Documentation Verification Report

Lemmas

πŸ“ Source: Mathlib/Algebra/Group/Pi/Lemmas.lean

Statistics

MetricCount
DefinitionscoeFn, compLeft, coeFn, compLeft, single, hom, hom, coeFn, compLeft, mulSingle, coeFn, compLeft, mulSingle, addHom, addMonoidHom, constAddHom, constAddMonoidHom, constMonoidHom, constMulHom, evalAddHom, evalAddMonoidHom, evalMonoidHom, evalMulHom, monoidHom, mulHom, single
26
Theoremspi, coeFn_apply, coe_add, compLeft_apply, coeFn_apply, coe_single, compLeft_apply, single_apply, pi, pi, hom_apply, hom_apply, const_eq_one, const_eq_zero, const_ne_one, const_ne_zero, update_add, update_div, update_inv, update_mul, update_neg, update_one, update_sub, update_zero, coeFn_apply, coe_mulSingle, compLeft_apply, mulSingle_apply, coeFn_apply, coe_mul, compLeft_apply, coe_mulSingle, mulSingle_apply, addCommute_iff, addHom_apply, addHom_injective, addMonoidHom_apply, addMonoidHom_injective, addSemiconjBy_iff, coe_evalMonoidHom, commute_iff, constAddHom_apply, constAddMonoidHom_apply, constMonoidHom_apply, constMulHom_apply, evalAddHom_apply, evalAddMonoidHom_apply, evalMonoidHom_apply, evalMulHom_apply, instIsAddTorsionFree, instIsMulTorsionFree, monoidHom_apply, monoidHom_injective, mulHom_apply, mulHom_injective, mulSingle_apply_commute, mulSingle_commute, mulSingle_comp_equiv, mulSingle_div, mulSingle_inf, mulSingle_inv, mulSingle_mono, mulSingle_mul, mulSingle_mul_mulSingle_eq_mulSingle_mul_mulSingle, mulSingle_pow, mulSingle_strictMono, mulSingle_sup, mulSingle_zpow, one_anti, one_mono, semiconjBy_iff, single_add, single_addCommute, single_add_single_eq_single_add_single, single_apply_addCommute, single_comp_equiv, single_inf, single_mono, single_neg, single_nsmul, single_strictMono, single_sub, single_sup, single_zsmul, update_eq_div_mul_mulSingle, update_eq_sub_add_single, zero_anti, zero_mono, pi, piecewise_add, piecewise_div, piecewise_inv, piecewise_mul, piecewise_neg, piecewise_sub, preimage_one, preimage_zero, range_one, range_zero, curry_add, curry_inv, curry_mul, curry_mulSingle, curry_neg, curry_one, curry_single, curry_zero, uncurry_add, uncurry_inv, uncurry_mul, uncurry_mulSingle_mulSingle, uncurry_neg, uncurry_one, uncurry_single_single, uncurry_zero, coe_single, single_apply
117
Total143

AddCommute

Theorems

NameKindAssumesProvesValidatesDepends On
pi πŸ“–mathematicalAddCommutePi.instAddβ€”AddSemiconjBy.pi

AddHom

Definitions

NameCategoryTheorems
coeFn πŸ“–CompOp
1 mathmath: coeFn_apply
compLeft πŸ“–CompOp
1 mathmath: compLeft_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coeFn_apply πŸ“–mathematicalβ€”DFunLike.coe
AddHom
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
instAdd
Pi.instAdd
funLike
coeFn
β€”β€”
coe_add πŸ“–mathematicalβ€”Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
DFunLike.coe
AddHom
funLike
β€”β€”
compLeft_apply πŸ“–mathematicalβ€”DFunLike.coe
AddHom
Pi.instAdd
funLike
compLeft
β€”β€”

