm.instPowNat
addLeft
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Perm.ext
add_left_iterate
nsmul_addRight 📖mathematicalPerm
Perm.instPowNat
addRight
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Perm.ext
add_right_iterate
permCongrHom_coe 📖mathematicalDFunLike.coe
MulEquiv
Perm
Perm.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
permCongrHom
Equiv
instEquivLike
permCongr
permCongrHom_coe_equiv 📖mathematicalEquivLike.toEquiv
Perm
MulEquiv
Perm.instMul
MulEquiv.instEquivLike
permCongrHom
permCongr
permCongrHom_symm 📖mathematicalMulEquiv.symm
Perm
Perm.instMul
permCongrHom
symm
permCongrHom_trans 📖mathematicalMulEquiv.trans
Perm
Perm.instMul
permCongrHom
trans
permCongr_eq_mul 📖mathematicalDFunLike.coe
Equiv
Perm
EquivLike.toFunLike
instEquivLike
permCongr
Perm.instMul
Perm.instInv
permCongr_mul 📖mathematicalDFunLike.coe
Equiv
Perm
EquivLike.toFunLike
instEquivLike
permCongr
Perm.instMul
permCongr_trans
pow_mulLeft 📖mathematicalPerm
Perm.instPowNat
mulLeft
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Perm.ext
mul_left_iterate
pow_mulRight 📖mathematicalPerm
Perm.instPowNat
mulRight
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Perm.ext
mul_right_iterate
swap_apply_apply 📖mathematicalswap
DFunLike.coe
Perm
EquivLike.toFunLike
instEquivLike
Perm.instMul
Perm.instInv
mul_swap_eq_swap_mul
mul_inv_cancel_right
swap_eq_one_iff 📖mathematicalswap
Perm
Perm.instOne
swap_eq_refl_iff
swap_inv 📖mathematicalPerm
Perm.instInv
swap
swap_mul_eq_iff 📖mathematicalPerm
Perm.instMul
swap
mul_eq_right
RightCancelSemigroup.toIsRightCancelMul
swap_eq_one_iff
swap_mul_eq_mul_swap 📖mathematicalPerm
Perm.instMul
swap
DFunLike.coe
EquivLike.toFunLike
instEquivLike
Perm.instInv
ext
apply_symm_apply
swap_mul_involutive 📖mathematicalFunction.Involutive
Perm
Perm.instMul
swap
swap_mul_self_mul
swap_mul_self 📖mathematicalPerm
Perm.instMul
swap
Perm.instOne
swap_swap
swap_mul_self_mul 📖mathematicalPerm
Perm.instMul
swap
swap_mul_self
one_mul
swap_mul_swap_mul_swap 📖mathematicalPerm
Perm.instMul
swap
swap_inv
swap_apply_apply
swap_apply_left
swap_apply_of_ne_of_ne
swap_comm
zpow_mulLeft 📖mathematicalPerm
DivInvMonoid.toZPow
Group.toDivInvMonoid
Perm.permGroup
mulLeft
zpow_natCast
pow_mulLeft
zpow_negSucc
inv_mulLeft
zpow_mulRight 📖mathematicalPerm
DivInvMonoid.toZPow
Group.toDivInvMonoid
Perm.permGroup
mulRight
zpow_natCast
pow_mulRight
zpow_negSucc
inv_mulRight
zsmul_addLeft 📖mathematicalPerm
DivInvMonoid.toZPow
Group.toDivInvMonoid
Perm.permGroup
addLeft
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
zpow_natCast
nsmul_addLeft
natCast_zsmul
zpow_negSucc
neg_addLeft
negSucc_zsmul
zsmul_addRight 📖mathematicalPerm
DivInvMonoid.toZPow
Group.toDivInvMonoid
Perm.permGroup
addRight
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
zpow_natCast
nsmul_addRight
natCast_zsmul
zpow_negSucc
neg_addRight
negSucc_zsmul

