Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Group/Fin/Basic.lean

Statistics

MetricCount
DefinitionsaddCommGroup, addCommMonoid, addCommSemigroup, instAddLeftCancelSemigroup, instAddMonoidWithOne, instAddRightCancelSemigroup, instInvolutiveNeg
7
Theoremsadd_lt_left_iff, coe_sub_one, instIsCancelAdd, intCast_def', le_sub_one_iff, lt_add_one_of_succ_lt, lt_one_iff, lt_sub_iff, lt_sub_one_iff, neg_last, neg_natCast_eq_one, rev_add, rev_sub, sub_le_iff, sub_one_lt_iff
15
Total22

Fin

Definitions

NameCategoryTheorems
addCommGroup πŸ“–CompOp
1 mathmath: BitVec.toFin_zsmul
addCommMonoid πŸ“–CompOp
2 mathmath: isAddFreimanIso_Iio, isAddFreimanIso_Iic
addCommSemigroup πŸ“–CompOpβ€”
instAddLeftCancelSemigroup πŸ“–CompOpβ€”
instAddMonoidWithOne πŸ“–CompOp
3 mathmath: charP, addRothNumber_eq_rothNumberNat, BitVec.toFin_nsmul
instAddRightCancelSemigroup πŸ“–CompOpβ€”
instInvolutiveNeg πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_lt_left_iff πŸ“–β€”β€”β€”β€”rev_add
lt_sub_iff
coe_sub_one πŸ“–β€”β€”β€”β€”sub_zero
zero_sub
coe_neg_one
sub_eq_add_neg
val_add_eq_ite
instIsCancelAdd πŸ“–mathematicalβ€”IsCancelAddβ€”add_left_cancel
AddLeftCancelSemigroup.toIsLeftCancelAdd
add_right_cancel
AddRightCancelSemigroup.toIsRightCancelAdd
intCast_def' πŸ“–β€”β€”β€”β€”β€”
le_sub_one_iff πŸ“–β€”β€”β€”β€”sub_self
lt_sub_one_iff
le_iff_lt_or_eq
val_fin_lt
sub_eq_iff_eq_add
AddLeftCancelSemigroup.toIsLeftCancelAdd
instNeZeroHAddNatOfNat_mathlib
instIsEmptyFalse
lt_add_one_of_succ_lt πŸ“–β€”β€”β€”β€”coe_ofNat_eq_mod
lt_one_iff πŸ“–β€”β€”β€”β€”β€”
lt_sub_iff πŸ“–β€”β€”β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
LT.lt.le
le_trans
LE.le.trans_lt'
Eq.ge
lt_sub_one_iff πŸ“–β€”β€”β€”β€”β€”
neg_last πŸ“–β€”β€”β€”β€”β€”
neg_natCast_eq_one πŸ“–β€”β€”β€”β€”natCast_eq_last
neg_last
rev_add πŸ“–β€”β€”β€”β€”last_sub
sub_add_eq_sub_sub
rev_sub πŸ“–β€”β€”β€”β€”rev_eq_iff
rev_add
sub_le_iff πŸ“–β€”β€”β€”β€”not_iff_not
lt_sub_iff
sub_one_lt_iff πŸ“–β€”β€”β€”β€”not_iff_not

---

← Back to Index