AddMonoidHom

Definitions

NameCategoryTheorems
coeFn πŸ“–CompOp
2 mathmath: coe_dfinsuppSumAddHom, coeFn_apply
compLeft πŸ“–CompOp
1 mathmath: compLeft_apply
single πŸ“–CompOp
8 mathmath: AddSubmonoid.iSup_map_single, AddSubmonoid.pi_le_iff, AddSubmonoid.le_comap_single_pi, AddSubmonoid.iSup_map_single_le, single_apply, AddSubgroup.pi_le_iff, coe_single, functions_ext'_iff

Theorems

NameKindAssumesProvesValidatesDepends On
coeFn_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
Pi.addZeroClass
instFunLike
coeFn
β€”β€”
coe_single πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
instFunLike
single
Pi.single
AddZero.toZero
β€”β€”
compLeft_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
instFunLike
compLeft
β€”β€”
single_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
instFunLike
single
Pi.single
AddZero.toZero
β€”β€”

AddSemiconjBy

Theorems

NameKindAssumesProvesValidatesDepends On
pi πŸ“–mathematicalAddSemiconjByPi.instAddβ€”β€”

Commute

Theorems

NameKindAssumesProvesValidatesDepends On
pi πŸ“–mathematicalCommutePi.instMulβ€”SemiconjBy.pi

Function

Theorems

NameKindAssumesProvesValidatesDepends On
const_eq_one πŸ“–mathematicalβ€”Pi.instOneβ€”β€”
const_eq_zero πŸ“–mathematicalβ€”Pi.instZeroβ€”β€”
const_ne_one πŸ“–β€”β€”β€”β€”Iff.not
const_eq_one
const_ne_zero πŸ“–β€”β€”β€”β€”Iff.not
const_eq_zero
update_add πŸ“–mathematicalβ€”update
Pi.instAdd
β€”apply_updateβ‚‚
update_div πŸ“–mathematicalβ€”update
Pi.instDiv
β€”apply_updateβ‚‚
update_inv πŸ“–mathematicalβ€”update
Pi.instInv
β€”apply_update
update_mul πŸ“–mathematicalβ€”update
Pi.instMul
β€”apply_updateβ‚‚
update_neg πŸ“–mathematicalβ€”update
Pi.instNeg
β€”apply_update
update_one πŸ“–mathematicalβ€”update
Pi.instOne
β€”update_eq_self
update_sub πŸ“–mathematicalβ€”update
Pi.instSub
β€”apply_updateβ‚‚
update_zero πŸ“–mathematicalβ€”update
Pi.instZero
β€”update_eq_self

Function.ExtendByOne

Definitions

NameCategoryTheorems
hom πŸ“–CompOp
1 mathmath: hom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
hom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Pi.mulOneClass
MonoidHom.instFunLike
hom
Function.extend
Pi.instOne
MulOne.toOne
β€”β€”

Function.ExtendByZero

Definitions

NameCategoryTheorems
hom πŸ“–CompOp
1 mathmath: hom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
hom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
AddMonoidHom.instFunLike
hom
Function.extend
Pi.instZero
AddZero.toZero
β€”β€”

MonoidHom

Definitions

NameCategoryTheorems
coeFn πŸ“–CompOp
1 mathmath: coeFn_apply
compLeft πŸ“–CompOp
1 mathmath: compLeft_apply
mulSingle πŸ“–CompOp
9 mathmath: functions_ext'_iff, Subgroup.pi_le_iff, Submonoid.iSup_map_mulSingle_le, Submonoid.iSup_map_mulSingle, Submonoid.pi_le_iff, Submonoid.le_comap_mulSingle_pi, PiTensorProduct.singleAlgHom_apply, mulSingle_apply, coe_mulSingle

Theorems

NameKindAssumesProvesValidatesDepends On
coeFn_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
instCommMonoid
Pi.mulOneClass
instFunLike
coeFn
β€”β€”
coe_mulSingle πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Pi.mulOneClass
instFunLike
mulSingle
Pi.mulSingle
MulOne.toOne
β€”β€”
compLeft_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Pi.mulOneClass
instFunLike
compLeft
β€”β€”
mulSingle_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Pi.mulOneClass
instFunLike
mulSingle
Pi.mulSingle
MulOne.toOne
β€”β€”