Equiv.Perm

Definitions

NameCategoryTheorems
equivUnitsEnd 📖CompOp
4 mathmath: val_equivUnitsEnd_apply, equivUnitsEnd_symm_apply_symm_apply, equivUnitsEnd_symm_apply_apply, val_inv_equivUnitsEnd_apply
extendDomainHom 📖CompOp
2 mathmath: extendDomainHom_apply, extendDomainHom_injective
instInv 📖CompOp
67 mathmath: sameCycle_conj, cycleOf_inv, mem_cycleFactorsFinset_conj, Matrix.transpose_permMatrix, apply_inv_self, Equiv.swap_apply_apply, cycleType_mul_inv_mem_cycleFactorsFinset_eq_sub, disjoint_inv_right_iff, cycleFactorsFinset_mul_inv_mem_eq_sdiff, permCongr_eq_mul, Tuple.sort_perm, Matrix.permMatrixHom_apply, IsCycle.conj, sumCongr_inv, Function.IsFixedPt.perm_inv, Matrix.conjTranspose_permMatrix, Equiv.neg_addLeft, Rack.ad_conj, inv_eq_iff_eq, extendDomain_inv, image_inv, isCycle_inv, Disjoint.inv_right, signAux_inv, sameCycle_inv, preimage_inv, IsCycleOn.inv, Rack.invAct_apply, inv_apply_self, Equiv.neg_addRight, IsThreeCycle.inv_iff, Equiv.inv_mulRight, isCycleOn_inv, refl_inv, disjoint_conj, sigmaCongrRight_inv, coe_inv, SameCycle.inv, Equiv.swap_mul_eq_mul_swap, IsThreeCycle.inv, Equiv.swap_inv, support_inv, disjoint_inv_left_iff, inv_subtypePerm, OnCycleFactors.coe_toPermHom, Set.BijOn.perm_inv, Disjoint.inv_left, SameCycle.conj, inv_def, cycleType_conj, support_conj, IsCycle.inv, card_support_conj, Equiv.permCongr_eq_mul, Disjoint.conj, Cycle.formPerm_reverse, cycleType_inv, sign_inv, RootPairing.reflectionPerm_inv, self_trans_inv, List.formPerm_reverse, eq_inv_iff_eq, disjoint_mul_inv_of_mem_cycleFactorsFinset, IsCycleOn.conj, Equiv.inv_mulLeft, RootPairing.Equiv.indexEquiv_inv, inv_trans_self
instMul 📖CompOp
123 mathmath: sameCycle_conj, subtypePerm_mul, mem_cycleFactorsFinset_conj, support_prod_of_pairwise_disjoint, card_support_swap_mul, map_equiv_removeNone, Equiv.swap_apply_apply, Equiv.addRight_add, val_equivUnitsEnd_apply, cycleType_mul_inv_mem_cycleFactorsFinset_eq_sub, Equiv.swap_mul_self, eq_on_support_mem_disjoint, symm_mul, cycleFactorsFinset_mul_inv_mem_eq_sdiff, set_support_mul_subset, permCongr_eq_mul, Disjoint.cycleType, Disjoint.commute, IsCycle.commute_iff', coe_mul, IsCycle.conj, alternatingGroup.normalClosure_swap_mul_swap_five, support_swap_mul_eq, support_swap_mul_swap, mul_mem_alternatingGroup_of_isSwap, cycleType_swap_mul_swap_of_nodup, Disjoint.card_support_mul, commute_iff_of_mem_cycleFactorsFinset, Equiv.permCongrHom_coe, mem_list_cycles_iff, Rack.ad_conj, Matrix.permMatrix_mul, isCycle_swap_mul_aux₁, self_mem_cycle_factors_commute, Equiv.addLeft_add, Disjoint.support_mul, extendDomain_mul, Equiv.swap_mul_involutive, support_noncommProd, disjoint_prod_right, Disjoint.mul_apply_eq_iff, isThreeCycle_sq_of_three_mem_cycleType_five, Equiv.mul_swap_eq_swap_mul, mem_cycleType_iff, Equiv.swap_mul_eq_iff, OnCycleFactors.val_centralizer_smul, support_mul_le, card_support_prod_list_of_pairwise_disjoint, Equiv.mul_swap_involutive, mul_def, disjoint_conj, sign_mul, Equiv.swap_mul_eq_mul_swap, OnCycleFactors.mem_ker_toPermHom_iff, IsThreeCycle.eq_swap_mul_swap_iff_mem_support, mul_symm, refl_mul, signAux3_mul_and_swap, Equiv.permCongr_mul, List.zipWith_swap_prod_support', isCycle_swap_mul_aux₂, support_swap_mul_ge_support_diff, Equiv.permCongrHom_symm, Equiv.mul_swap_mul_self, sumCongr_mul, Equiv.mul_swap_eq_iff, OnCycleFactors.coe_toPermHom, Equiv.swap_mul_swap_mul_swap, SameCycle.conj, swap_mul_swap_same_mem_closure_three_cycles, support_prod_le, cycleType_conj, prod_list_swap_mem_alternatingGroup_iff_even_length, support_conj, IsSwap.mul_mem_closure_three_cycles, DomMulAct.stabilizerMulEquiv_apply, Disjoint.mul_eq_one_iff, Disjoint.mul_right, card_support_conj, IsThreeCycle.isThreeCycle_sq, Equiv.swap_mul_self_mul, Equiv.permCongr_eq_mul, IsCycle.swap_mul, disjoint_prod_perm, Disjoint.conj, cycleFactorsFinset_mem_commute, Disjoint.mul_left, equivUnitsEnd_symm_apply_symm_apply, Equiv.permCongrHom_coe_equiv, cycleFactorsFinset_eq_list_toFinset, MultilinearMap.domDomCongr_mul, List.formPerm_cons_cons, mul_apply, equivUnitsEnd_symm_apply_apply, Disjoint.cycleType_mul, IsCycle.forall_commute_iff, alternatingGroup.isConj_swap_mul_swap_of_cycleType_two, Equiv.mulRight_mul, mul_refl, decomposeOption_symm_apply, Disjoint.orderOf, IsCycle.commute_iff, prod_prodExtendRight, Disjoint.cycleFactorsFinset_mul_eq_union, Disjoint.isConj_mul, sign_prod_list_swap, cycleFactorsFinset_mem_commute', List.zipWith_swap_prod_support, disjoint_mul_inv_of_mem_cycleFactorsFinset, Equiv.mulLeft_mul, support_le_prod_of_mem, IsCycleOn.conj, val_inv_equivUnitsEnd_apply, isThreeCycle_swap_mul_swap_same, Equiv.constVAdd_add, Equiv.permCongrHom_trans, List.formPerm_append_pair, sigmaCongrRight_mul, Disjoint.cycleOf_mul_distrib, OnCycleFactors.centralizer_smul_def, signAux_mul, commute_ofSubtype_noncommPiCoprod, LinearMap.IsSymmetric.eigenvectorBasis_def
instOne 📖CompOp
