Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Group/Hom/Basic.lean

Statistics

MetricCount
DefinitionsinstAdd, add, instNeg, instSub, ofMapAddNeg, ofMapSub, commGroupOfInjective, commGroupOfSurjective, instDiv, instInv, mul, ofMapDiv, ofMapMulInv, instMul, instDiv, instInv, instMul, instAdd, instNeg, instSub, invMonoidHom, negAddMonoidHom, nsmulAddMonoidHom, powMonoidHom, zpowGroupHom, zsmulAddGroupHom
26
Theoremsadd_apply, add_comp, comp_add, add_apply, add_comp, coe_of_map_add_neg, coe_of_map_sub, comp_add, comp_neg, comp_sub, neg_apply, neg_comp, sub_apply, sub_comp, coe_of_map_div, coe_of_map_mul_inv, comp_div, comp_inv, comp_mul, div_apply, div_comp, inv_apply, inv_comp, mul_apply, mul_comp, comp_mul, mul_apply, mul_comp, coe_div, coe_inv, coe_mul, div_apply, div_comp, inv_apply, inv_comp, mul_apply, mul_comp, add_apply, add_comp, coe_add, coe_neg, coe_sub, neg_apply, neg_comp, sub_apply, sub_comp, coe_invMonoidHom, coe_negAddMonoidHom, injective_iff_map_eq_one, injective_iff_map_eq_one', injective_iff_map_eq_zero, injective_iff_map_eq_zero', invMonoidHom_apply, invMonoidHom_comp_invMonoidHom, negAddMonoidHom_apply, negAddMonoidHom_comp_negAddMonoidHom, nsmulAddMonoidHom_apply, powMonoidHom_apply, zpowGroupHom_apply, zsmulAddGroupHom_apply
60
Total86

AddHom

Definitions

NameCategoryTheorems
instAdd πŸ“–CompOp
4 mathmath: coeFn_apply, comp_add, add_apply, add_comp

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”DFunLike.coe
AddHom
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
funLike
instAdd
β€”β€”
add_comp πŸ“–mathematicalβ€”comp
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddHom
instAdd
β€”β€”
comp_add πŸ“–mathematicalβ€”comp
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddHom
instAdd
β€”ext
map_add
addHomClass

AddMonoidHom

Definitions

NameCategoryTheorems
add πŸ“–CompOp
46 mathmath: DFinsupp.liftAddHom_apply, toMultiplicative_add, AddCommGrpCat.hom_add, DFinsupp.liftAddHom_apply_single, instIsCancelAddAddMonoidHom, multiplesAddHom_apply, FreeAbelianGroup.lift_add, zmultiplesAddHom_symm_apply, Finsupp.liftAddHom_comp_single, multiplesAddHom_symm_apply, AddEquiv.symm_addMonoidHomCongrRight, FreeAbelianGroup.liftAddEquiv_symm_apply, AddEquiv.addMonoidHomCongrLeft_apply, Finsupp.comp_liftAddHom, AddCommGrpCat.homAddEquiv_symm_apply_hom, Finsupp.liftAddHom_apply, completion_add, instIsRightCancelAddAddMonoidHom, AddGroupSeminorm.comp_add_le, AddEquiv.addMonoidHomCongrLeft_trans, AddEquiv.addMonoidHomCongrRight_trans, AddEquiv.addMonoidHomCongrLeft_refl, DFinsupp.comp_liftAddHom, Finsupp.liftAddHom_singleAddHom, DFinsupp.liftAddHom_singleAddHom, Finsupp.liftAddHom_apply_single, Finsupp.liftAddHom_symm_apply_apply, add_apply, instIsLeftCancelAddAddMonoidHom, mapMatrix_add, Finsupp.liftAddHom_symm_apply, DFinsupp.liftAddHom_comp_single, DFinsupp.sumAddHom_add, zmultiplesAddHom_apply, FreeAbelianGroup.liftAddEquiv_apply_apply, AddEquiv.addMonoidHomCongrRight_refl, CategoryTheory.CommShiftβ‚‚Setup.z_zeroβ‚‚, DFinsupp.liftAddHom_symm_apply, AddEquiv.addMonoidHomCongrRight_apply, CategoryTheory.CommShiftβ‚‚Setup.z_zero₁, comp_add, CategoryTheory.CommShiftβ‚‚Setup.hΞ΅, AddCommGrpCat.homAddEquiv_apply, add_comp, AddEquiv.symm_addMonoidHomCongrLeft, CategoryTheory.CommShiftβ‚‚Setup.int_z
instNeg πŸ“–CompOp
6 mathmath: neg_apply, mapMatrix_neg, neg_comp, comp_neg, FreeAbelianGroup.lift_neg, AddCommGrpCat.hom_neg
instSub πŸ“–CompOp
5 mathmath: sub_apply, AddCommGrpCat.hom_sub, mapMatrix_sub, comp_sub, sub_comp
ofMapAddNeg πŸ“–CompOp
1 mathmath: coe_of_map_add_neg
ofMapSub πŸ“–CompOp
1 mathmath: coe_of_map_sub

