Documentation Verification Report

Idempotent

📁 Source: Mathlib/Algebra/Group/Idempotent.lean

Statistics

MetricCount
DefinitionsIsIdempotentElem, instOneSubtype
2
Theoremscoe_one, eq, iff_eq_one, iff_eq_one_of_isUnit, map, mul, mul_mul_self, mul_of_commute, mul_self_mul, of_isIdempotent, one, pow, pow_eq, pow_succ_eq
14
Total16

IsIdempotentElem

Definitions

NameCategoryTheorems
instOneSubtype 📖CompOp
3 mathmath: one_compl, zero_compl, coe_one

Theorems

NameKindAssumesProvesValidatesDepends On
coe_one 📖mathematicalIsIdempotentElem
MulOne.toMul
MulOneClass.toMulOne
instOneSubtype
MulOne.toOne
eq 📖IsIdempotentElem
iff_eq_one 📖mathematicalIsIdempotentElem
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
RightCancelMonoid.toMonoid
CancelMonoid.toRightCancelMonoid
MulOne.toOne
LeftCancelSemigroup.toIsLeftCancelMul
iff_eq_one_of_isUnit 📖mathematicalIsUnitIsIdempotentElem
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toOne
IsUnit.exists_left_inv
eq
mul_assoc
one_mul
one
map 📖mathematicalIsIdempotentElemDFunLike.coeeq_1
map_mul
eq
mul 📖IsIdempotentElem
CommMagma.toMul
CommSemigroup.toCommMagma
mul_of_commute
Commute.all
mul_mul_self 📖IsIdempotentElem
Semigroup.toMul
eq
mul_assoc
mul_of_commute 📖Commute
Semigroup.toMul
IsIdempotentElem
eq_1
Commute.mul_mul_mul_comm
Commute.symm
eq
mul_self_mul 📖IsIdempotentElem
Semigroup.toMul
eq
mul_assoc
of_isIdempotent 📖mathematicalIsIdempotentElem
one 📖mathematicalIsIdempotentElem
MulOne.toMul
MulOneClass.toMulOne
MulOne.toOne
mul_one
pow 📖mathematicalIsIdempotentElem
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Monoid.toNatPowone
pow_zero
eq
sq
pow_mul
pow_mul'
pow_eq 📖mathematicalIsIdempotentElem
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Monoid.toNatPowpow_succ_eq
pow_succ_eq 📖mathematicalIsIdempotentElem
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Monoid.toNatPowpow_one
pow_succ
eq

(root)

Definitions

NameCategoryTheorems
IsIdempotentElem 📖MathDef
75 mathmath: IsIdempotentElem.star_iff, Matrix.hadamard_self_eq_self_iff, CompleteOrthogonalIdempotents.pair_iff, IsIdempotentElem.coe_compl, InnerProductSpace.isIdempotentElem_rankOne_self, IsIdempotentElem.of_mul_add, OrthogonalIdempotents.isIdempotentElem_sum, PrimeSpectrum.basicOpen_injOn_isIdempotentElem, IsStarProjection.isIdempotentElem, IsIdempotentElem.zero, Unitization.isIdempotentElem_inr_iff, IsIdempotentElem.one_compl, IsIdempotentElem.one, Ideal.isIdempotentElem_iff_eq_bot_or_top, LinearMap.isIdempotentElem_iff_eq_isCompl_projection_range_ker, LinearMap.IsSymmetricProjection.isIdempotentElem, LinearMap.isIdempotentElem_map_one_iff, Ideal.isIdempotentElem_iff_of_fg, PrimeSpectrum.isIdempotentElemEquivClopens_symm_bot, PrimeSpectrum.isIdempotentElemEquivClopens_one_sub, Submodule.isIdempotentElem_starProjection, Subalgebra.isIdempotentElem_toSubmodule, orthogonalIdempotents_iff, IsIdempotentElem.iff_eq_one_of_isUnit, IsIdempotentElem.zero_compl, PrimeSpectrum.isClopen_iff, PrimeSpectrum.isIdempotentElemEquivClopens_symm_inf, OrthogonalIdempotents.idem, IsSemisimpleRing.ideal_eq_span_idempotent, ContinuousLinearMap.isIdempotentElem_toLinearMap_iff, Algebra.FormallySmooth.iff_of_surjective, IsIdempotentElem.iff_eq_zero_or_one, AlgebraicGeometry.isOpenImmersion_SpecMap_iff_of_surjective, isStarProjection_iff, IsIdempotentElem.of_isIdempotent, isIdempotentElem_one_sub_one_sub_pow_pow, Submodule.isIdempotentElemEquiv_apply_coe, PrimeSpectrum.isIdempotentElemEquivClopens_symm_sup, PrimeSpectrum.exists_idempotent_basicOpen_eq_of_isClopen, LinearMap.isIdempotentElem_apply_one_iff, Algebra.FormallyEtale.Algebra.FormallyEtale.iff_of_surjective, Submodule.isIdempotentElemEquiv_symm_apply_coe, isIdempotentElem_iff_one_sub_mul_self, LinearMap.IsProj.isIdempotentElem, PrimeSpectrum.isIdempotentElemEquivClopens_apply_toOpens, PrimeSpectrum.basicOpen_isIdempotentElemEquivClopens_symm, LinearMap.isSymmetricProjection_iff, IsIdempotentElem.coe_zero, LinearMap.isProj_range_iff_isIdempotentElem, IsArtinianRing.exists_not_mem_forall_mem_of_ne, IsIdempotentElem.compl_compl, DirectSum.isIdempotentElem_idempotent, ContinuousLinearMap.isStarProjection_iff_isIdempotentElem_and_isStarNormal, BooleanRing.isIdempotentElem, PrimeSpectrum.isIdempotentElemEquivClopens_symm_top, IsLprojection.proj, isStarProjection_iff_isIdempotentElem_and_isStarNormal, InnerProductSpace.isIdempotentElem_rankOne_self_iff, PrimeSpectrum.existsUnique_idempotent_basicOpen_eq_of_isClopen, PrimeSpectrum.isClopen_iff_zeroLocus, IsIdempotentElem.one_sub_iff, IsIdempotentElem.coe_one, Ideal.isIdempotentElem_iff_eq_bot_or_top_of_isLocalRing, IsMprojection.proj, IsIdempotentElem.iff_eq_one, Algebra.FormallyEtale.iff_of_surjective, isIdempotentElem_iff_mul_one_sub_self, Submodule.IsCompl.projection_isIdempotentElem, PrimeSpectrum.isIdempotentElemEquivClopens_mul, PrimeSpectrum.coe_isIdempotentElemEquivClopens_apply, PrimeSpectrum.isIdempotentElemEquivClopens_symm_compl, LinearMap.toSpanSingleton_isIdempotentElem_iff, OrthogonalIdempotents.unique, LinearMap.isProj_iff_isIdempotentElem, Ideal.cotangent_subsingleton_iff

---

← Back to Index