MulHom

Definitions

NameCategoryTheorems
coeFn πŸ“–CompOp
1 mathmath: coeFn_apply
compLeft πŸ“–CompOp
1 mathmath: compLeft_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coeFn_apply πŸ“–mathematicalβ€”DFunLike.coe
MulHom
CommMagma.toMul
CommSemigroup.toCommMagma
instMul
Pi.instMul
funLike
coeFn
β€”β€”
coe_mul πŸ“–mathematicalβ€”Pi.instMul
CommMagma.toMul
CommSemigroup.toCommMagma
DFunLike.coe
MulHom
funLike
β€”β€”
compLeft_apply πŸ“–mathematicalβ€”DFunLike.coe
MulHom
Pi.instMul
funLike
compLeft
β€”β€”

OneHom

Definitions

NameCategoryTheorems
mulSingle πŸ“–CompOp
2 mathmath: coe_mulSingle, mulSingle_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_mulSingle πŸ“–mathematicalβ€”DFunLike.coe
OneHom
Pi.instOne
funLike
mulSingle
Pi.mulSingle
β€”β€”
mulSingle_apply πŸ“–mathematicalβ€”DFunLike.coe
OneHom
Pi.instOne
funLike
mulSingle
Pi.mulSingle
β€”β€”

Pi

Definitions

NameCategoryTheorems
addHom πŸ“–CompOp
2 mathmath: addHom_apply, addHom_injective
addMonoidHom πŸ“–CompOp
6 mathmath: AddCommMonCat.coyonedaType_obj_map, AddCommMonCat.coyonedaType_map_app, AddCommGrpCat.coyonedaType_obj_map, addMonoidHom_apply, addMonoidHom_injective, AddCommGrpCat.coyonedaType_map_app
constAddHom πŸ“–CompOp
1 mathmath: constAddHom_apply
constAddMonoidHom πŸ“–CompOp
1 mathmath: constAddMonoidHom_apply
constMonoidHom πŸ“–CompOp
1 mathmath: constMonoidHom_apply
constMulHom πŸ“–CompOp
1 mathmath: constMulHom_apply
evalAddHom πŸ“–CompOp
2 mathmath: Matrix.entryAddHom_eq_comp, evalAddHom_apply
evalAddMonoidHom πŸ“–CompOp
13 mathmath: LinearMap.toAddMonoidHom_proj, AddCommMonCat.coyonedaType_obj_map, AddCommMonCat.coyonedaType_map_app, Matrix.entryAddMonoidHom_eq_comp, AddCommGrpCat.HasLimit.productLimitCone_isLimit_lift, AddSubmonoid.le_pi_iff, Matrix.evalAddMonoidHom_comp_diagAddMonoidHom, AddCommGrpCat.coyonedaType_obj_map, AddCommGrpCat.HasLimit.productLimitCone_cone_Ο€, AddSubgroup.le_pi_iff, evalAddMonoidHom_apply, AddCommGrpCat.biproductIsoPi_inv_comp_Ο€, AddCommGrpCat.coyonedaType_map_app
evalMonoidHom πŸ“–CompOp
8 mathmath: Submonoid.le_pi_iff, CommMonCat.coyonedaType_obj_map, evalMonoidHom_apply, CommGrpCat.coyonedaType_map_app, Subgroup.le_pi_iff, coe_evalMonoidHom, CommGrpCat.coyonedaType_obj_map, CommMonCat.coyonedaType_map_app
evalMulHom πŸ“–CompOp
2 mathmath: evalNonUnitalStarAlgHom_apply, evalMulHom_apply
monoidHom πŸ“–CompOp
6 mathmath: CommMonCat.coyonedaType_obj_map, CommGrpCat.coyonedaType_map_app, monoidHom_apply, CommGrpCat.coyonedaType_obj_map, monoidHom_injective, CommMonCat.coyonedaType_map_app
mulHom πŸ“–CompOp
2 mathmath: mulHom_injective, mulHom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
addCommute_iff πŸ“–mathematicalβ€”AddCommute
instAdd
β€”addSemiconjBy_iff
addHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddHom
instAdd
AddHom.funLike
addHom
β€”β€”
addHom_injective πŸ“–mathematicalDFunLike.coe
AddHom
AddHom.funLike
instAdd
addHom
β€”β€”
addMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
addZeroClass
AddMonoidHom.instFunLike
addMonoidHom
β€”β€”
addMonoidHom_injective πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoidHom.instFunLike