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
add
AddZero.toAdd
β€”β€”
add_comp πŸ“–mathematicalβ€”comp
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom
add
β€”β€”
coe_of_map_add_neg πŸ“–mathematicalAddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
DFunLike.coe
AddMonoidHom
instFunLike
ofMapAddNeg
β€”β€”
coe_of_map_sub πŸ“–mathematicalSubNegMonoid.toSub
AddGroup.toSubNegMonoid
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
instFunLike
ofMapSub
β€”β€”
comp_add πŸ“–mathematicalβ€”comp
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom
add
β€”ext
map_add
AddMonoidHomClass.toAddHomClass
instAddMonoidHomClass
comp_neg πŸ“–mathematicalβ€”comp
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoidHom
instNeg
β€”ext
map_neg
instAddMonoidHomClass
comp_sub πŸ“–mathematicalβ€”comp
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoidHom
instSub
β€”ext
map_sub
instAddMonoidHomClass
neg_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
instFunLike
instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
neg_comp πŸ“–mathematicalβ€”comp
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoidHom
instNeg
β€”β€”
sub_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
instFunLike
instSub
SubNegMonoid.toSub
β€”β€”
sub_comp πŸ“–mathematicalβ€”comp
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoidHom
instSub
β€”β€”

MonoidHom

Definitions

NameCategoryTheorems
commGroupOfInjective πŸ“–CompOpβ€”
commGroupOfSurjective πŸ“–CompOpβ€”
instDiv πŸ“–CompOp
3 mathmath: comp_div, div_comp, div_apply
instInv πŸ“–CompOp
3 mathmath: comp_inv, inv_apply, inv_comp
mul πŸ“–CompOp
30 mathmath: GroupSeminorm.comp_mul_le, zpowersMulHom_symm_apply, instIsRightCancelMulMonoidHom, MulEquiv.monoidHomCongrLeft_apply, AddMonoidHom.toMultiplicative_add, restrictHomKerEquiv_apply_coe, CommGroup.monoidHom_mulEquiv_of_hasEnoughRootsOfUnity, IsCyclic.monoidHom_mulEquiv_rootsOfUnity, comp_mul, MulEquiv.monoidHomCongrRight_refl, zpowersMulHom_apply, MulEquiv.symm_monoidHomCongrRight, restrictHomKerEquiv_symm_coe_apply, MulEquiv.monoidHomCongrLeft_trans, IsCyclic.monoidHom_equiv_self, toHomUnits_mul, MulEquiv.monoidHomCongrLeft_refl, powersMulHom_apply, AddChar.toMonoidHomEquiv_add, MulEquiv.monoidHomCongrRight_trans, mul_comp, MulEquiv.monoidHomCongrRight_apply, AddChar.toMonoidHomEquiv_symm_mul, instIsCancelMulMonoidHom, MulEquiv.symm_monoidHomCongrLeft, instIsLeftCancelMulMonoidHom, toHomUnitsMulEquiv_symm_apply, powersMulHom_symm_apply, mul_apply, toHomUnitsMulEquiv_apply
ofMapDiv πŸ“–CompOp
1 mathmath: coe_of_map_div
ofMapMulInv πŸ“–CompOp
1 mathmath: coe_of_map_mul_inv