87 mathmath: Fin.cycleIcc_ge, support_prod_of_pairwise_disjoint, Cycle.formPerm_subsingleton, disjoint_refl_iff, cycleFactorsFinset_eq_empty_iff, card_support_le_one, Equiv.constVAdd_zero, support_eq_empty_iff, RootPairing.reflectionPerm_sq, Equiv.swap_mul_self, eq_on_support_mem_disjoint, symm_mul, IsCycle.pow_eq_one_iff', disjoint_one_left, cycleOf_eq_one_iff, support_one, one_def, List.formPerm_singleton, card_support_eq_zero, cycleOf_one, Equiv.optionCongr_one, Equiv.swap_eq_one_iff, mem_list_cycles_iff, Fin.cycleRange_zero, AddAction.toPerm_zero, default_eq, signAux_one, IsCycle.pow_eq_one_iff, cycleFactorsFinset_one, disjoint_prod_right, Equiv.mulLeft_one, sigmaCongrRight_one, coe_one, trans_one, Equiv.addRight_zero, Matrix.permMatrix_one, refl_inv, card_support_prod_list_of_pairwise_disjoint, one_trans, IsCycle.cycleOf, sumCongr_swap_one, one_symm, mul_symm, List.zipWith_swap_prod_support', sumCongr_one_swap, Fin.cycleIcc_def_gt, sumCongr_one, cycleType_eq_zero, card_cycleType_eq_zero, Set.powersetCard.addAction_faithful, List.formPerm_pow_length_eq_one_of_nodup, toList_one, support_prod_le, prod_list_swap_mem_alternatingGroup_iff_even_length, cycleType_one, decomposeFin_symm_of_one, Fin.cycleRange_mk_zero, disjoint_one_right, Disjoint.mul_eq_one_iff, IsCycle.pow_eq_one_iff'', extendDomain_one, one_apply, Fin.cycleIcc_eq, disjoint_prod_perm, Set.Subsingleton.isCycleOn_one, List.formPerm_eq_one_iff, cycleFactorsFinset_eq_list_toFinset, Set.powersetCard.mulAction_faithful, Polynomial.Splits.toPermHom_apply_eq_one_or_isSwap_of_ncard_le_of_mem_inertia, isCycleOn_one, self_trans_inv, sign_one, extendDomain_eq_one_iff, prod_prodExtendRight, sameCycle_one, pow_prime_eq_one_iff, Equiv.addLeft_zero, sign_prod_list_swap, not_isCycle_one, List.zipWith_swap_prod_support, monotone_iff, support_le_prod_of_mem, Equiv.mulRight_one, Fin.cycleIcc_def_gt', MulAction.toPerm_one, List.formPerm_nil, inv_trans_self
instPowNat 📖CompOp
65 mathmath: SameCycle.exists_pow_eq_of_mem_support, SameCycle.exists_pow_eq, Finset.product_self_eq_disjiUnion_perm_aux, SameCycle.exists_nat_pow_eq, IsCycle.exists_pow_eq, iterate_eq_pow, IsCycleOn.exists_pow_eq', IsCycle.pow_eq_one_iff', IsCycle.pow_iff, support_pow_le, pow_eq_on_of_mem_support, cycleOf_apply_apply_pow_self, SameCycle.exists_pow_eq', cycleOf_pow_apply_self, SameCycle.exists_fin_pow_eq, Equiv.nsmul_addLeft, SameCycle.pow_right, IsCycleOn.exists_pow_eq, Equiv.pow_mulLeft, IsCycle.pow_eq_one_iff, extendDomain_pow, closure_cycle_coprime_swap, cycleOf_self_apply_pow, Function.IsFixedPt.perm_pow, Disjoint.pow_disjoint_pow, IsCycle.support_pow_eq_iff, IsCycleOn.pow_card_apply, Equiv.nsmul_addRight, IsCycle.pow_eq_pow_iff, List.formPerm_pow_apply_head, IsCycleOn.range_pow, apply_pow_apply_eq_iff, Set.BijOn.perm_pow, getElem_toList, List.formPerm_pow_apply_getElem, toList_pow_apply_eq_rotate, Set.MapsTo.perm_pow, sameCycle_pow_right, subtypePerm_apply_pow_of_mem, IsCycle.zpowersEquivSupport_apply, IsCycle.support_pow_of_pos_of_lt_orderOf, pow_apply_eq_self_of_apply_eq_self, pow_apply_mem_support, pow_apply_eq_of_apply_apply_eq_self, IsCycleOn.pow_apply_eq_pow_apply, List.formPerm_pow_length_eq_one_of_nodup, pow_mod_card_support_cycleOf_self_apply, pow_apply_mem_toList_iff_mem_support, Finset.sum_smul_sum_eq_sum_perm, Finset.sum_mul_sum_eq_sum_perm, IsCycle.pow_eq_one_iff'', support_pow_coprime, IsCycle.zpowersEquivSupport_symm_apply, IsCycle.isCycle_pow_pos_of_lt_prime_order, Set.SurjOn.perm_pow, sameCycle_pow_left, pow_prime_eq_one_iff, pow_mod_orderOf_cycleOf_apply, SameCycle.pow_left, subtypePerm_pow, coe_pow, SameCycle.exists_pow_eq'', Finset.product_self_eq_disjiUnion_perm, IsCycleOn.pow_apply_eq, Equiv.pow_mulRight
ofSubtype 📖CompOp
25 mathmath: subtypePerm_ofSubtype, disjoint_ofSubtype_noncommPiCoprod, disjoint_ofSubtype_of_memFixedPoints_self, ofSubtype_apply_mem_iff_mem, cycleType_ofSubtype, subtypeEquivSubtypePerm_apply_coe, support_ofSubtype, ofSubtype_subtypePerm_of_mem, ofSubtype_apply_of_mem, ofSubtype_subtypePerm, ofSubtype_apply_coe, ofSubtype_eq_iff, ofSubtype_swap_eq, ofSubtype_apply_of_not_mem, ofSubtype_injective, IsCycle.forall_commute_iff, IsCycle.commute_iff, ofSubtype_support_disjoint, IsSwap.of_subtype_isSwap, ofSubtype_mem_stabilizer, ofSubtype_subtypePerm_of_not_mem, OnCycleFactors.kerParam_apply, sign_ofSubtype, zpow_eq_ofSubtype_subtypePerm_iff, commute_ofSubtype_noncommPiCoprod
permCongrHom 📖CompOp
permGroup 📖CompOp
343 mathmath: Polynomial.Gal.galActionHom_restrict, Fin.sign_cycleIcc_of_eq, DilationEquiv.toPerm_apply, AlternatingMap.domCoprod.summand_mk'', Matrix.det_apply, Polynomial.Gal.galActionHom_bijective_of_prime_degree', alternatingGroup.eq_bot_of_card_le_two, List.form_perm_zpow_apply_mem_imp_mem, smul_def, Basis.toCentralizer_equivariant, alternatingGroup.commutator_perm_eq, MeasureTheory.Measure.QuasiMeasurePreserving.image_zpow_ae_eq, ContinuousMultilinearMap.alternatization_apply_apply, Equiv.zsmul_addLeft, alternatingGroup.isPreprimitive_of_three_le_card, AlternatingMap.map_perm, sign_of_cycleType, Polynomial.Gal.galActionHom_injective, Matrix.det_permute, Set.powersetCard.isPretransitive, disjoint_of_disjoint_support, subtypePerm_ofSubtype, Basis.toCentralizer_apply, RootPairing.reflectionPerm_sq, subtypeCongrHom_injective, cycleOf_self_apply_zpow, disjoint_ofSubtype_noncommPiCoprod, closure_isSwap, exists_mem_stabilizer_smul_eq, OnCycleFactors.mem_range_toPermHom_iff', alternatingGroup.card_two_sylow_of_card_eq_four, AlternatingMap.domCoprod_coe, DomMulAct.mem_stabilizer_iff, alternatingGroup.kleinFour_card_of_card_eq_four, sign_subtypePerm, set_support_zpow_subset, Disjoint.zpow_disjoint_zpow, IsCycle.pow_iff, OnCycleFactors.kerParam_range_card, disjoint_ofSubtype_of_memFixedPoints_self, exists_mem_stabilizer_isThreeCycle_of_two_lt_ncard, OnCycleFactors.kerParam_injective