Documentation Verification Report

InjSurj

📁 Source: Mathlib/Algebra/Group/InjSurj.lean

Statistics

MetricCount
DefinitionsaddCancelCommMonoid, addCancelMonoid, addCommGroup, addCommMagma, addCommMonoid, addCommSemigroup, addGroup, addLeftCancelMonoid, addLeftCancelSemigroup, addMonoid, addRightCancelMonoid, addRightCancelSemigroup, addSemigroup, addZeroClass, cancelCommMonoid, cancelMonoid, commGroup, commMagma, commMonoid, commSemigroup, divInvMonoid, divInvOneMonoid, divisionCommMonoid, divisionMonoid, group, invOneClass, involutiveInv, involutiveNeg, leftCancelMonoid, leftCancelSemigroup, monoid, mulOneClass, negZeroClass, rightCancelMonoid, rightCancelSemigroup, semigroup, subNegMonoid, subNegZeroMonoid, subtractionCommMonoid, subtractionMonoid, addCommGroup, addCommMagma, addCommMonoid, addCommSemigroup, addGroup, addMonoid, addSemigroup, addZeroClass, commGroup, commMagma, commMonoid, commSemigroup, divInvMonoid, group, involutiveInv, involutiveNeg, monoid, mulOneClass, semigroup, subNegMonoid
60
TheoremsisCancelAdd, isCancelMul, isLeftCancelAdd, isLeftCancelMul, isRightCancelAdd, isRightCancelMul
6
Total66

Function.Injective

Definitions

NameCategoryTheorems
addCancelCommMonoid 📖CompOp
addCancelMonoid 📖CompOp
addCommGroup 📖CompOp
addCommMagma 📖CompOp
addCommMonoid 📖CompOp
addCommSemigroup 📖CompOp
addGroup 📖CompOp
addLeftCancelMonoid 📖CompOp
addLeftCancelSemigroup 📖CompOp
addMonoid 📖CompOp
addRightCancelMonoid 📖CompOp
addRightCancelSemigroup 📖CompOp
addSemigroup 📖CompOp
addZeroClass 📖CompOp
cancelCommMonoid 📖CompOp
cancelMonoid 📖CompOp
commGroup 📖CompOp
commMagma 📖CompOp
commMonoid 📖CompOp
commSemigroup 📖CompOp
divInvMonoid 📖CompOp
divInvOneMonoid 📖CompOp
divisionCommMonoid 📖CompOp
divisionMonoid 📖CompOp
group 📖CompOp
invOneClass 📖CompOp
involutiveInv 📖CompOp
involutiveNeg 📖CompOp
leftCancelMonoid 📖CompOp
leftCancelSemigroup 📖CompOp
monoid 📖CompOp
mulOneClass 📖CompOp
negZeroClass 📖CompOp
rightCancelMonoid 📖CompOp
rightCancelSemigroup 📖CompOp
semigroup 📖CompOp
subNegMonoid 📖CompOp
subNegZeroMonoid 📖CompOp
subtractionCommMonoid 📖CompOp
subtractionMonoid 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
isCancelAdd 📖mathematicalIsCancelAddisLeftCancelAdd
IsCancelAdd.toIsLeftCancelAdd
isRightCancelAdd
IsCancelAdd.toIsRightCancelAdd
isCancelMul 📖mathematicalIsCancelMulisLeftCancelMul
IsCancelMul.toIsLeftCancelMul
isRightCancelMul
IsCancelMul.toIsRightCancelMul
isLeftCancelAdd 📖mathematicalIsLeftCancelAddadd_left_cancel
isLeftCancelMul 📖mathematicalIsLeftCancelMulmul_left_cancel
isRightCancelAdd 📖mathematicalIsRightCancelAddadd_right_cancel
isRightCancelMul 📖mathematicalIsRightCancelMulmul_right_cancel

Function.Surjective

Definitions

NameCategoryTheorems
addCommGroup 📖CompOp
addCommMagma 📖CompOp
addCommMonoid 📖CompOp
addCommSemigroup 📖CompOp
addGroup 📖CompOp
addMonoid 📖CompOp
addSemigroup 📖CompOp
addZeroClass 📖CompOp
commGroup 📖CompOp
commMagma 📖CompOp
commMonoid 📖CompOp
commSemigroup 📖CompOp
divInvMonoid 📖CompOp
group 📖CompOp
involutiveInv 📖CompOp
involutiveNeg 📖CompOp
monoid 📖CompOp
mulOneClass 📖CompOp
semigroup 📖CompOp
subNegMonoid 📖CompOp

---

← Back to Index