Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Group/Pointwise/Finset/Basic.lean

Statistics

MetricCount
Definitionsadd, addCommMonoid, addCommSemigroup, addMonoid, addSemigroup, addZeroClass, coeAddMonoidHom, coeMonoidHom, commMonoid, commSemigroup, div, divisionCommMonoid, divisionMonoid, imageAddHom, imageAddMonoidHom, imageMonoidHom, imageMulHom, imageOneHom, imageZeroHom, inv, monoid, mul, mulOneClass, neg, npow, nsmul, one, semigroup, singletonAddHom, singletonAddMonoidHom, singletonMonoidHom, singletonMulHom, singletonOneHom, singletonZeroHom, sub, subtractionCommMonoid, subtractionMonoid, zero, zpow, zsmul, instFintypeOne, instFintypeZero
42
Theoremsadd, card_nsmul_mono, card_pow_mono, div, inv, mul, neg, nsmul, of_add_left, of_add_right, of_div_left, of_div_right, of_inv, of_mul_left, of_mul_right, of_neg, of_sub_left, of_sub_right, one_mem_div, pow, sub, subset_one_iff, subset_zero_iff, zero_mem_sub, zpow, zsmul, add, add_left, add_right, mul, mul_left, mul_right, nsmul, pow, add_def, add_empty, add_eq_empty, add_eq_zero_iff, add_inter_subset, add_mem_add, add_nonempty, add_subset_add, add_subset_add_left, add_subset_add_right, add_subset_iff, add_union, add_univ_of_zero_mem, card_add_iff, card_add_le, card_add_singleton, card_div_le, card_inv, card_inv_le, card_le_card_add_left, card_le_card_add_left_of_injective, card_le_card_add_right, card_le_card_add_right_of_injective, card_le_card_add_self, card_le_card_add_self', card_le_card_div_left, card_le_card_div_right, card_le_card_div_self, card_le_card_mul_left, card_le_card_mul_left_of_injective, card_le_card_mul_right, card_le_card_mul_right_of_injective, card_le_card_mul_self, card_le_card_mul_self', card_le_card_nsmul, card_le_card_pow, card_le_card_sub_left, card_le_card_sub_right, card_le_card_sub_self, card_mul_iff, card_mul_le, card_mul_singleton, card_neg, card_neg_le, card_nsmul_le, card_nsmul_mono, card_one, card_pow_le, card_pow_mono, card_singleton_add, card_singleton_mul, card_sub_le, card_zero, coeAddMonoidHom_apply, coeMonoidHom_apply, coe_add, coe_coeAddMonoidHom, coe_coeMonoidHom, coe_div, coe_eq_one, coe_eq_zero, coe_inv, coe_list_prod, coe_list_sum, coe_mul, coe_neg, coe_nsmul, coe_one, coe_pow, coe_singletonAddHom, coe_singletonAddMonoidHom, coe_singletonMonoidHom, coe_singletonMulHom, coe_singletonOneHom, coe_singletonZeroHom, coe_sub, coe_zero, coe_zpow, coe_zsmul, div_def, div_empty, div_eq_empty, div_inter_subset, div_mem_div, div_nonempty, div_singleton, div_subset_div, div_subset_div_left, div_subset_div_right, div_subset_iff, div_union, empty_add, empty_div, empty_mul, empty_pow, empty_sub, empty_zpow, imageAddHom_apply, imageAddMonoidHom_apply, imageMonoidHom_apply, imageMulHom_apply, imageOneHom_apply, imageZeroHom_apply, image_add, image_add_left, image_add_left', image_add_product, image_add_right, image_add_right', image_div, image_div_product, image_inv, image_inv_eq_inv, image_mul, image_mul_left, image_mul_left', image_mul_product, image_mul_right, image_mul_right', image_neg, image_neg_eq_neg, image_nsmul, image_nsmul_of_ne_zero, image_one, image_op_add, image_op_inv, image_op_mul, image_op_neg, image_op_nsmul, image_op_one, image_op_pow, image_op_zero, image_pow, image_pow_of_ne_zero, image_sub_product, image_zero, inf'_inv, inf'_neg, inf'_one, inf'_zero, inf_add_left, inf_add_right, inf_div_left, inf_div_right, inf_inv, inf_mul_left, inf_mul_right, inf_neg, inf_one, inf_sub_left, inf_sub_right, inf_zero, instAddLeftMono, instAddRightMono, instMulLeftMono, instMulRightMono, inter_add_singleton, inter_add_subset, inter_add_union_subset, inter_add_union_subset_union, inter_div_subset, inter_div_union_subset_union, inter_mul_singleton, inter_mul_subset, inter_mul_union_subset, inter_mul_union_subset_union, inter_nsmul_subset, inter_pow_subset, inter_sub_subset, inter_sub_union_subset_