Theorems

NameKindAssumesProvesValidatesDepends On
coe_of_map_div πŸ“–mathematicalDivInvMonoid.toDiv
Group.toDivInvMonoid
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
instFunLike
ofMapDiv
β€”β€”
coe_of_map_mul_inv πŸ“–mathematicalMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
DFunLike.coe
MonoidHom
instFunLike
ofMapMulInv
β€”β€”
comp_div πŸ“–mathematicalβ€”comp
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MonoidHom
instDiv
β€”ext
map_div
instMonoidHomClass
comp_inv πŸ“–mathematicalβ€”comp
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MonoidHom
instInv
β€”ext
map_inv
instMonoidHomClass
comp_mul πŸ“–mathematicalβ€”comp
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
MonoidHom
mul
β€”ext
map_mul
MonoidHomClass.toMulHomClass
instMonoidHomClass
div_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instFunLike
instDiv
DivInvMonoid.toDiv
β€”β€”
div_comp πŸ“–mathematicalβ€”comp
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MonoidHom
instDiv
β€”β€”
inv_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instFunLike
instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
β€”β€”
inv_comp πŸ“–mathematicalβ€”comp
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MonoidHom
instInv
β€”β€”
mul_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
instFunLike
mul
MulOne.toMul
β€”β€”
mul_comp πŸ“–mathematicalβ€”comp
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
MonoidHom
mul
β€”β€”

MulHom

Definitions

NameCategoryTheorems
instMul πŸ“–CompOp
4 mathmath: mul_apply, comp_mul, coeFn_apply, mul_comp

Theorems

NameKindAssumesProvesValidatesDepends On
comp_mul πŸ“–mathematicalβ€”comp
CommMagma.toMul
CommSemigroup.toCommMagma
MulHom
instMul
β€”ext
map_mul
mulHomClass
mul_apply πŸ“–mathematicalβ€”DFunLike.coe
MulHom
CommMagma.toMul
CommSemigroup.toCommMagma
funLike
instMul
β€”β€”
mul_comp πŸ“–mathematicalβ€”comp
CommMagma.toMul
CommSemigroup.toCommMagma
MulHom
instMul
β€”β€”

OneHom

Definitions

NameCategoryTheorems
instDiv πŸ“–CompOp
3 mathmath: div_comp, coe_div, div_apply
instInv πŸ“–CompOp
3 mathmath: inv_apply, inv_comp, coe_inv
instMul πŸ“–CompOp
6 mathmath: instIsCancelMulOneHom, mul_comp, coe_mul, mul_apply, instIsRightCancelMulOneHom, instIsLeftCancelMulOneHom

Theorems

NameKindAssumesProvesValidatesDepends On
coe_div πŸ“–mathematicalβ€”DFunLike.coe
OneHom
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
funLike
instDiv
Pi.instDiv
DivInvMonoid.toDiv
DivisionMonoid.toDivInvMonoid
β€”β€”
coe_inv πŸ“–mathematicalβ€”DFunLike.coe
OneHom
InvOneClass.toOne
funLike
instInv
Pi.instInv
InvOneClass.toInv
β€”β€”
coe_mul πŸ“–mathematicalβ€”DFunLike.coe
OneHom
MulOne.toOne
MulOneClass.toMulOne
funLike
instMul
Pi.instMul
MulOne.toMul
β€”β€”
div_apply πŸ“–mathematicalβ€”DFunLike.coe
OneHom
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
funLike
instDiv
DivInvMonoid.toDiv
DivisionMonoid.toDivInvMonoid
β€”β€”
div_comp πŸ“–mathematicalβ€”comp
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
OneHom
instDiv
β€”β€”
inv_apply πŸ“–mathematicalβ€”DFunLike.coe
OneHom
InvOneClass.toOne
funLike
instInv
InvOneClass.toInv
β€”β€”
inv_comp πŸ“–mathematicalβ€”comp
InvOneClass.toOne
OneHom
instInv
β€”β€”
mul_apply πŸ“–mathematicalβ€”DFunLike.coe
OneHom
MulOne.toOne
MulOneClass.toMulOne
funLike
instMul
MulOne.toMul
β€”β€”
mul_comp πŸ“–mathematicalβ€”comp
MulOne.toOne
MulOneClass.toMulOne
OneHom
instMul
β€”β€”

