Documentation Verification Report

Hom

πŸ“ Source: Mathlib/Algebra/Group/Nat/Hom.lean

Statistics

MetricCount
DefinitionsmultiplesAddHom, multiplesHom, powersHom, powersMulHom
4
Theoremsapply_nat, ext_nat, ext_nat_iff, apply_mnat, ext_mnat, ext_mnat_iff, ext_nat', multiplesAddHom_apply, multiplesAddHom_symm_apply, multiplesHom_apply, multiplesHom_symm_apply, powersHom_apply, powersHom_symm_apply, powersMulHom_apply, powersMulHom_symm_apply
15
Total19

AddMonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
apply_nat πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Nat.instAddMonoid
instFunLike
AddMonoid.toNatSMul
β€”multiplesHom_symm_apply
multiplesHom_apply
Equiv.apply_symm_apply
ext_nat πŸ“–β€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Nat.instAddMonoid
instFunLike
β€”β€”ext_nat'
instAddMonoidHomClass
ext_nat_iff πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Nat.instAddMonoid
instFunLike
β€”ext_nat

MonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
apply_mnat πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Multiplicative
MulOneClass.toMulOne
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Monoid.toMulOneClass
instFunLike
Monoid.toNatPow
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
Multiplicative.toAdd
β€”powersHom_symm_apply
powersHom_apply
Equiv.apply_symm_apply
ext_mnat πŸ“–β€”DFunLike.coe
MonoidHom
Multiplicative
MulOneClass.toMulOne
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Monoid.toMulOneClass
instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
β€”β€”ext
apply_mnat
ext_mnat_iff πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Multiplicative
MulOneClass.toMulOne
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Monoid.toMulOneClass
instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
β€”ext_mnat

(root)

Definitions

NameCategoryTheorems
multiplesAddHom πŸ“–CompOp
2 mathmath: multiplesAddHom_apply, multiplesAddHom_symm_apply
multiplesHom πŸ“–CompOp
3 mathmath: AddSubmonoid.closure_singleton_eq, multiplesHom_symm_apply, multiplesHom_apply
powersHom πŸ“–CompOp
4 mathmath: Polynomial.evalβ‚‚_ofFinsupp, powersHom_symm_apply, Submonoid.closure_singleton_eq, powersHom_apply
powersMulHom πŸ“–CompOp
2 mathmath: powersMulHom_apply, powersMulHom_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
ext_nat' πŸ“–β€”DFunLike.coeβ€”β€”DFunLike.ext
map_zero
AddMonoidHomClass.toZeroHomClass
map_add
AddMonoidHomClass.toAddHomClass
multiplesAddHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
AddEquiv
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddMonoidHom.add
EquivLike.toFunLike
AddEquiv.instEquivLike
multiplesAddHom
AddMonoid.toNatSMul
β€”β€”
multiplesAddHom_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMonoid.toAddMonoid
AddMonoidHom.add
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
multiplesAddHom
AddMonoidHom.instFunLike
β€”β€”
multiplesHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddMonoidHom.instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
multiplesHom
AddMonoid.toNatSMul
β€”β€”
multiplesHom_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Nat.instAddMonoid
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
multiplesHom
AddMonoidHom.instFunLike
β€”β€”
powersHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Multiplicative
MulOneClass.toMulOne
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Monoid.toMulOneClass
MonoidHom.instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
powersHom
Monoid.toNatPow
Multiplicative.toAdd
β€”β€”
powersHom_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
MonoidHom
Multiplicative
MulOneClass.toMulOne
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Monoid.toMulOneClass
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
powersHom
MonoidHom.instFunLike
Multiplicative.ofAdd
β€”β€”
powersMulHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Multiplicative
MulOneClass.toMulOne
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
MonoidHom.instFunLike
MulEquiv
MulOne.toMul
MonoidHom.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
powersMulHom
Monoid.toNatPow
Equiv
Equiv.instEquivLike
Multiplicative.toAdd
β€”β€”
powersMulHom_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
MonoidHom
Multiplicative
MulOneClass.toMulOne
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
MonoidHom.mul
MulOne.toMul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
powersMulHom
MonoidHom.instFunLike
Equiv
Equiv.instEquivLike
Multiplicative.ofAdd
β€”β€”

---

← Back to Index