union, inv_def, inv_empty, inv_eq_empty, inv_filter, inv_filter_univ, inv_insert, inv_inter, inv_mem_inv, inv_nonempty_iff, inv_product, inv_singleton, inv_subset_div_right, inv_subset_inv, inv_univ, isAddUnit_coe, isAddUnit_iff, isAddUnit_singleton, isUnit_coe, isUnit_iff, isUnit_iff_singleton, isUnit_iff_singleton_aux, isUnit_singleton, le_inf_add, le_inf_div, le_inf_mul, le_inf_sub, map_one, map_op_add, map_op_inv, map_op_mul, map_op_neg, map_op_nsmul, map_op_one, map_op_pow, map_op_zero, map_zero, max'_one, max'_zero, max_one, max_zero, mem_add, mem_div, mem_inv, mem_inv', mem_mul, mem_neg, mem_neg', mem_nsmul, mem_one, mem_pow, mem_prod_list_ofFn, mem_sub, mem_sum_list_ofFn, mem_zero, min'_one, min'_zero, min_one, min_zero, mul_def, mul_empty, mul_eq_empty, mul_eq_one_iff, mul_inter_subset, mul_mem_mul, mul_nonempty, mul_subset_iff, mul_subset_mul, mul_subset_mul_left, mul_subset_mul_right, mul_union, mul_univ_of_one_mem, neg_def, neg_empty, neg_eq_empty, neg_filter, neg_filter_univ, neg_insert, neg_inter, neg_mem_neg, neg_nonempty_iff, neg_product, neg_singleton, neg_subset_neg, neg_subset_sub_right, neg_univ, nsmul_empty, nsmul_eq_empty, nsmul_mem_nsmul, nsmul_right_monotone, nsmul_singleton, nsmul_subset_nsmul, nsmul_subset_nsmul_add_of_sq_subset_add, nsmul_subset_nsmul_left, nsmul_subset_nsmul_right, nsmul_univ, one_mem_div_iff, one_mem_inv_mul_iff, one_mem_one, one_mem_pow, one_nonempty, one_notMem_div_iff, one_notMem_inv_mul_iff, one_product_one, one_subset, pow_eq_empty, pow_mem_pow, pow_right_monotone, pow_subset_pow, pow_subset_pow_left, pow_subset_pow_mul_of_sq_subset_mul, pow_subset_pow_right, preimage_add_left_singleton, preimage_add_left_zero, preimage_add_left_zero', preimage_add_right_singleton, preimage_add_right_zero, preimage_add_right_zero', preimage_inv, preimage_mul_left_one, preimage_mul_left_one', preimage_mul_left_singleton, preimage_mul_right_one, preimage_mul_right_one', preimage_mul_right_singleton, preimage_neg, product_add_product_comm, product_mul_product_comm, product_nsmul, product_pow, singletonAddHom_apply, singletonAddMonoidHom_apply, singletonMonoidHom_apply, singletonMulHom_apply, singletonOneHom_apply, singletonZeroHom_apply, singleton_add_inter, singleton_add_singleton, singleton_div, singleton_div_singleton, singleton_mul_inter, singleton_mul_singleton, singleton_one, singleton_pow, singleton_sub, singleton_sub_singleton, singleton_zero, singleton_zpow, sub_def, sub_empty, sub_eq_empty, sub_inter_subset, sub_mem_sub, sub_nonempty, sub_singleton, sub_subset_iff, sub_subset_sub, sub_subset_sub_left, sub_subset_sub_right, sub_union, subset_add, subset_add_left, subset_add_right, subset_div, subset_div_left, subset_mul, subset_mul_left, subset_mul_right, subset_nsmul, subset_one_iff_eq, subset_pow, subset_sub, subset_sub_left, subset_zero_iff_eq, sup'_inv, sup'_neg, sup'_one, sup'_zero, sup_add_le, sup_add_left, sup_add_right, sup_div_le, sup_div_left, sup_div_right, sup_inv, sup_mul_le, sup_mul_left, sup_mul_right, sup_neg, sup_one, sup_sub_le, sup_sub_left, sup_sub_right, sup_zero, union_add, union_add_inter_subset, union_add_inter_subset_union, union_div, union_div_inter_subset_union, union_mul, union_mul_inter_subset, union_mul_inter_subset_union, union_sub, union_sub_inter_subset_union, univ_add_of_zero_mem, univ_add_univ, univ_div_univ, univ_mul_of_one_mem, univ_mul_univ, univ_pow, univ_sub_univ, zero_mem_neg_add_iff, zero_mem_nsmul, zero_mem_sub_iff, zero_mem_zero, zero_nonempty, zero_notMem_neg_add_iff, zero_notMem_sub_iff, zero_product_zero, zero_subset, zpow_eq_empty, zsmul_empty, zsmul_eq_empty, zsmul_singleton, piFinset_add, piFinset_div, piFinset_inv, piFinset_mul, piFinset_neg, piFinset_sub, finset, finset, toFinset_add, toFinset_mul, toFinset_one, toFinset_zero, toFinset_add, toFinset_mul, toFinset_one, toFinset_zero
443
Total485