ZeroHom

Definitions

NameCategoryTheorems
instAdd πŸ“–CompOp
6 mathmath: instIsRightCancelAddZeroHom, instIsLeftCancelAddZeroHom, add_apply, instIsCancelAddZeroHom, coe_add, add_comp
instNeg πŸ“–CompOp
3 mathmath: neg_apply, neg_comp, coe_neg
instSub πŸ“–CompOp
3 mathmath: sub_comp, coe_sub, sub_apply

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
AddZero.toZero
AddZeroClass.toAddZero
funLike
instAdd
AddZero.toAdd
β€”β€”
add_comp πŸ“–mathematicalβ€”comp
AddZero.toZero
AddZeroClass.toAddZero
ZeroHom
instAdd
β€”β€”
coe_add πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
AddZero.toZero
AddZeroClass.toAddZero
funLike
instAdd
Pi.instAdd
AddZero.toAdd
β€”β€”
coe_neg πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
NegZeroClass.toZero
funLike
instNeg
Pi.instNeg
NegZeroClass.toNeg
β€”β€”
coe_sub πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
funLike
instSub
Pi.instSub
SubNegMonoid.toSub
SubtractionMonoid.toSubNegMonoid
β€”β€”
neg_apply πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
NegZeroClass.toZero
funLike
instNeg
NegZeroClass.toNeg
β€”β€”
neg_comp πŸ“–mathematicalβ€”comp
NegZeroClass.toZero
ZeroHom
instNeg
β€”β€”
sub_apply πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
funLike
instSub
SubNegMonoid.toSub
SubtractionMonoid.toSubNegMonoid
β€”β€”
sub_comp πŸ“–mathematicalβ€”comp
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
ZeroHom
instSub
β€”β€”

(root)

Definitions

NameCategoryTheorems
invMonoidHom πŸ“–CompOp
4 mathmath: invMonoidHom_apply, coe_invMonoidHom, IsMulIndecomposable.image_baseOf_inv_comp_eq, invMonoidHom_comp_invMonoidHom
negAddMonoidHom πŸ“–CompOp
4 mathmath: IsAddIndecomposable.image_baseOf_neg_comp_eq, negAddMonoidHom_apply, negAddMonoidHom_comp_negAddMonoidHom, coe_negAddMonoidHom
nsmulAddMonoidHom πŸ“–CompOp
8 mathmath: AddCircle.isAddQuotientCoveringMap_nsmul_of_ne_zero, AddCircle.isAddQuotientCoveringMap_nsmul, IsAddCyclic.index_nsmulAddMonoidHom_range, nsmulAddMonoidHom_apply, IsAddCyclic.card_nsmulAddMonoidHom_ker, DistribSMul.toAddMonoidHom_eq_nsmulAddMonoidHom, IsAddCyclic.index_nsmulAddMonoidHom_ker, IsAddCyclic.card_nsmulAddMonoidHom_range
powMonoidHom πŸ“–CompOp
15 mathmath: Complex.isQuotientCoveringMap_npow, IsDedekindDomain.selmerGroup.monotone, isQuotientCoveringMap_npow, IsCyclic.card_powMonoidHom_ker, rootsOfUnity_eq_ker, Circle.isQuotientCoveringMap_npow, IsCyclic.index_powMonoidHom_ker, IsCyclic.index_powMonoidHom_range, IsDedekindDomain.selmerGroup.fromUnit_ker, IsDedekindDomain.selmerGroup.fromUnitLift_injective, IsCyclic.card_powMonoidHom_range, IsDedekindDomain.HeightOneSpectrum.valuation_of_unit_mod_eq, powMonoidHom_apply, NumberField.IsCMField.map_unitsMulComplexConjInv_torsion, IsDedekindDomain.selmerGroup.valuation_ker_eq
zpowGroupHom πŸ“–CompOp
10 mathmath: QuotientGroup.homQuotientZPowOfHom_id, ker_zpowGroupHom_eq_rootsOfUnity, Circle.isQuotientCoveringMap_zpow, zpowGroupHom_apply, QuotientGroup.homQuotientZPowOfHom_comp_of_rightInverse, isQuotientCoveringMap_zpow, QuotientGroup.homQuotientZPowOfHom_comp, QuotientGroup.equivQuotientZPowOfEquiv_trans, QuotientGroup.equivQuotientZPowOfEquiv_refl, QuotientGroup.equivQuotientZPowOfEquiv_symm
zsmulAddGroupHom πŸ“–CompOp
10 mathmath: AddCircle.isAddQuotientCoveringMap_zsmul_of_ne_zero, QuotientAddGroup.equivQuotientZSMulOfEquiv_symm, QuotientAddGroup.equivQuotientZSMulOfEquiv_trans, QuotientAddGroup.homQuotientZSMulOfHom_comp_of_rightInverse, zsmulAddGroupHom_apply, DistribSMul.toAddMonoidHom_eq_zsmulAddGroupHom, QuotientAddGroup.equivQuotientZSMulOfEquiv_refl, AddCircle.isAddQuotientCoveringMap_zsmul, QuotientAddGroup.homQuotientZSMulOfHom_comp, QuotientAddGroup.homQuotientZSMulOfHom_id

