Documentation Verification Report

ModEq

πŸ“ Source: Mathlib/Algebra/Group/ModEq.lean

Statistics

MetricCount
DefinitionsΒ«term_≑_[PMOD_]Β»
1
Theoremsadd, add_iff_left, add_iff_right, add_left, add_left_cancel, add_left_cancel', add_nsmul, add_right, add_right_cancel, add_right_cancel', add_zsmul, map, neg, neg', nsmul, nsmul_add, nsmul_cancel, nsmul_cases, of_neg, of_neg', of_nsmul, of_zsmul, sub, sub_iff_left, sub_iff_right, sub_left, sub_left_cancel, sub_left_cancel', sub_right, sub_right_cancel, sub_right_cancel', trans, zsmul, zsmul_add, zsmul_cancel, add_modEq_left, add_modEq_right, add_nsmul_modEq, add_zsmul_modEq, instIsTransModEq, instReflModEq, instSymmModEq, map_modEq_iff, modEq_comm, modEq_iff_eq_add_zsmul, modEq_iff_nsmul, modEq_iff_zsmul, modEq_iff_zsmul', modEq_neg, modEq_nsmul_cases, modEq_refl, modEq_rfl, modEq_sub, modEq_sub_iff_add_modEq, modEq_sub_iff_add_modEq', modEq_zero, modEq_zero_iff_eq_zsmul, neg_modEq_neg, not_modEq_iff_ne_add_zsmul, nsmul_add_modEq, nsmul_modEq_nsmul, self_modEq_zero, sub_modEq_iff_modEq_add, sub_modEq_iff_modEq_add', sub_modEq_zero, zsmul_add_modEq, zsmul_modEq_zero, zsmul_modEq_zsmul
68
Total69