addZeroClass
addMonoidHom
β€”addHom_injective
addSemiconjBy_iff πŸ“–mathematicalβ€”AddSemiconjBy
instAdd
β€”β€”
coe_evalMonoidHom πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
mulOneClass
MonoidHom.instFunLike
evalMonoidHom
Function.eval
β€”β€”
commute_iff πŸ“–mathematicalβ€”Commute
instMul
β€”semiconjBy_iff
constAddHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddHom
instAdd
AddHom.funLike
constAddHom
β€”β€”
constAddMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
addZeroClass
AddMonoidHom.instFunLike
constAddMonoidHom
β€”β€”
constMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
mulOneClass
MonoidHom.instFunLike
constMonoidHom
β€”β€”
constMulHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MulHom
instMul
MulHom.funLike
constMulHom
β€”β€”
evalAddHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddHom
instAdd
AddHom.funLike
evalAddHom
β€”β€”
evalAddMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
addZeroClass
AddMonoidHom.instFunLike
evalAddMonoidHom
β€”β€”
evalMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
mulOneClass
MonoidHom.instFunLike
evalMonoidHom
β€”β€”
evalMulHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MulHom
instMul
MulHom.funLike
evalMulHom
β€”β€”
instIsAddTorsionFree πŸ“–mathematicalIsAddTorsionFreeaddMonoidβ€”nsmul_right_injective
instIsMulTorsionFree πŸ“–mathematicalIsMulTorsionFreemonoidβ€”pow_left_injective
monoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
mulOneClass
MonoidHom.instFunLike
monoidHom
β€”β€”
monoidHom_injective πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
MonoidHom.instFunLike
mulOneClass
monoidHom
β€”mulHom_injective
mulHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MulHom
instMul
MulHom.funLike
mulHom
β€”β€”
mulHom_injective πŸ“–mathematicalDFunLike.coe
MulHom
MulHom.funLike
instMul
mulHom
β€”β€”
mulSingle_apply_commute πŸ“–mathematicalβ€”Commute
instMul
MulOne.toMul
MulOneClass.toMulOne
mulSingle
MulOne.toOne
β€”Decidable.eq_or_ne
mulSingle_commute
mulSingle_commute πŸ“–mathematicalβ€”Pairwiseβ€”mulSingle_eq_of_ne
mul_one
one_mul
mulSingle_eq_of_ne'
mulSingle_comp_equiv πŸ“–mathematicalβ€”mulSingle
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
β€”mulSingle_apply
Equiv.apply_symm_apply
Equiv.symm_apply_apply
mulSingle_div πŸ“–mathematicalβ€”mulSingle
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
DivInvMonoid.toDiv
Group.toDivInvMonoid
instDiv
β€”MonoidHom.map_div
mulSingle_inf πŸ“–mathematicalβ€”mulSingle
SemilatticeInf.toMin
instMinForall_mathlib
β€”Function.update_inf
mulSingle_inv πŸ“–mathematicalβ€”mulSingle
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
InvOneClass.toInv
instInv
β€”MonoidHom.map_inv
mulSingle_mono πŸ“–mathematicalβ€”Monotone
preorder
mulSingle
β€”Function.update_mono
mulSingle_mul πŸ“–mathematicalβ€”mulSingle
MulOne.toOne
MulOneClass.toMulOne
MulOne.toMul
instMul
β€”MonoidHom.map_mul
mulSingle_mul_mulSingle_eq_mulSingle_mul_mulSingle πŸ“–mathematicalβ€”instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
mulSingle
MulOne.toOne
β€”mulSingle_apply
mul_ite
ite_mul
one_mul
mul_one