Theorems

NameKindAssumesProvesValidatesDepends On
coe_invMonoidHom πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
DivisionCommMonoid.toDivisionMonoid
MonoidHom.instFunLike
invMonoidHom
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
β€”β€”
coe_negAddMonoidHom πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddMonoidHom.instFunLike
negAddMonoidHom
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
β€”β€”
injective_iff_map_eq_one πŸ“–mathematicalβ€”DFunLike.coe
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”map_eq_one_iff
MonoidHomClass.toOneHomClass
mul_inv_eq_one
map_mul
MonoidHomClass.toMulHomClass
mul_inv_cancel
map_one
injective_iff_map_eq_one' πŸ“–mathematicalβ€”DFunLike.coe
MulOne.toOne
MulOneClass.toMulOne
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”injective_iff_map_eq_one
map_one
MonoidHomClass.toOneHomClass
injective_iff_map_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”map_eq_zero_iff
AddMonoidHomClass.toZeroHomClass
add_neg_eq_zero
map_add
AddMonoidHomClass.toAddHomClass
add_neg_cancel
map_zero
injective_iff_map_eq_zero' πŸ“–mathematicalβ€”DFunLike.coe
AddZero.toZero
AddZeroClass.toAddZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”injective_iff_map_eq_zero
map_zero
AddMonoidHomClass.toZeroHomClass
invMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
DivisionCommMonoid.toDivisionMonoid
MonoidHom.instFunLike
invMonoidHom
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
β€”β€”
invMonoidHom_comp_invMonoidHom πŸ“–mathematicalβ€”MonoidHom.comp
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
DivisionCommMonoid.toDivisionMonoid
invMonoidHom
MonoidHom.id
β€”MonoidHom.ext
inv_inv
negAddMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddMonoidHom.instFunLike
negAddMonoidHom
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
β€”β€”
negAddMonoidHom_comp_negAddMonoidHom πŸ“–mathematicalβ€”AddMonoidHom.comp
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
SubtractionCommMonoid.toSubtractionMonoid
negAddMonoidHom
AddMonoidHom.id
β€”AddMonoidHom.ext
neg_neg
nsmulAddMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
nsmulAddMonoidHom
AddMonoid.toNatSMul
β€”β€”
powMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
MonoidHom.instFunLike
powMonoidHom
Monoid.toNatPow
β€”β€”
zpowGroupHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
DivisionCommMonoid.toDivisionMonoid
MonoidHom.instFunLike
zpowGroupHom
DivInvMonoid.toZPow
β€”β€”
zsmulAddGroupHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddMonoidHom.instFunLike
zsmulAddGroupHom
SubNegMonoid.toZSMul
β€”β€”

---

← Back to Index