AddCommGroup

Definitions

NameCategoryTheorems
Β«term_≑_[PMOD_]Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_modEq_left πŸ“–mathematicalβ€”ModEq
AddCancelCommMonoid.toAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”add_zero
ModEq.add_iff_left
modEq_refl
add_modEq_right πŸ“–mathematicalβ€”ModEq
AddCancelCommMonoid.toAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”add_comm
add_nsmul_modEq πŸ“–mathematicalβ€”ModEq
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
β€”modEq_iff_nsmul
zero_nsmul
add_comm
add_zero
add_zsmul_modEq πŸ“–mathematicalβ€”ModEq
toAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
toAddGroup
β€”modEq_iff_zsmul
neg_zsmul
sub_add_cancel_left
instIsTransModEq πŸ“–mathematicalβ€”IsTrans
ModEq
β€”ModEq.trans
instReflModEq πŸ“–mathematicalβ€”ModEqβ€”modEq_refl
instSymmModEq πŸ“–mathematicalβ€”ModEqβ€”ModEq.symm
map_modEq_iff πŸ“–mathematicalDFunLike.coeModEqβ€”AddMonoidHomClass.toAddHomClass
modEq_comm πŸ“–mathematicalβ€”ModEqβ€”ModEq.symm
modEq_iff_eq_add_zsmul πŸ“–mathematicalβ€”ModEq
toAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
toAddGroup
β€”β€”
modEq_iff_nsmul πŸ“–mathematicalβ€”ModEq
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
β€”β€”
modEq_iff_zsmul πŸ“–mathematicalβ€”ModEq
toAddCommMonoid
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
toAddGroup
SubNegMonoid.toSub
β€”modEq_iff_nsmul
sub_zsmul
sub_eq_add_neg
sub_eq_sub_iff_add_eq_add
add_comm
natCast_zsmul
modEq_iff_zsmul' πŸ“–mathematicalβ€”ModEq
toAddCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
toAddGroup
SubNegMonoid.toZSMul
β€”β€”
modEq_neg πŸ“–mathematicalβ€”ModEq
toAddCommMonoid
SubNegMonoid.toNeg
AddGroup.toSubNegMonoid
toAddGroup
β€”modEq_comm
zsmul_neg'
neg_zsmul
neg_sub
modEq_nsmul_cases πŸ“–mathematicalβ€”ModEq
toAddCommMonoid
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddGroup
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”modEq_comm
sub_right_comm
sub_eq_iff_eq_add
modEq_refl πŸ“–mathematicalβ€”ModEqβ€”zero_nsmul
zero_add
modEq_rfl πŸ“–mathematicalβ€”ModEqβ€”modEq_refl
modEq_sub πŸ“–mathematicalβ€”ModEq
toAddCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
toAddGroup
β€”one_nsmul
sub_add_cancel
zero_nsmul
zero_add
modEq_sub_iff_add_modEq πŸ“–mathematicalβ€”ModEq
toAddCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
toAddGroup
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”modEq_sub_iff_add_modEq'
add_comm
modEq_sub_iff_add_modEq' πŸ“–mathematicalβ€”ModEq
toAddCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
toAddGroup
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”sub_sub
modEq_zero πŸ“–mathematicalβ€”ModEq
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”nsmul_zero
zero_add
modEq_zero_iff_eq_zsmul πŸ“–mathematicalβ€”ModEq
toAddCommMonoid
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddGroup
SubNegMonoid.toZSMul
β€”modEq_comm
modEq_iff_eq_add_zsmul
zero_add
neg_modEq_neg πŸ“–mathematicalβ€”ModEq
toAddCommMonoid
SubNegMonoid.toNeg
AddGroup.toSubNegMonoid
toAddGroup
β€”modEq_comm
sub_neg_eq_add
neg_add_eq_sub
not_modEq_iff_ne_add_zsmul πŸ“–mathematicalβ€”ModEq
toAddCommMonoid
β€”modEq_iff_eq_add_zsmul
nsmul_add_modEq πŸ“–mathematicalβ€”ModEq
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
β€”modEq_iff_nsmul
zero_nsmul
zero_add
nsmul_modEq_nsmul πŸ“–mathematicalβ€”ModEq
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
β€”mul_nsmul
mul_nsmul'
self_modEq_zero πŸ“–mathematicalβ€”ModEq
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”modEq_iff_nsmul
zero_nsmul
zero_add
one_nsmul
add_zero
sub_modEq_iff_modEq_add πŸ“–mathematicalβ€”ModEq
toAddCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
toAddGroup
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”modEq_comm
modEq_sub_iff_add_modEq
sub_modEq_iff_modEq_add' πŸ“–mathematicalβ€”ModEq
toAddCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
toAddGroup
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”modEq_comm
modEq_sub_iff_add_modEq'
sub_modEq_zero πŸ“–mathematicalβ€”ModEq
toAddCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
toAddGroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
β€”zero_add
zsmul_add_modEq πŸ“–mathematicalβ€”ModEq
toAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
toAddGroup
β€”modEq_iff_zsmul
neg_zsmul
sub_add_cancel_right
zsmul_modEq_zero πŸ“–mathematicalβ€”ModEq
toAddCommMonoid
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
toAddGroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
β€”modEq_iff_zsmul
neg_zsmul
zero_sub
zsmul_modEq_zsmul πŸ“–mathematicalβ€”ModEq
toAddCommMonoid
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
toAddGroup
β€”zsmul_comm