mulSingle_pow πŸ“–mathematicalβ€”mulSingle
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
Monoid.toNatPow
instPow
β€”MonoidHom.map_pow
mulSingle_strictMono πŸ“–mathematicalβ€”StrictMono
preorder
mulSingle
β€”Function.update_strictMono
mulSingle_sup πŸ“–mathematicalβ€”mulSingle
SemilatticeSup.toMax
instMaxForall_mathlib
β€”Function.update_sup
mulSingle_zpow πŸ“–mathematicalβ€”mulSingle
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
DivInvMonoid.toZPow
Group.toDivInvMonoid
instPow
β€”MonoidHom.map_zpow
one_anti πŸ“–mathematicalβ€”Antitone
instOne
β€”antitone_const
one_mono πŸ“–mathematicalβ€”Monotone
instOne
β€”monotone_const
semiconjBy_iff πŸ“–mathematicalβ€”SemiconjBy
instMul
β€”β€”
single_add πŸ“–mathematicalβ€”single
AddZero.toZero
AddZeroClass.toAddZero
AddZero.toAdd
instAdd
β€”AddMonoidHom.map_add
single_addCommute πŸ“–mathematicalβ€”Pairwiseβ€”single_eq_of_ne
add_zero
zero_add
single_eq_of_ne'
single_add_single_eq_single_add_single πŸ“–mathematicalβ€”instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
single
AddZero.toZero
β€”single_apply
add_ite
ite_add
zero_add
add_zero
single_apply_addCommute πŸ“–mathematicalβ€”AddCommute
instAdd
AddZero.toAdd
AddZeroClass.toAddZero
single
AddZero.toZero
β€”Decidable.eq_or_ne
single_addCommute
single_comp_equiv πŸ“–mathematicalβ€”single
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
β€”single_apply
Equiv.apply_symm_apply
Equiv.symm_apply_apply
single_inf πŸ“–mathematicalβ€”single
SemilatticeInf.toMin
instMinForall_mathlib
β€”Function.update_inf
single_mono πŸ“–mathematicalβ€”Monotone
preorder
single
β€”Function.update_mono
single_neg πŸ“–mathematicalβ€”single
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
NegZeroClass.toNeg
instNeg
β€”AddMonoidHom.map_neg
single_nsmul πŸ“–mathematicalβ€”single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoid.toNatSMul
instSMul
β€”AddMonoidHom.map_nsmul
single_strictMono πŸ“–mathematicalβ€”StrictMono
preorder
single
β€”Function.update_strictMono
single_sub πŸ“–mathematicalβ€”single
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
instSub
β€”AddMonoidHom.map_sub
single_sup πŸ“–mathematicalβ€”single
SemilatticeSup.toMax
instMaxForall_mathlib
β€”Function.update_sup
single_zsmul πŸ“–mathematicalβ€”single
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
instSMul
β€”AddMonoidHom.map_zsmul
update_eq_div_mul_mulSingle πŸ“–mathematicalβ€”Function.update
instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instDiv
DivInvMonoid.toDiv
mulSingle
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”eq_or_ne
Function.update_self
mulSingle_eq_same
div_self'
one_mul
Function.update_of_ne
mulSingle_eq_of_ne'
div_one
mul_one
update_eq_sub_add_single πŸ“–mathematicalβ€”Function.update
instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instSub
SubNegMonoid.toSub
single
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”eq_or_ne
Function.update_self
single_eq_same
sub_self
zero_add
Function.update_of_ne
single_eq_of_ne'
sub_zero
add_zero
zero_anti πŸ“–mathematicalβ€”Antitone
instZero
β€”antitone_const
zero_mono πŸ“–mathematicalβ€”Monotone
instZero
β€”monotone_const