, MonoidHom.toHomPerm_apply_symm_apply, sign_trans_trans_symm, Equiv.swap_smul_involutive, mclosure_swap_castSucc_succ, viaFintypeEmbedding_sign, AlternatingGroup.isPreprimitive_of_three_le_card, ofSubtype_apply_mem_iff_mem, sign_symm, Matrix.permMatrixHom_apply, IsCycle.commute_iff', cycleFactorsFinset_noncommProd, Equiv.altCongrHom_apply_coe, disjoint_closure_of_disjoint_support, Equiv.zpow_mulRight, Fin.sign_cycleRange, sign_eq_prod_prod_Ioi, prod_Ioi_comp_eq_sign_mul_prod, OnCycleFactors.nat_card_range_toPermHom, alternatingGroup.normalClosure_swap_mul_swap_five, zpow_apply_mem_support_of_mem_cycleFactorsFinset_iff, alternatingGroup.subsingleton_two_sylow, mul_mem_alternatingGroup_of_isSwap, cycleFactorsFinset_eq_finset, alternatingGroup.isCoatom_stabilizer_singleton, sign_of_cycleType_eq_replicate, commute_iff_of_mem_cycleFactorsFinset, SameCycle.zpow_right, sumCongrHom.card_range, Set.BijOn.perm_zpow, decomposeFin.symm_sign, cycleType_ofSubtype, RootPairing.weylGroup_apply_root, Rack.envelAction_prop, alternatingGroup.characteristic_kleinFour, mem_closure_isSwap, AlternatingMap.map_congr_perm, zpow_apply_eq_of_apply_apply_eq_self, Set.powersetCard.isPretransitive_alternatingGroup, closure_isCycle, alternatingGroup.kleinFour_isKleinFour, AlternatingGroup.card_of_cycleType_singleton, SameCycle.exists_pow_eq', alternatingGroup.normalClosure_finRotate_five, isConj_of_cycleType_eq, sign_prodExtendRight, isCycle_swap_mul_aux₁, Function.IsFixedPt.perm_zpow, alternatingGroup.kleinFour_eq_commutator, subtypeEquivSubtypePerm_apply_coe, sign_abs, SameCycle.exists_fin_pow_eq, Fin.sign_cycleIcc_of_ge, GrpCat.SurjectiveOfEpiAuxs.g_apply_infinity, GrpCat.SurjectiveOfEpiAuxs.comp_eq, Basis.card_ofPermHom_support, alternatingGroup.center_eq_bot, alternatingGroup.stabilizer.surjective_toPerm, finite_compl_fixedBy_swap, Basis.ofPermHom_apply, zpow_apply_eq_self_of_apply_eq_self, MultilinearMap.domCoprod_alternization_coe, Set.prod_self_eq_iUnion_perm, sign_trans, sameCycle_zpow_right, OnCycleFactors.mem_range_toPermHom'_iff, sign_sumCongr, sign_eq_prod_prod_Iio, swap_mem_stabilizer, card_isConj_eq, Matrix.det_permutation, support_noncommProd, NumberField.InfinitePlace.ComplexEmbedding.conjugate_sign, closure_cycle_coprime_swap, not_solvable, IsSwap.finite_compl_fixedBy, alternatingGroup.coe_kleinFour_of_card_eq_four, subtypeCongrHom.card_range, viaEmbeddingHom_apply, cycleOf_apply_apply_zpow_self, IsSwap.orderOf, GrpCat.SurjectiveOfEpiAuxs.agree, RegularWreathProduct.toPermInj, Basis.ofPermHom_mem_centralizer, MulAction.toPermHom_apply, sign_bij, support_zpowers_of_mem_cycleFactorsFinset_le, Fin.sign_cycleIcc_of_le, stabilizer_isPreprimitive, applyFaithfulSMul, support_ofSubtype, mem_alternatingGroup, IsCycle.support_pow_eq_iff, Matrix.det_reindex, isConj_swap, support_zpow_le, SameCycle.zpow_left, OnCycleFactors.val_centralizer_smul, Equiv.zpow_mulLeft, sign_refl, IsCycle.orderOf, ofSubtype_subtypePerm_of_mem, lcm_cycleType, swap_mem_closure_isSwap, instCharacteristicPermAlternatingGroup, AlternatingGroup.card_of_cycleType, zpow_apply_mem_support, Basis.toPermHom_apply_toCentralizer, ofSubtype_apply_of_mem, sign_mul, finRotate_bit1_mem_alternatingGroup, centralizer_le_alternating_iff, OnCycleFactors.mem_ker_toPermHom_iff, Basis.ofPermHom_support, mem_sumCongrHom_range_of_perm_mapsTo_inl, alternatingGroup.index_eq_one, IsCycle.exists_zpow_eq, Basis.ofPermHomFun_commute_zpow_apply, sign_symm_trans_trans, mem_ofSign, ofSubtype_subtypePerm, Basis.ofPermHomFun_apply_mem_support_cycle_iff, mem_cycleFactorsFinset_conj', sigmaCongrRightHom_injective, alternatingGroup.two_sylow_eq_kleinFour_of_card_eq_four, alternatingGroup.nontrivial_of_three_le_card, ofSubtype_apply_coe, zpow_eq_zpow_on_iff, Equiv.swap_mem_stabilizer, IsCycle.zpowersEquivSupport_apply, GrpCat.SurjectiveOfEpiAuxs.h_apply_fromCoset', MultilinearMap.alternatization_apply, OnCycleFactors.cycleType_kerParam_apply_apply, RootPairing.range_weylGroupToPerm, AlternatingGroup.isMultiplyPretransitive, GrpCat.SurjectiveOfEpiAuxs.h_apply_infinity, alternatingGroup.exists_mem_stabilizer_smul_eq, decomposeOption_symm_sign, alternatingGroup.coe_two_sylow_of_card_eq_four, AddConstEquiv.toPerm_apply, subtypeCongrHom_apply, RootPairing.Equiv.indexHom_apply, AddAction.toPermHom_apply_symm_apply, OnCycleFactors.coe_toPermHom, exists_mem_stabilizer_isThreeCycle, sign_permCongr, eq_top_of_isMultiplyPretransitive, two_mul_card_alternatingGroup, commutator_alternatingGroup_eq_top, sigmaCongrRightHom.card_range, ContinuousMultilinearMap.alternatization_apply_toContinuousMultilinearMap, instIsPreprimitive, sumCongrHom_injective, swap_mul_swap_same_mem_closure_three_cycles, AlternatingGroup.isPretransitive_of_three_le_card, closure_of_isSwap_of_isPretransitive, card_alternatingGroup, alternatingGroup.stabilizer_isPreprimitive, prod_list_swap_mem_alternatingGroup_iff_even_length, dvd_of_mem_cycleType, two_mul_nat_card_alternatingGroup, fin_5_not_solvable, IsSwap.mul_mem_closure_three_cycles, sigmaCongrRightHom_apply, IsThreeCycle.alternating_normalClosure, IsCycleOn.range_zpow, cycleFactorsFinset_conj_eq, alternatingGroup.normal, alternatingGroup.normal_kleinFour, subgroup_eq_top_of_nontrivial, isConj_of_support_equiv, mem_closure_isSwap', DomMulAct.stabilizerMulEquiv_apply, GrpCat.SurjectiveOfEpiAuxs.h_apply_fromCoset, Matrix