Documentation Verification Report

Indecomposable

πŸ“ Source: Mathlib/Algebra/Group/Irreducible/Indecomposable.lean

Statistics

MetricCount
DefinitionsIndecomposable, IsAddIndecomposable, baseOf, IsMulIndecomposable, baseOf
5
Theoremsclosure_image_isAddIndecomposable_baseOf, apply_ne_zero_of_mem_or_neg_mem_closure, closure_image_isAddIndecomposable_baseOf, mem_closure_image_pos_iff, apply_ne_zero_iff_mem_closure, baseOf_subset_pos, image_baseOf_neg_comp_eq, mem_or_neg_mem_closure_baseOf, pairwise_baseOf_sub_notMem, pairwise_sub_notMem_range, pairwise_sub_notMem_range', subset, apply_ne_one_iff_mem_closure, baseOf_subset_one_lt, image_baseOf_inv_comp_eq, mem_or_inv_mem_closure_baseOf, pairwise_baseOf_div_notMem, pairwise_div_notMem_range, pairwise_div_notMem_range', subset, closure_image_isMulIndecomposable_baseOf, apply_ne_one_of_mem_or_inv_mem_closure, closure_image_isMulIndecomposable_baseOf, closure_image_one_lt_and_isMulIndecomposable, mem_closure_image_one_lt_iff, isAddIndecomposable_id_univ, isMulIndecomposable_id_univ
27
Total32

AddSubgroup

Theorems

NameKindAssumesProvesValidatesDepends On
closure_image_isAddIndecomposable_baseOf πŸ“–mathematicalInvolutiveNeg.toNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
closure
AddCommGroup.toAddGroup
Set.image
IsAddIndecomposable.baseOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Set.range
β€”Set.image_univ
le_antisymm
closure_mono
Set.image_mono
Set.subset_univ
closure_le
Set.ext
Set.mem_univ
Set.mem_union
lt_or_lt_iff_ne
Set.image_union
Set.union_subset_iff
le_trans
AddSubmonoid.closure_image_isAddIndecomposable_baseOf
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
AddSubmonoid.subset_closure
le_closure_toAddSubmonoid
Set.image_comp
IsAddIndecomposable.image_baseOf_neg_comp_eq
Set.image_congr
neg_neg
Set.image_id'
Left.neg_pos_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
coe_negAddMonoidHom
Set.image_neg_eq_neg
closure_neg

AddSubmonoid

Theorems

NameKindAssumesProvesValidatesDepends On
apply_ne_zero_of_mem_or_neg_mem_closure πŸ“–β€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoidHom.instFunLike
InvolutiveNeg.toNeg
NegZeroClass.toNeg
AddSubmonoid
SetLike.instMembership
instSetLike
closure
Set.image
β€”β€”closure_induction
Set.mem_image
map_zero
AddMonoidHomClass.toZeroHomClass
AddMonoidHom.instAddMonoidHomClass
lt_self_iff_false
eq_or_ne
map_add
AddMonoidHomClass.toAddHomClass
lt_add_of_lt_of_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
LT.lt.ne'
map_neg
neg_eq_zero
neg_neg
closure_image_isAddIndecomposable_baseOf πŸ“–mathematicalβ€”closure
AddMonoid.toAddZeroClass
Set.image
IsAddIndecomposable.baseOf
AddCommMonoid.toAddMonoid
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddZero.toZero
AddZeroClass.toAddZero
DFunLike.coe
AddMonoidHom
AddMonoidHom.instFunLike
β€”le_antisymm
closure_mono
Set.image_mono
IsAddIndecomposable.baseOf_subset_pos
closure_le
Set.Finite.exists_minimalFor
instIsTransLe
Set.toFinite
Subtype.finite
MinimalFor.prop
not_le
MinimalFor.le_of_le
LT.lt.le
Mathlib.Tactic.Contrapose.contraposeβ‚„
subset_closure
Set.mem_image_of_mem
map_add
AddMonoidHomClass.toAddHomClass
AddMonoidHom.instAddMonoidHomClass
lt_add_iff_pos_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
contravariant_lt_of_covariant_le
lt_add_iff_pos_left
IsRightCancelAdd.addRightStrictMono_of_addRightMono
IsCancelAdd.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
contravariant_swap_add_of_contravariant_add
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
instAddSubmonoidClass
mem_closure_image_pos_iff πŸ“–mathematicalβ€”AddSubmonoid
AddMonoid.toAddZeroClass
SetLike.instMembership
instSetLike
closure
Set.image
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddZero.toZero
AddZeroClass.toAddZero
AddCommMonoid.toAddMonoid
DFunLike.coe
AddMonoidHom
AddMonoidHom.instFunLike
β€”closure_induction
Set.mem_image
map_zero
AddMonoidHomClass.toZeroHomClass
AddMonoidHom.instAddMonoidHomClass
lt_self_iff_false
zero_add
add_zero
map_add
AddMonoidHomClass.toAddHomClass
Left.add_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
subset_closure
Set.mem_image_of_mem