SemiconjBy

Theorems

NameKindAssumesProvesValidatesDepends On
pi πŸ“–mathematicalSemiconjByPi.instMulβ€”β€”

Set

Theorems

NameKindAssumesProvesValidatesDepends On
piecewise_add πŸ“–mathematicalβ€”piecewise
Pi.instAdd
β€”piecewise_opβ‚‚
piecewise_div πŸ“–mathematicalβ€”piecewise
Pi.instDiv
β€”piecewise_opβ‚‚
piecewise_inv πŸ“–mathematicalβ€”piecewise
Pi.instInv
β€”piecewise_op
piecewise_mul πŸ“–mathematicalβ€”piecewise
Pi.instMul
β€”piecewise_opβ‚‚
piecewise_neg πŸ“–mathematicalβ€”piecewise
Pi.instNeg
β€”piecewise_op
piecewise_sub πŸ“–mathematicalβ€”piecewise
Pi.instSub
β€”piecewise_opβ‚‚
preimage_one πŸ“–mathematicalβ€”preimage
Pi.instOne
Set
instMembership
univ
instEmptyCollection
β€”preimage_const
preimage_zero πŸ“–mathematicalβ€”preimage
Pi.instZero
Set
instMembership
univ
instEmptyCollection
β€”preimage_const
range_one πŸ“–mathematicalβ€”range
Pi.instOne
Set
instSingletonSet
β€”range_const
range_zero πŸ“–mathematicalβ€”range
Pi.instZero
Set
instSingletonSet
β€”range_const

Sigma

Theorems

NameKindAssumesProvesValidatesDepends On
curry_add πŸ“–mathematicalβ€”curry
Pi.instAdd
β€”β€”
curry_inv πŸ“–mathematicalβ€”curry
Pi.instInv
β€”β€”
curry_mul πŸ“–mathematicalβ€”curry
Pi.instMul
β€”β€”
curry_mulSingle πŸ“–mathematicalβ€”curry
Pi.mulSingle
instDecidableEqSigma
Pi.instOne
β€”curry_update
curry_neg πŸ“–mathematicalβ€”curry
Pi.instNeg
β€”β€”
curry_one πŸ“–mathematicalβ€”curry
Pi.instOne
β€”β€”
curry_single πŸ“–mathematicalβ€”curry
Pi.single
instDecidableEqSigma
Pi.instZero
β€”curry_update
curry_zero πŸ“–mathematicalβ€”curry
Pi.instZero
β€”β€”
uncurry_add πŸ“–mathematicalβ€”uncurry
Pi.instAdd
β€”β€”
uncurry_inv πŸ“–mathematicalβ€”uncurry
Pi.instInv
β€”β€”
uncurry_mul πŸ“–mathematicalβ€”uncurry
Pi.instMul
β€”β€”
uncurry_mulSingle_mulSingle πŸ“–mathematicalβ€”uncurry
Pi.mulSingle
Pi.instOne
instDecidableEqSigma
β€”curry_mulSingle
uncurry_curry
uncurry_neg πŸ“–mathematicalβ€”uncurry
Pi.instNeg
β€”β€”
uncurry_one πŸ“–mathematicalβ€”uncurry
Pi.instOne
β€”β€”
uncurry_single_single πŸ“–mathematicalβ€”uncurry
Pi.single
Pi.instZero
instDecidableEqSigma
β€”curry_single
uncurry_curry
uncurry_zero πŸ“–mathematicalβ€”uncurry
Pi.instZero
β€”β€”

ZeroHom

Definitions

NameCategoryTheorems
single πŸ“–CompOp
2 mathmath: single_apply, coe_single

Theorems

NameKindAssumesProvesValidatesDepends On
coe_single πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
Pi.instZero
funLike
single
Pi.single
β€”β€”
single_apply πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
Pi.instZero
funLike
single
Pi.single
β€”β€”

---

← Back to Index