.det_mul_aux, IsThreeCycle.orderOf, alternatingGroup.isSimpleGroup_five, OnCycleFactors.mem_range_toPermHom_iff, alternatingGroup.isCoatom_stabilizer, Equiv.zsmul_addRight, Matrix.det_permute', ofSubtype_eq_iff, Polynomial.Gal.galActionHom_bijective_of_prime_degree, OnCycleFactors.kerParam_range_eq_centralizer_of_count_le_one, subtypePerm_zpow, ofSubtype_swap_eq, IsCycle.zpowersEquivSupport_symm_apply, Set.powersetCard.isPreprimitive_perm, sameCycle_zpow_left, alternatingGroup.exponent_kleinFour_of_card_eq_four, IsCycleOn.zpow_apply_eq, MultilinearMap.alternatization_coe, Basis.mem_fixedPoints_or_exists_zpow_eq, IsCycleOn.zpow_apply_eq_zpow_apply, ofSubtype_apply_of_not_mem, OnCycleFactors.toPermHom_apply, isConj_iff_cycleType_eq, isCoatom_stabilizer, Set.powersetCard.isPreprimitive_alternatingGroup, alternatingGroup.instNontrivialSubtypePermFinHAddNatOfNatMemSubgroup, iteratedWreathToPermHomInj, closure_cycle_adjacent_swap, ofSubtype_injective, Subgroup.normalCore_eq_ker, Equiv.swap_smul_self_smul, subtypePerm_apply_zpow_of_mem, GrpCat.SurjectiveOfEpiAuxs.h_apply_fromCoset_nin_range, sign_extendDomain, alternatingGroup.commutator_perm_le, cycleFactorsFinset_conj, AddAction.toPermHom_apply_apply, alternatingGroup.isPretransitive_of_three_le_card, Basis.ofPermHomFun_mul, instIsPretransitive, IsMultiplyPretransitive.alternatingGroup_le, Polynomial.Splits.toPermHom_apply_eq_one_or_isSwap_of_ncard_le_of_mem_inertia, AddAction.coe_toPermHom, sign_finRotate, alternatingGroup.isMultiplyPretransitive, IsCycle.sign, sign_inv, Polynomial.Gal.card_complex_roots_eq_card_real_add_card_not_gal_inv, IsThreeCycle.sign, AlternatingMap.domDomCongr_perm, IsCycle.forall_commute_iff, IsSwap.sign_eq, stabilizer.surjective_toPerm, Polynomial.Splits.surjective_toPermHom_of_iSup_inertia_eq_top, OnCycleFactors.kerParam_range_le_centralizer, sign_prodCongrRight, isCoatom_stabilizer_of_ncard_lt_ncard_compl, Disjoint.orderOf, orderOf_cycleOf_dvd_orderOf, IsCycle.commute_iff, sign_eq_sign_of_equiv, sign_one, eq_top_if_isMultiplyPretransitive, extendDomain_zpow, closure_prime_cycle_swap, sumCongrHom_apply, MonoidHom.toHomPerm_apply_apply, extendDomainHom_apply, ofSubtype_support_disjoint, Matrix.det_apply', sign_prod_list_swap, mclosure_isSwap, pow_mod_orderOf_cycleOf_apply, cycle_zpow_mem_support_iff, moves_in, Disjoint.cycleType_noncommProd, IsSwap.of_subtype_isSwap, cycleOf_zpow_apply_self, partition_eq_of_isConj, sign_prodCongrLeft, alternatingGroup.card_of_card_eq_four, mem_conj_support, disjoint_noncommProd_right, AlternatingGroup.map_subtype_of_cycleType, sign_of_cycleType', sign_subtypeCongr, GrpCat.SurjectiveOfEpiAuxs.g_apply_fromCoset, AlternatingMap.domCoprod_apply, OnCycleFactors.kerParam_range_eq, nat_card_alternatingGroup, ofSubtype_mem_stabilizer, closure_cycleType_eq_2_2_eq_alternatingGroup, exteriorPower.toTensorPower_apply_ιMulti, prod_Iio_comp_eq_sign_mul_prod, alternatingGroup_eq_sign_ker, SameCycle.exists_pow_eq'', Equiv.optionCongr_sign, MulAction.coe_toPermHom, alternatingGroup.index_eq_two, Basis.ofPermHomFun_one, ofSubtype_subtypePerm_of_not_mem, zpow_apply_comm, commutator_alternatingGroup_eq_self, sign_swap', apply_zpow_apply_eq_iff, IsThreeCycle.mem_alternatingGroup, OnCycleFactors.kerParam_apply, AlternatingGroup.card_of_cycleType_mul_eq, sign_swap, closure_three_cycles_eq_alternating, card_isConj_mul_eq, sign_ofSubtype, nat_card_centralizer, RootPairing.Equiv.indexEquiv_inv, extendDomainHom_injective, IsCycle.isConj_iff, zpow_eq_ofSubtype_subtypePerm_iff, MultilinearMap.alternatization_def, OnCycleFactors.range_toPermHom_eq_range_toPermHom', OnCycleFactors.centralizer_smul_def, sign_surjective, commute_ofSubtype_noncommPiCoprod, alternatingGroup.isCoatom_stabilizer_of_ncard_lt_ncard_compl, OnCycleFactors.sign_kerParam_apply_apply, IsCycle.isConj, AlternatingMap.domCoprod.summand_add_swap_smul_eq_zero, viaEmbeddingHom_injective, isMultiplyPretransitive
sigmaCongrRightHom 📖CompOp
3 mathmath: sigmaCongrRightHom_injective, sigmaCongrRightHom.card_range, sigmaCongrRightHom_apply
subtypeCongrHom 📖CompOp
3 mathmath: subtypeCongrHom_injective, subtypeCongrHom.card_range, subtypeCongrHom_apply
subtypeEquivSubtypePerm 📖CompOp
4 mathmath: subtypeEquivSubtypePerm_apply_coe, subtypeEquivSubtypePerm_apply_of_mem, subtypeEquivSubtypePerm_apply_of_not_mem, subtypeEquivSubtypePerm_symm_apply
subtypePerm 📖CompOp
27 mathmath: subtypePerm_mul, subtypePerm_ofSubtype, IsCycleOn.isCycle_subtypePerm, sign_subtypePerm, subtypePerm_inv, IsCycle.commute_iff', commute_iff_of_mem_cycleFactorsFinset, ofSubtype_subtypePerm_of_mem, ofSubtype_subtypePerm, subtypePerm_apply_pow_of_mem, inv_subtypePerm, subtypePerm_on_cycleFactorsFinset, SameCycle.subtypePerm, ofSubtype_eq_iff, subtypePerm_zpow, sameCycle_subtypePerm, subtypePerm_apply_zpow_of_mem, IsCycle.forall_commute_iff, subtypeEquivSubtypePerm_symm_apply, IsCycle.commute_iff, IsCycleOn.subtypePerm, subtypePerm_apply, subtypePerm_pow, subtypePerm_one, support_subtypePerm, ofSubtype_subtypePerm_of_not_mem, zpow_eq_ofSubtype_subtypePerm_iff
sumCongrHom 📖CompOp
8 mathmath: AlternatingMap.domCoprod.summand_mk'', AlternatingMap.domCoprod_coe, sumCongrHom.card_range, mem_sumCongrHom_range_of_perm_mapsTo_inl, sumCongrHom_injective, sumCongrHom_apply, AlternatingMap.domCoprod_apply, AlternatingMap.domCoprod.summand_add_swap_smul_eq_zero