CategoryTheory

Definitions

NameCategoryTheorems
Indecomposable πŸ“–MathDef
1 mathmath: indecomposable_of_simple

IsAddIndecomposable

Definitions

NameCategoryTheorems
baseOf πŸ“–CompOp
13 mathmath: image_baseOf_neg_comp_eq, RootPairing.linearIndepOn_root_baseOf', AddSubmonoid.closure_image_isAddIndecomposable_baseOf, AddSubgroup.closure_image_isAddIndecomposable_baseOf, RootPairing.linearIndepOn_root_baseOf, RootPairing.eq_baseOf_of_linearIndepOn_of_mem_or_neg_mem_closure, apply_ne_zero_iff_mem_closure, RootPairing.eq_baseOf_iff, mem_or_neg_mem_closure_baseOf, pairwise_baseOf_sub_notMem, baseOf_subset_pos, RootPairing.baseOf_pairwise_pairing_le_zero, RootPairing.baseOf_root_eq_baseOf_coroot

Theorems

NameKindAssumesProvesValidatesDepends On
apply_ne_zero_iff_mem_closure πŸ“–mathematicalInvolutiveNeg.toNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddSubmonoid
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.closure
Set.image
baseOf
β€”mem_or_neg_mem_closure_baseOf
AddSubmonoid.apply_ne_zero_of_mem_or_neg_mem_closure
baseOf_subset_pos
baseOf_subset_pos πŸ“–mathematicalβ€”Set
Set.instHasSubset
baseOf
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
AddMonoidHom
AddMonoidHom.instFunLike
β€”subset
image_baseOf_neg_comp_eq πŸ“–mathematicalInvolutiveNeg.toNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Set.image
baseOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SubtractionMonoid.toSubNegMonoid
AddMonoidHom.comp
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
negAddMonoidHom
DFunLike.coe
AddMonoidHom
AddMonoidHom.instFunLike
β€”map_neg
AddMonoidHom.instAddMonoidHomClass
Left.neg_pos_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
neg_add
neg_eq_iff_eq_neg
neg_eq_zero
Left.neg_neg_iff
neg_neg
subset_antisymm
Set.instAntisymmSubset
Set.image_mono
Set.image_congr
Set.image_subset_iff
Set.image_id'
Set.image_comp
negAddMonoidHom_comp_negAddMonoidHom
AddMonoidHom.coe_comp
AddMonoidHom.id_comp
AddMonoidHom.comp_assoc
mem_or_neg_mem_closure_baseOf πŸ“–mathematicalInvolutiveNeg.toNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddSubmonoid
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.closure
Set.image
baseOf
β€”AddSubmonoid.closure_image_isAddIndecomposable_baseOf
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
lt_or_gt_of_ne
AddSubmonoid.subset_closure
map_neg
AddMonoidHom.instAddMonoidHomClass
Left.neg_pos_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
pairwise_baseOf_sub_notMem πŸ“–mathematicalInvolutiveNeg.toNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Set.Pairwise
baseOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Set
Set.instMembership
Set.range
SubNegMonoid.toSub
β€”pairwise_sub_notMem_range'
Set.Subset.refl
pairwise_sub_notMem_range πŸ“–mathematicalInvolutiveNeg.toNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Set
Set.instHasSubset
setOf
IsAddIndecomposable
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Set.instMembership
Set.Pairwise
Set.range
SubNegMonoid.toSub
β€”HasSubset.Subset.trans
Set.instIsTransSubset
subset
sub_add_cancel
neg_sub
pairwise_sub_notMem_range' πŸ“–mathematicalInvolutiveNeg.toNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Set
Set.instHasSubset
setOf
IsAddIndecomposable
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
Set.Pairwise
Set.instMembership
Set.range
SubNegMonoid.toSub
β€”Mathlib.Tactic.Contrapose.contrapose₃
Mathlib.Tactic.Push.not_forall_eq
map_zero
AddMonoidHomClass.toZeroHomClass
AddMonoidHom.instAddMonoidHomClass
pairwise_sub_notMem_range
map_neg
Left.neg_pos_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
lt_or_lt_iff_ne
subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
setOf
IsAddIndecomposable
β€”Set.sep_subset