AddCommGroup.ModEq

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalAddCommGroup.ModEqAddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”AddCommGroup.modEq_iff_nsmul
add_nsmul
add_add_add_comm
add_iff_left πŸ“–mathematicalAddCommGroup.ModEq
AddCancelCommMonoid.toAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”AddCommGroup.modEq_iff_nsmul
add_right_cancel
AddRightCancelSemigroup.toIsRightCancelAdd
add_assoc
add_comm
add_nsmul
add_right_comm
add_add_add_comm
add
add_iff_right πŸ“–mathematicalAddCommGroup.ModEq
AddCancelCommMonoid.toAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”add_comm
add_iff_left
add_left πŸ“–mathematicalAddCommGroup.ModEqAddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”add
AddCommGroup.modEq_rfl
add_left_cancel πŸ“–β€”AddCommGroup.ModEq
AddCancelCommMonoid.toAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”β€”add_iff_left
add_left_cancel' πŸ“–β€”AddCommGroup.ModEq
AddCancelCommMonoid.toAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”β€”add_left_cancel
AddCommGroup.modEq_rfl
add_nsmul πŸ“–mathematicalAddCommGroup.ModEqAddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
β€”trans
AddCommGroup.add_nsmul_modEq
add_right πŸ“–mathematicalAddCommGroup.ModEqAddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”add
AddCommGroup.modEq_rfl
add_right_cancel πŸ“–β€”AddCommGroup.ModEq
AddCancelCommMonoid.toAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”β€”add_iff_right
add_right_cancel' πŸ“–β€”AddCommGroup.ModEq
AddCancelCommMonoid.toAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”β€”add_right_cancel
AddCommGroup.modEq_rfl
add_zsmul πŸ“–mathematicalAddCommGroup.ModEq
AddCommGroup.toAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”trans
AddCommGroup.add_zsmul_modEq
map πŸ“–mathematicalAddCommGroup.ModEqDFunLike.coeβ€”AddCommGroup.modEq_iff_nsmul
map_add
AddMonoidHomClass.toAddHomClass
map_nsmul
neg πŸ“–mathematicalAddCommGroup.ModEq
AddCommGroup.toAddCommMonoid
SubNegMonoid.toNeg
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”AddCommGroup.neg_modEq_neg
neg' πŸ“–mathematicalAddCommGroup.ModEq
AddCommGroup.toAddCommMonoid
SubNegMonoid.toNeg
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”AddCommGroup.modEq_neg
nsmul πŸ“–mathematicalAddCommGroup.ModEqAddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
β€”AddCommGroup.modEq_iff_nsmul
mul_nsmul
mul_nsmul'
nsmul_add
nsmul_add πŸ“–mathematicalAddCommGroup.ModEqAddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
β€”trans
AddCommGroup.nsmul_add_modEq
nsmul_cancel πŸ“–β€”AddCommGroup.ModEq
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
β€”β€”AddCommGroup.nsmul_modEq_nsmul
nsmul_cases πŸ“–mathematicalAddCommGroup.ModEq
AddCommGroup.toAddCommMonoid
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”AddCommGroup.modEq_nsmul_cases
of_neg πŸ“–β€”AddCommGroup.ModEq
AddCommGroup.toAddCommMonoid
SubNegMonoid.toNeg
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”AddCommGroup.neg_modEq_neg
of_neg' πŸ“–β€”AddCommGroup.ModEq
AddCommGroup.toAddCommMonoid
SubNegMonoid.toNeg
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”AddCommGroup.modEq_neg
of_nsmul πŸ“–β€”AddCommGroup.ModEq
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
β€”β€”mul_nsmul'
of_zsmul πŸ“–β€”AddCommGroup.ModEq
AddCommGroup.toAddCommMonoid
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”AddCommGroup.modEq_iff_zsmul
sub πŸ“–mathematicalAddCommGroup.ModEq
AddCommGroup.toAddCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”sub_iff_left
sub_iff_left πŸ“–mathematicalAddCommGroup.ModEq
AddCommGroup.toAddCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”sub_eq_add_neg
sub_iff_right πŸ“–mathematicalAddCommGroup.ModEq
AddCommGroup.toAddCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”sub_eq_add_neg
sub_left πŸ“–mathematicalAddCommGroup.ModEq
AddCommGroup.toAddCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”sub
AddCommGroup.modEq_rfl
sub_left_cancel πŸ“–β€”AddCommGroup.ModEq
AddCommGroup.toAddCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”sub_iff_left
sub_left_cancel' πŸ“–β€”AddCommGroup.ModEq
AddCommGroup.toAddCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”sub_left_cancel
AddCommGroup.modEq_rfl
sub_right πŸ“–mathematicalAddCommGroup.ModEq
AddCommGroup.toAddCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”sub
AddCommGroup.modEq_rfl
sub_right_cancel πŸ“–β€”AddCommGroup.ModEq
AddCommGroup.toAddCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”sub_iff_right
sub_right_cancel' πŸ“–β€”AddCommGroup.ModEq
AddCommGroup.toAddCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”sub_right_cancel
AddCommGroup.modEq_rfl
trans πŸ“–β€”AddCommGroup.ModEqβ€”β€”AddCommGroup.modEq_iff_nsmul
add_nsmul
add_assoc
add_left_comm
zsmul πŸ“–mathematicalAddCommGroup.ModEq
AddCommGroup.toAddCommMonoid
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”AddCommGroup.modEq_iff_zsmul
zsmul_sub
mul_zsmul
mul_zsmul'
zsmul_add πŸ“–mathematicalAddCommGroup.ModEq
AddCommGroup.toAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”trans
AddCommGroup.zsmul_add_modEq
zsmul_cancel πŸ“–β€”AddCommGroup.ModEq
AddCommGroup.toAddCommMonoid
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”AddCommGroup.zsmul_modEq_zsmul

---

← Back to Index