Theorems

NameKindAssumesProvesValidatesDepends On
apply_inv_self 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instInv
Equiv.apply_symm_apply
coe_inv 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instInv
Equiv
Equiv.symm
coe_mul 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instMul
coe_one 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instOne
coe_pow 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instPowNat
Nat.iterate
default_eq 📖mathematicalEquiv.Perm
Equiv.inhabited'
instOne
eq_inv_iff_eq 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instInv
Equiv.eq_symm_apply
equivUnitsEnd_symm_apply_apply 📖mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
MulEquiv
Units
Function.End
instMonoidEnd
Equiv.Perm
Units.instMul
instMul
MulEquiv.instEquivLike
MulEquiv.symm
equivUnitsEnd
Units.val
equivUnitsEnd_symm_apply_symm_apply 📖mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
MulEquiv
Units
Function.End
instMonoidEnd
Equiv.Perm
Units.instMul
instMul
MulEquiv.instEquivLike
MulEquiv.symm
equivUnitsEnd
Units.val
Units.instInv
extendDomainHom_apply 📖mathematicalDFunLike.coe
MonoidHom
Equiv.Perm
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
extendDomainHom
extendDomain
extendDomainHom_injective 📖mathematicalEquiv.Perm
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
extendDomainHom
injective_iff_map_eq_one
MonoidHom.instMonoidHomClass
ext
Equiv.injective
extendDomain_apply_image
ext_iff
extendDomain_eq_one_iff 📖mathematicalextendDomain
Equiv.Perm
instOne
injective_iff_map_eq_one'
MonoidHom.instMonoidHomClass
extendDomainHom_injective
extendDomain_inv 📖mathematicalEquiv.Perm
instInv
extendDomain
extendDomain_mul 📖mathematicalEquiv.Perm
instMul
extendDomain
extendDomain_trans
extendDomain_one 📖mathematicalextendDomain
Equiv.Perm
instOne
extendDomain_refl
extendDomain_pow 📖mathematicalextendDomain
Equiv.Perm
instPowNat
map_pow
MonoidHom.instMonoidHomClass
extendDomain_zpow 📖mathematicalextendDomain
Equiv.Perm
DivInvMonoid.toZPow
Group.toDivInvMonoid
permGroup
map_zpow
MonoidHom.instMonoidHomClass
inv_apply_self 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instInv
Equiv.symm_apply_apply
inv_def 📖mathematicalEquiv.Perm
instInv
Equiv.symm
inv_eq_iff_eq 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instInv
Equiv.symm_apply_eq
inv_subtypePerm 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instInv
subtypePerm
inv_trans_self 📖mathematicalEquiv.trans
Equiv.Perm
instInv
Equiv
instOne
Equiv.symm_trans_self
iterate_eq_pow 📖mathematicalNat.iterate
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instPowNat
mul_apply 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instMul
mul_def 📖mathematicalEquiv.Perm
instMul
Equiv.trans
mul_refl 📖mathematicalEquiv.Perm
Equiv
instMul
Equiv.refl
Equiv.trans_refl
mul_symm 📖mathematicalEquiv.Perm
Equiv
instMul
Equiv.symm
instOne
Equiv.symm_trans_self
ofSubtype_apply_coe 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
ofSubtype
ofSubtype_apply_of_mem
ofSubtype_apply_mem_iff_mem 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
ofSubtype
ofSubtype_apply_of_mem
ofSubtype_apply_of_not_mem
ofSubtype_apply_of_mem 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
ofSubtype
extendDomain_apply_subtype
ofSubtype_apply_of_not_mem 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
ofSubtype
extendDomain_apply_not_subtype
ofSubtype_injective 📖mathematicalEquiv.Perm
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
ofSubtype
ext_iff
SetCoe.ext_iff
ofSubtype_apply_coe
ofSubtype_subtypePerm 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
ofSubtype
subtypePerm
Equiv.ext
extendDomain_apply_subtype
ofSubtype.eq_1
extendDomain_apply_not_subtype
ofSubtype_subtypePerm_of_mem 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
ofSubtype
subtypePerm
ofSubtype_apply_of_mem
ofSubtype_subtypePerm_of_not_mem 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
ofSubtype
subtypePerm
ofSubtype_apply_of_not_mem
one_apply 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instOne
one_def 📖mathematicalEquiv.Perm
instOne
Equiv.refl
one_symm 📖mathematicalEquiv.symm
Equiv.Perm
instOne
Equiv
one_trans 📖mathematicalEquiv.trans
Equiv.Perm
instOne
permCongr_eq_mul 📖mathematicalDFunLike.coe
Equiv
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.permCongr
instMul
instInv
Equiv.permCongr_eq_mul
refl_inv 📖mathematicalEquiv
instInv
Equiv.refl
instOne
refl_mul 📖mathematicalEquiv
Equiv.Perm
instMul
Equiv.refl
self_trans_inv 📖mathematicalEquiv.trans
Equiv
instInv
instOne
Equiv.self_trans_symm
sigmaCongrRightHom_apply 📖mathematicalDFunLike.coe
MonoidHom
Equiv.Perm
MulOneClass.toMulOne
Pi.mulOneClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
sigmaCongrRightHom
sigmaCongrRight
sigmaCongrRightHom_injective 📖mathematicalEquiv.Perm
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Pi.mulOneClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
sigmaCongrRightHom
ext
Equiv.congr_fun
sigmaCongrRight_inv 📖mathematicalEquiv.Perm
instInv
sigmaCongrRight
sigmaCongrRight_mul 📖mathematicalEquiv.Perm
instMul
sigmaCongrRight
Pi.instMul
sigmaCongrRight_one 📖mathematicalsigmaCongrRight
Pi.instOne
Equiv.Perm
instOne
subtypeCongrHom_apply 📖mathematicalDFunLike.coe
MonoidHom
Equiv.Perm
MulOneClass.toMulOne
Prod.instMulOneClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
subtypeCongrHom
subtypeCongr
subtypeCongrHom_injective 📖mathematicalEquiv.Perm
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Prod.instMulOneClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
subtypeCongrHom
ext
subtypeCongr.left_apply_subtype
Equiv.congr_fun
subtypeCongr.right_apply_subtype
subtypeEquivSubtypePerm_apply_coe 📖mathematicalEquiv.Perm
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
subtypeEquivSubtypePerm
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
ofSubtype
subtypeEquivSubtypePerm_apply_of_mem 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv
subtypeEquivSubtypePerm
ofSubtype_apply_of_mem
subtypeEquivSubtypePerm_apply_of_not_mem 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv
subtypeEquivSubtypePerm
ofSubtype_apply_of_not_mem
subtypeEquivSubtypePerm_symm_apply 📖mathematicalDFunLike.coe
Equiv
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
subtypeEquivSubtypePerm
subtypePerm
subtypePerm_apply 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
subtypePerm
subtypePerm_inv 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instInv
subtypePerm
subtypePerm_mul 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instMul
subtypePerm
Equiv
subtypePerm_ofSubtype 📖mathematicalsubtypePerm
DFunLike.coe
MonoidHom
Equiv.Perm
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
ofSubtype
ofSubtype_apply_mem_iff_mem
Equiv.ext
ofSubtype_apply_mem_iff_mem
Subtype.coe_injective
ofSubtype_apply_coe
subtypePerm_one 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instOne
subtypePerm
subtypePerm_pow 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instPowNat
subtypePerm
pow_zero
subtypePerm.congr_simp
pow_succ'
subtypePerm_zpow 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
DivInvMonoid.toZPow
Group.toDivInvMonoid
permGroup
subtypePerm
subtypePerm_pow
zpow_negSucc
subtypePerm.congr_simp
sumCongrHom_apply 📖mathematicalDFunLike.coe
MonoidHom
Equiv.Perm
MulOneClass.toMulOne
Prod.instMulOneClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
sumCongrHom
sumCongr
sumCongrHom_injective 📖mathematicalEquiv.Perm
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Prod.instMulOneClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
sumCongrHom
ext
Equiv.congr_fun
sumCongr_inv 📖mathematicalEquiv.Perm
instInv
sumCongr
sumCongr_mul 📖mathematicalEquiv.Perm
instMul
sumCongr
sumCongr_trans
sumCongr_one 📖mathematicalsumCongr
Equiv.Perm
instOne
sumCongr_refl
sumCongr_one_swap 📖mathematicalsumCongr
Equiv.Perm
instOne
Equiv.swap
sumCongr_refl_swap
sumCongr_swap_one 📖mathematicalsumCongr
Equiv.swap
Equiv.Perm
instOne
sumCongr_swap_refl
symm_mul 📖mathematicalEquiv
Equiv.Perm
instMul
Equiv.symm
instOne
Equiv.self_trans_symm
trans_one 📖mathematicalEquiv.trans
Equiv.Perm
instOne
Equiv.trans_refl
val_equivUnitsEnd_apply 📖mathematicalUnits.val
Function.End
instMonoidEnd
DFunLike.coe
MulEquiv
Equiv.Perm
Units
instMul
Units.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
equivUnitsEnd
Equiv.instEquivLike
val_inv_equivUnitsEnd_apply 📖mathematicalUnits.val
Function.End
instMonoidEnd
Units
Units.instInv
DFunLike.coe
MulEquiv
Equiv.Perm
instMul
Units.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
equivUnitsEnd
Equiv
Equiv.instEquivLike
Equiv.symm
zpow_apply_comm 📖mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
DivInvMonoid.toZPow
Group.toDivInvMonoid
permGroup
mul_apply
zpow_mul_comm

MonoidHom

Definitions

NameCategoryTheorems
toHomPerm 📖CompOp
2 mathmath: toHomPerm_apply_symm_apply, toHomPerm_apply_apply

Theorems

NameKindAssumesProvesValidatesDepends On
toHomPerm_apply_apply 📖mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
MonoidHom
Equiv.Perm
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
instFunLike
toHomPerm
Function.End
instMonoidEnd
toHomPerm_apply_symm_apply 📖mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
MonoidHom
Equiv.Perm
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
instFunLike
toHomPerm
Units.val
Function.End
instMonoidEnd
Units
Units.instInv
Units.instMulOneClass
toHomUnits