IsMulIndecomposable

Definitions

NameCategoryTheorems
baseOf πŸ“–CompOp
8 mathmath: pairwise_baseOf_div_notMem, Subgroup.closure_image_isMulIndecomposable_baseOf, mem_or_inv_mem_closure_baseOf, image_baseOf_inv_comp_eq, baseOf_subset_one_lt, Submonoid.closure_image_isMulIndecomposable_baseOf, Submonoid.closure_image_one_lt_and_isMulIndecomposable, apply_ne_one_iff_mem_closure

Theorems

NameKindAssumesProvesValidatesDepends On
apply_ne_one_iff_mem_closure πŸ“–mathematicalInvolutiveInv.toInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Submonoid
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
SetLike.instMembership
Submonoid.instSetLike
Submonoid.closure
Set.image
baseOf
β€”mem_or_inv_mem_closure_baseOf
Submonoid.apply_ne_one_of_mem_or_inv_mem_closure
baseOf_subset_one_lt
baseOf_subset_one_lt πŸ“–mathematicalβ€”Set
Set.instHasSubset
baseOf
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
DFunLike.coe
MonoidHom
MonoidHom.instFunLike
β€”subset
image_baseOf_inv_comp_eq πŸ“–mathematicalInvolutiveInv.toInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Set.image
baseOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
DivisionMonoid.toDivInvMonoid
MonoidHom.comp
MulOneClass.toMulOne
Monoid.toMulOneClass
invMonoidHom
DFunLike.coe
MonoidHom
MonoidHom.instFunLike
β€”map_inv
MonoidHom.instMonoidHomClass
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
LeftCancelSemigroup.toIsLeftCancelMul
IsOrderedMonoid.toMulLeftMono
mul_inv
inv_eq_iff_eq_inv
inv_inv
subset_antisymm
Set.instAntisymmSubset
Set.image_mono
Set.image_congr
Set.image_id'
Set.image_comp
invMonoidHom_comp_invMonoidHom
MonoidHom.coe_comp
MonoidHom.id_comp
MonoidHom.comp_assoc
mem_or_inv_mem_closure_baseOf πŸ“–mathematicalInvolutiveInv.toInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Submonoid
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
SetLike.instMembership
Submonoid.instSetLike
Submonoid.closure
Set.image
baseOf
β€”Submonoid.closure_image_isMulIndecomposable_baseOf
IsOrderedMonoid.toIsOrderedCancelMonoid
lt_or_gt_of_ne
Submonoid.subset_closure
map_inv
MonoidHom.instMonoidHomClass
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
LeftCancelSemigroup.toIsLeftCancelMul
IsOrderedMonoid.toMulLeftMono
pairwise_baseOf_div_notMem πŸ“–mathematicalInvolutiveInv.toInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Set.Pairwise
baseOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Set
Set.instMembership
Set.range
DivInvMonoid.toDiv
β€”pairwise_div_notMem_range'
Set.Subset.refl
pairwise_div_notMem_range πŸ“–mathematicalInvolutiveInv.toInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Set
Set.instHasSubset
setOf
IsMulIndecomposable
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Set.instMembership
Set.Pairwise
Set.range
DivInvMonoid.toDiv
β€”HasSubset.Subset.trans
Set.instIsTransSubset
subset
div_mul_cancel
inv_div
pairwise_div_notMem_range' πŸ“–mathematicalInvolutiveInv.toInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Set
Set.instHasSubset
setOf
IsMulIndecomposable
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
InvOneClass.toOne
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
Set.Pairwise
Set.instMembership
Set.range
DivInvMonoid.toDiv
β€”Mathlib.Tactic.Contrapose.contrapose₃
Mathlib.Tactic.Push.not_forall_eq
map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
pairwise_div_notMem_range
map_inv
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
LeftCancelSemigroup.toIsLeftCancelMul
IsOrderedMonoid.toMulLeftMono
subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
setOf
IsMulIndecomposable
β€”β€”

