| Name | Category | Theorems |
compHom 📖 | CompOp | 5 mathmath: compHom_apply_apply, AddCommMonCat.coyoneda_map_app, AddCommGrpCat.coyoneda_map_app, AddCommMonCat.coyoneda_obj_map, AddCommGrpCat.coyoneda_obj_map
|
compHom' 📖 | CompOp | 3 mathmath: AddCommMonCat.coyoneda_map_app, compHom'_apply_apply, AddCommGrpCat.coyoneda_map_app
|
compl₂ 📖 | CompOp | 3 mathmath: Set.mem_center_iff_addMonoidHom, compl₂_apply, map_mul_iff
|
compr₂ 📖 | CompOp | 3 mathmath: Set.mem_center_iff_addMonoidHom, compr₂_apply, map_mul_iff
|
eval 📖 | CompOp | 2 mathmath: eval_apply_apply, dfinsuppSumAddHom_apply
|
flip 📖 | CompOp | 5 mathmath: coe_flip_mul, flip_apply, Finsupp.toFreeAbelianGroup_comp_singleAddHom, DFinsupp.sumAddHom_comm, flipHom_apply
|
flipHom 📖 | CompOp | 1 mathmath: flipHom_apply
|
instAddCommGroup 📖 | CompOp | 18 mathmath: groupCohomology.H1IsoOfIsTrivial_inv_apply, groupCohomology.cocycles₁IsoOfIsTrivial_hom_hom_apply_apply, Module.Free.addMonoidHom, LieRingModule.toEnd_apply_apply, groupCohomology.H1IsoOfIsTrivial_H1π_apply_apply, associator_apply, CategoryTheory.Abelian.Ext.bilinearComp_apply_apply, map_inv₂, Module.Finite.addMonoidHom, groupCohomology.cocycles₁IsoOfIsTrivial_inv_hom_apply_coe, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom_apply, associator_eq_zero_iff_associative, map_div₂, AddCommGrpCat.coyoneda_map_app, associator_eq_zero, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom_assoc, AddCommGrpCat.coyoneda_obj_map
|
instAddCommMonoid 📖 | CompOp | 53 mathmath: DirectSum.mulHom_of_of, DirectSum.Gmodule.smulAddMonoidHom_apply_of_of, addMonoidHomLequivNat_symm_apply, restrictHom_apply, addMonoidHomLequivInt_apply, DirectSum.fromAddMonoid_of_apply, coe_flip_mul, Set.mem_center_iff_addMonoidHom, coe_smul', DirectSum.fromAddMonoid_of, DirectSum.gMulHom_apply_apply, coe_dfinsuppSumAddHom, eval_apply_apply, flip_apply, LinearMap.toAddMonoidHom'_apply, Module.Free.addMonoidHom, Finsupp.toFreeAbelianGroup_comp_singleAddHom, compl₂_apply, coe_finset_sum, DFinsupp.sumAddHom_comm, compr₂_apply, finsuppSum_apply, mulLeft₃_apply, mul_apply, compHom_apply_apply, addMonoidEndRingEquivInt_apply, AddCommMonCat.coyoneda_map_app, Module.Finite.addMonoidHom, compHom'_apply_apply, map_mul₂, DirectSum.mulHom_apply, dfinsuppSum_apply, smulAddHom_apply, coe_mul, addMonoidHomLequivNat_apply, addMonoidHomLequivInt_symm_apply, AddCommGrpCat.coyoneda_map_app, coeFn_apply, coe_dfinsuppSum, AddCommMonCat.coyoneda_obj_map, dfinsuppSumAddHom_apply, addMonoidEndRingEquivInt_symm_apply, finset_sum_apply, CharacterModule.homEquiv_apply_apply, map_one₂, DirectSum.gsmulHom_apply_apply, map_mul_iff, ext_iff₂, flipHom_apply, mulRight₃_apply, DirectSum.Gmodule.smul_def, coe_finsuppSum, AddCommGrpCat.coyoneda_obj_map
|
instIntSMul 📖 | CompOp | 2 mathmath: zsmul_apply, AddCommGrpCat.hom_zsmul
|
instNatSMul 📖 | CompOp | 2 mathmath: AddCommGrpCat.hom_nsmul, nsmul_apply
|