MulAut

Definitions

NameCategoryTheorems
conj 📖CompOp
25 mathmath: SubMulAction.fixingSubgroup_smul_eq_fixingSubgroup_map_conj, conjNormal_val, Subgroup.conj_smul_subgroupOf, MulAction.stabilizerEquivStabilizer_symm_apply, Sylow.coe_smul, Subgroup.Normal.conj_smul_eq_self, CoxeterSystem.getElem_succ_leftInvSeq_alternatingWord, MulAction.stabilizerEquivStabilizer_apply, MulAction.stabilizer_smul_eq_stabilizer_map_conj, MulAction.IsBlock.of_subgroup_of_conjugate, CoxeterSystem.rightInvSeq_concat, conj_apply, Subgroup.conj_smul_le_of_le, conj_inv_apply, Set.conj_mem_fixingSubgroup, conj_symm_apply, SubMulAction.fixingSubgroup_map_conj_eq, Sylow.coe_subgroup_smul, SubMulAction.fixingSubgroupEquivFixingSubgroup_coe_apply, IsGalois.map_fixingSubgroup, Equiv.Perm.cycleFactorsFinset_conj, Subgroup.conj_smul_eq_self_of_mem, MulAction.IwasawaStructure.is_conj, Sylow.smul_def, ConjAct.smul_eq_mulAut_conj
instGroup 📖CompOp
79 mathmath: symm_inv, one_apply, AddAutAdditive_apply_symm_apply, inv_apply, conjNormal_symm_apply, SubMulAction.fixingSubgroup_smul_eq_fixingSubgroup_map_conj, IsCyclic.val_mulAutMulEquiv_apply, conjNormal_val, Subgroup.conj_smul_subgroupOf, MulAction.stabilizerEquivStabilizer_symm_apply, SemidirectProduct.inl_aut, Sylow.coe_smul, AddAutAdditive_apply_apply, AddAutAdditive_symm_apply_symm_apply, smul_def, MulAutMultiplicative_symm_apply_apply, mul_apply, MulAutMultiplicative_apply_apply, Subgroup.Normal.conj_smul_eq_self, inv_apply_self, CoxeterSystem.getElem_succ_leftInvSeq_alternatingWord, coe_inv, coe_one, SemidirectProduct.congr'_apply_right, MulAutMultiplicative_symm_apply_symm_apply, Subgroup.normalizerMonoidHom_ker, IsCyclic.val_inv_mulAutMulEquiv_apply, MulAction.stabilizerEquivStabilizer_apply, MulAction.stabilizer_smul_eq_stabilizer_map_conj, MulAction.IsBlock.of_subgroup_of_conjugate, SemidirectProduct.congr'_apply_left, CoxeterSystem.rightInvSeq_concat, coe_mul, SemidirectProduct.congr'_symm_apply_right, SemidirectProduct.mul_def, mulAutArrow_apply_apply, Subgroup.normalizerMonoidHom_apply_apply_coe, mulAutArrow_apply_symm_apply, SemidirectProduct.inl_aut_inv, mul_def, conj_apply, Subgroup.conj_smul_le_of_le, conj_inv_apply, Set.conj_mem_fixingSubgroup, SemidirectProduct.mulEquivProd_symm_apply_left, SemidirectProduct.congr'_symm_apply_left, GroupExtension.inl_conjAct_comm, conj_symm_apply, SubMulAction.fixingSubgroup_map_conj_eq, MulDistribMulAction.toMulAut_apply, congr_apply, Sylow.coe_subgroup_smul, IsCyclic.mulAutMulEquiv_symm_apply_symm_apply, SubMulAction.fixingSubgroupEquivFixingSubgroup_coe_apply, IsGalois.map_fixingSubgroup, MulAutMultiplicative_apply_symm_apply, inv_symm, Equiv.Perm.cycleFactorsFinset_conj, SemidirectProduct.inv_left, inv_def, SemidirectProduct.mulEquivSubgroup_apply, IsCyclic.mulAutMulEquiv_symm_apply_apply, conjNormal_inv_apply, SemidirectProduct.mulEquivProd_apply, Subgroup.conj_smul_eq_self_of_mem, SemidirectProduct.mulEquivSubgroup_symm_apply, SemidirectProduct.mulEquivProd_symm_apply_right, apply_inv_self, apply_faithfulSMul, SemidirectProduct.mul_left, MulAction.IwasawaStructure.is_conj, Subgroup.normalizerMonoidHom_apply_symm_apply_coe, Sylow.smul_def, one_def, AddAutAdditive_symm_apply_apply, ConjAct.smul_eq_mulAut_conj, SemidirectProduct.monoidHomSubgroup_apply, congr_symm_apply, conjNormal_apply
instInhabited 📖CompOp
toPerm 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
apply_inv_self 📖mathematicalDFunLike.coe
MulEquiv
EquivLike.toFunLike
MulEquiv.instEquivLike
MulAut
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
MulEquiv.apply_symm_apply
coe_inv 📖mathematicalDFunLike.coe
MulEquiv
EquivLike.toFunLike
MulEquiv.instEquivLike
MulAut
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
MulEquiv.symm
coe_mul 📖mathematicalDFunLike.coe
MulEquiv
EquivLike.toFunLike
MulEquiv.instEquivLike
MulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
coe_one 📖mathematicalDFunLike.coe
MulEquiv
EquivLike.toFunLike
MulEquiv.instEquivLike
MulAut
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
congr_apply 📖mathematicalDFunLike.coe
MulEquiv
MulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
EquivLike.toFunLike
MulEquiv.instEquivLike
congr
MulEquiv.trans
MulEquiv.symm
congr_symm_apply 📖mathematicalDFunLike.coe
MulEquiv
MulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
congr
MulEquiv.trans
conj_apply 📖mathematicalDFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
MonoidHom
MulAut
instGroup
MonoidHom.instFunLike
conj
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
conj_inv_apply 📖mathematicalDFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
MulAut
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
MonoidHom
MonoidHom.instFunLike
conj
conj_symm_apply 📖mathematicalDFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
MonoidHom
MulAut
instGroup
MonoidHom.instFunLike
conj
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
inv_apply 📖mathematicalDFunLike.coe
MulEquiv
EquivLike.toFunLike
MulEquiv.instEquivLike
MulAut
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
MulEquiv.symm
inv_def
inv_apply_self 📖mathematicalDFunLike.coe
MulEquiv
EquivLike.toFunLike
MulEquiv.instEquivLike
MulAut
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
MulEquiv.apply_symm_apply
inv_def 📖mathematicalMulAut
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
MulEquiv.symm
inv_symm 📖mathematicalMulEquiv.symm
MulAut
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
mul_apply 📖mathematicalDFunLike.coe
MulEquiv
EquivLike.toFunLike
MulEquiv.instEquivLike
MulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
mul_def 📖mathematicalMulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MulEquiv.trans
one_apply 📖mathematicalDFunLike.coe
MulEquiv
EquivLike.toFunLike
MulEquiv.instEquivLike
MulAut
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
one_def 📖mathematicalMulAut
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
MulEquiv.refl
symm_inv 📖mathematicalMulEquiv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
MulEquiv.symm

(root)