Subgroup

Theorems

NameKindAssumesProvesValidatesDepends On
closure_image_isMulIndecomposable_baseOf πŸ“–mathematicalInvolutiveInv.toInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
closure
CommGroup.toGroup
Set.image
IsMulIndecomposable.baseOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Set.range
β€”Set.image_univ
le_antisymm
closure_mono
Set.image_mono
closure_le
Set.ext
Set.image_union
Set.union_subset_iff
le_trans
Submonoid.closure_image_isMulIndecomposable_baseOf
IsOrderedMonoid.toIsOrderedCancelMonoid
le_closure_toSubmonoid
Set.image_comp
IsMulIndecomposable.image_baseOf_inv_comp_eq
Set.image_congr
inv_inv
Set.image_id'
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
LeftCancelSemigroup.toIsLeftCancelMul
IsOrderedMonoid.toMulLeftMono
coe_invMonoidHom
Set.image_inv_eq_inv
closure_inv

Submonoid

Theorems

NameKindAssumesProvesValidatesDepends On
apply_ne_one_of_mem_or_inv_mem_closure πŸ“–β€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MonoidHom.instFunLike
InvolutiveInv.toInv
InvOneClass.toInv
Submonoid
SetLike.instMembership
instSetLike
closure
Set.image
β€”β€”closure_induction
map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
eq_or_ne
map_mul
MonoidHomClass.toMulHomClass
lt_mul_of_lt_of_one_lt
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
LeftCancelSemigroup.toIsLeftCancelMul
IsOrderedMonoid.toMulLeftMono
LT.lt.ne'
map_inv
inv_inv
closure_image_isMulIndecomposable_baseOf πŸ“–mathematicalβ€”closure
Monoid.toMulOneClass
Set.image
IsMulIndecomposable.baseOf
CommMonoid.toMonoid
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulOne.toOne
MulOneClass.toMulOne
DFunLike.coe
MonoidHom
MonoidHom.instFunLike
β€”le_antisymm
closure_mono
Set.image_mono
IsMulIndecomposable.baseOf_subset_one_lt
closure_le
Set.Finite.exists_minimalFor
instIsTransLe
Set.toFinite
Subtype.finite
MinimalFor.prop
not_le
MinimalFor.le_of_le
LT.lt.le
Mathlib.Tactic.Contrapose.contraposeβ‚„
subset_closure
Set.mem_image_of_mem
map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
IsCancelMul.toIsLeftCancelMul
IsOrderedCancelMonoid.toIsCancelMul
IsOrderedMonoid.toMulLeftMono
IsOrderedCancelMonoid.toIsOrderedMonoid
contravariant_lt_of_covariant_le
IsRightCancelMul.mulRightStrictMono_of_mulRightMono
IsCancelMul.toIsRightCancelMul
covariant_swap_mul_of_covariant_mul
contravariant_swap_mul_of_contravariant_mul
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
instSubmonoidClass
closure_image_one_lt_and_isMulIndecomposable πŸ“–mathematicalβ€”closure
Monoid.toMulOneClass
Set.image
IsMulIndecomposable.baseOf
CommMonoid.toMonoid
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulOne.toOne
MulOneClass.toMulOne
DFunLike.coe
MonoidHom
MonoidHom.instFunLike
β€”closure_image_isMulIndecomposable_baseOf
mem_closure_image_one_lt_iff πŸ“–mathematicalβ€”Submonoid
Monoid.toMulOneClass
SetLike.instMembership
instSetLike
closure
Set.image
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulOne.toOne
MulOneClass.toMulOne
CommMonoid.toMonoid
DFunLike.coe
MonoidHom
MonoidHom.instFunLike
β€”closure_induction
map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
one_mul
mul_one
map_mul
MonoidHomClass.toMulHomClass
Left.one_lt_mul
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
IsCancelMul.toIsLeftCancelMul
IsOrderedCancelMonoid.toIsCancelMul
IsOrderedMonoid.toMulLeftMono
IsOrderedCancelMonoid.toIsOrderedMonoid
subset_closure
Set.mem_image_of_mem

(root)

Definitions

NameCategoryTheorems
IsAddIndecomposable πŸ“–MathDef
2 mathmath: isAddIndecomposable_id_univ, IsAddIndecomposable.subset
IsMulIndecomposable πŸ“–MathDef
2 mathmath: IsMulIndecomposable.subset, isMulIndecomposable_id_univ

Theorems

NameKindAssumesProvesValidatesDepends On
isAddIndecomposable_id_univ πŸ“–mathematicalβ€”IsAddIndecomposable
Set.univ
AddIrreducible
β€”isAddUnit_iff_eq_zero
Set.mem_univ
AddIrreducible.isAddUnit_or_isAddUnit
isMulIndecomposable_id_univ πŸ“–mathematicalβ€”IsMulIndecomposable
Set.univ
Irreducible
β€”Irreducible.isUnit_or_isUnit

---

← Back to Index