Definitions

NameCategoryTheorems
AddAutAdditive 📖CompOp
4 mathmath: AddAutAdditive_apply_symm_apply, AddAutAdditive_apply_apply, AddAutAdditive_symm_apply_symm_apply, AddAutAdditive_symm_apply_apply
MulAut 📖CompOp
79 mathmath: MulAut.one_apply, AddAutAdditive_apply_symm_apply, MulAut.inv_apply, MulAut.conjNormal_symm_apply, SubMulAction.fixingSubgroup_smul_eq_fixingSubgroup_map_conj, IsCyclic.val_mulAutMulEquiv_apply, MulAut.conjNormal_val, Subgroup.conj_smul_subgroupOf, MulAction.stabilizerEquivStabilizer_symm_apply, SemidirectProduct.inl_aut, Sylow.coe_smul, AddAutAdditive_apply_apply, AddAutAdditive_symm_apply_symm_apply, MulAut.smul_def, MulAutMultiplicative_symm_apply_apply, MulAut.mul_apply, MulAutMultiplicative_apply_apply, Subgroup.Normal.conj_smul_eq_self, MulAut.inv_apply_self, CoxeterSystem.getElem_succ_leftInvSeq_alternatingWord, MulAut.coe_inv, MulAut.coe_one, SemidirectProduct.congr'_apply_right, MulAutMultiplicative_symm_apply_symm_apply, Subgroup.normalizerMonoidHom_ker, IsCyclic.val_inv_mulAutMulEquiv_apply, MulAction.stabilizerEquivStabilizer_apply, MulAction.stabilizer_smul_eq_stabilizer_map_conj, MulAction.IsBlock.of_subgroup_of_conjugate, SemidirectProduct.congr'_apply_left, CoxeterSystem.rightInvSeq_concat, MulAut.coe_mul, SemidirectProduct.congr'_symm_apply_right, SemidirectProduct.mul_def, mulAutArrow_apply_apply, Subgroup.normalizerMonoidHom_apply_apply_coe, mulAutArrow_apply_symm_apply, SemidirectProduct.inl_aut_inv, MulAut.mul_def, MulAut.conj_apply, IsCyclic.card_mulAut, Subgroup.conj_smul_le_of_le, MulAut.conj_inv_apply, Set.conj_mem_fixingSubgroup, SemidirectProduct.mulEquivProd_symm_apply_left, SemidirectProduct.congr'_symm_apply_left, GroupExtension.inl_conjAct_comm, MulAut.conj_symm_apply, SubMulAction.fixingSubgroup_map_conj_eq, MulDistribMulAction.toMulAut_apply, MulAut.congr_apply, Sylow.coe_subgroup_smul, IsCyclic.mulAutMulEquiv_symm_apply_symm_apply, SubMulAction.fixingSubgroupEquivFixingSubgroup_coe_apply, IsGalois.map_fixingSubgroup, MulAutMultiplicative_apply_symm_apply, MulAut.inv_symm, Equiv.Perm.cycleFactorsFinset_conj, SemidirectProduct.inv_left, MulAut.inv_def, SemidirectProduct.mulEquivSubgroup_apply, IsCyclic.mulAutMulEquiv_symm_apply_apply, MulAut.conjNormal_inv_apply, SemidirectProduct.mulEquivProd_apply, Subgroup.conj_smul_eq_self_of_mem, SemidirectProduct.mulEquivSubgroup_symm_apply, SemidirectProduct.mulEquivProd_symm_apply_right, MulAut.apply_inv_self, MulAut.apply_faithfulSMul, SemidirectProduct.mul_left, MulAction.IwasawaStructure.is_conj, Subgroup.normalizerMonoidHom_apply_symm_apply_coe, Sylow.smul_def, MulAut.one_def, AddAutAdditive_symm_apply_apply, ConjAct.smul_eq_mulAut_conj, SemidirectProduct.monoidHomSubgroup_apply, MulAut.congr_symm_apply, MulAut.conjNormal_apply
MulAutMultiplicative 📖CompOp
4 mathmath: MulAutMultiplicative_symm_apply_apply, MulAutMultiplicative_apply_apply, MulAutMultiplicative_symm_apply_symm_apply, MulAutMultiplicative_apply_symm_apply
instInhabitedEnd 📖CompOp
instMonoidEnd 📖CompOp
16 mathmath: Function.End.mul_def, Equiv.Perm.val_equivUnitsEnd_apply, MonoidHom.toHomPerm_apply_symm_apply, AddConstMap.toEnd_apply, LipschitzWith.mul_end, LipschitzWith.pow_end, LipschitzWith.list_prod, LocallyLipschitz.pow_end, Function.End.smul_def, LocallyLipschitz.mul_end, Equiv.Perm.equivUnitsEnd_symm_apply_symm_apply, Equiv.Perm.equivUnitsEnd_symm_apply_apply, MonoidHom.toHomPerm_apply_apply, Function.End.one_def, Equiv.Perm.val_inv_equivUnitsEnd_apply, Function.End.apply_FaithfulSMul

Theorems

NameKindAssumesProvesValidatesDepends On
AddAutAdditive_apply_apply 📖mathematicalDFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
AddAut
Additive
Additive.add
MulAut
AddAut.instGroup
MulAut.instGroup
AddAutAdditive
Equiv
Equiv.instEquivLike
Additive.toMul
AddEquiv
AddZero.toAdd
AddZeroClass.toAddZero
Additive.addZeroClass
AddEquiv.instEquivLike
Additive.ofMul
AddAutAdditive_apply_symm_apply 📖mathematicalDFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
AddAut
Additive
Additive.add
MulAut
AddAut.instGroup
MulAut.instGroup
AddAutAdditive
Equiv
Equiv.instEquivLike
Additive.toMul
AddEquiv
AddZero.toAdd
AddZeroClass.toAddZero
Additive.addZeroClass
AddEquiv.instEquivLike
AddEquiv.symm
Additive.ofMul
AddAutAdditive_symm_apply_apply 📖mathematicalDFunLike.coe
AddEquiv
Additive
Additive.add
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
AddEquiv.instEquivLike
MulEquiv
MulAut
AddAut
MulAut.instGroup
AddAut.instGroup
MulEquiv.instEquivLike
MulEquiv.symm
AddAutAdditive
Equiv
Equiv.instEquivLike
Additive.ofMul
Additive.toMul
AddAutAdditive_symm_apply_symm_apply 📖mathematicalDFunLike.coe
AddEquiv
Additive
Additive.add
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
MulEquiv
MulAut
AddAut
MulAut.instGroup
AddAut.instGroup
MulEquiv.instEquivLike
MulEquiv.symm
AddAutAdditive
Equiv
Equiv.instEquivLike
Additive.ofMul
Additive.toMul
MulAutMultiplicative_apply_apply 📖mathematicalDFunLike.coe
AddEquiv
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
EquivLike.toFunLike
AddEquiv.instEquivLike
MulEquiv
MulAut
Multiplicative
Multiplicative.mul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAut.instGroup
AddAut.instGroup
MulEquiv.instEquivLike
MulAutMultiplicative
Equiv
Equiv.instEquivLike
Multiplicative.toAdd
Multiplicative.mulOneClass
Multiplicative.ofAdd
MulAutMultiplicative_apply_symm_apply 📖mathematicalDFunLike.coe
AddEquiv
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
MulEquiv
MulAut
Multiplicative
Multiplicative.mul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAut.instGroup
AddAut.instGroup
MulEquiv.instEquivLike
MulAutMultiplicative
Equiv
Equiv.instEquivLike
Multiplicative.toAdd
Multiplicative.mulOneClass
MulEquiv.symm
Multiplicative.ofAdd
MulAutMultiplicative_symm_apply_apply 📖mathematicalDFunLike.coe
MulEquiv
Multiplicative
Multiplicative.mul
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
AddAut
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
MulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddAut.instGroup
MulAut.instGroup
MulEquiv.symm
MulAutMultiplicative
Equiv
Equiv.instEquivLike
Multiplicative.ofAdd
AddEquiv
AddEquiv.instEquivLike
Multiplicative.toAdd
MulAutMultiplicative_symm_apply_symm_apply 📖mathematicalDFunLike.coe
MulEquiv
Multiplicative
Multiplicative.mul
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
AddAut
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
MulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddAut.instGroup
MulAut.instGroup
MulAutMultiplicative
Equiv
Equiv.instEquivLike
Multiplicative.ofAdd
AddEquiv
AddEquiv.instEquivLike
AddEquiv.symm
Multiplicative.toAdd

---

← Back to Index