Finset

Definitions

NameCategoryTheorems
add πŸ“–CompOp
126 mathmath: MvPolynomial.support_mul, add_empty, addEnergy_eq_sum_sq', addETransformRight.fst_add_snd_subset, card_mul_cast_addConst, instAddLeftMono, sup_add_le, subset_add_right, ruzsa_triangle_inequality_add_sub_add, ruzsa_triangle_inequality_sub_add_sub, card_dvd_card_add_right, add_union, card_le_card_add_self', card_le_card_add_left_of_injective, add_mul_subset, add_singleton, addConvolution_eq_zero, Set.Finite.toFinset_add, Nonempty.add, addDysonETransform.subset, card_mul_addConst, add_eq_empty, card_add_le, small_alternating_nsmul_of_small_tripling, le_inf_add, subset_add, Fintype.piFinset_add, card_le_card_add_self, zero_mem_neg_add_iff, pluennecke_ruzsa_inequality_nsmul_add, univ_add_of_zero_mem, Iic_add_Iic_subset, add_univ_of_zero_mem, op_vadd_finset_subset_add, subset_add_left, card_sub_add_le_card_sub_add_card_add, ruzsa_triangle_inequality_add_add_negAdd, cauchy_davenport_of_isAddTorsionFree, Ici_add_Ioi_subset, card_le_card_add_left, card_le_card_add_right, Nontrivial.add_left, add_inter_subset, add_subset_iff_right, map_op_add, add_subset_iff, union_add, Nontrivial.add_right, add_subset_add, ruzsa_triangle_inequality_negAdd_negAdd_negAdd, Ico_add_Icc_subset, addETransformLeft.fst_add_snd_subset, biUnion_op_vadd_finset, singleton_add_inter, addConvolution_ne_zero, op_vadd_finset_add_eq_add_vadd_finset, inf_add_left, add_subset_iff_left, add_nonempty, Set.toFinset_add, singleton_add, add_eq_zero_iff, image_add_product, singleton_add_singleton, AddMonoidAlgebra.support_mul, ruzsa_triangle_inequality_add_sub_sub, inf_add_right, addConst_mul_card, le_card_add_mul_addEnergy, singletonAddHom_apply, mul_add_subset, addConvolution_pos, imageAddHom_apply, card_add_singleton, inter_add_singleton, Ico_add_Ioc_subset, vadd_finset_subset_add, card_add_iff, Iio_add_Iic_subset, Iic_add_Iio_subset, Ioi_add_Ici_subset, empty_add, cast_addConst_mul_card, cauchy_davenport_minOrder_add, card_singleton_add, Ici_add_Ici_subset, mem_add, univ_add_univ, union_add_inter_subset, Icc_add_Icc_subset, image_op_add, add_mem_add, Ioc_add_Ico_subset, instAddRightMono, ruzsa_triangle_inequality_add_addNeg_add, coe_singletonAddHom, Icc_add_Ico_subset, sup_add_right, union_add_inter_subset_union, image_add, coe_add, add_subset_add_left, inter_add_union_subset_union, ruzsa_triangle_inequality_addNeg_addNeg_addNeg, IsApproximateAddSubgroup.card_add_self_le, pluennecke_ruzsa_inequality_nsmul_sub_nsmul_add, imageAddMonoidHom_apply, add_def, card_le_card_add_right_of_injective, coe_list_sum, product_add_product_comm, zero_notMem_neg_add_iff, inter_add_subset, ZMod.cauchy_davenport, card_dvd_card_add_left, sup_add_left, cauchy_davenport_add_of_linearOrder_isCancelAdd, cast_addConst, ruzsa_triangle_inequality_add_add_add, add_subset_add_right, ruzsa_triangle_inequality_negAdd_add_add, ruzsa_triangle_inequality_addNeg_add_add, Nontrivial.add, inter_add_union_subset, mem_sum_list_ofFn, ruzsa_triangle_inequality_sub_add_add
addCommMonoid πŸ“–CompOp
1 mathmath: coe_sum
addCommSemigroup πŸ“–CompOpβ€”
addMonoid πŸ“–CompOp
15 mathmath: isAddUnit_iff, image_nsmul_of_ne_zero, nsmul_right_monotone, IsApproximateAddSubgroup.card_nsmul_le, product_nsmul, nsmul_right_strictMono, image_nsmul, le_card_quotient_add_sq_inter_addSubgroup, Nontrivial.nsmul, isAddUnit_coe, isAddUnit_singleton, Nonempty.nsmul, IsAddUnit.finset, card_nsmul_le, nsmul_right_strictMonoOn
addSemigroup πŸ“–CompOpβ€”
addZeroClass πŸ“–CompOp
5 mathmath: singletonAddMonoidHom_apply, coe_coeAddMonoidHom, coe_singletonAddMonoidHom, coeAddMonoidHom_apply, imageAddMonoidHom_apply
coeAddMonoidHom πŸ“–CompOp
2 mathmath: coe_coeAddMonoidHom, coeAddMonoidHom_apply
coeMonoidHom πŸ“–CompOp
2 mathmath: coeMonoidHom_apply, coe_coeMonoidHom
commMonoid πŸ“–CompOp
3 mathmath: coe_prod, nat_divisors_prod, Multiset.nat_divisors_prod
commSemigroup πŸ“–CompOpβ€”
div πŸ“–CompOp
61 mathmath: div_subset_div, le_inf_div, card_mul_divConst, one_mem_div_iff, divConst_mul_card, div_zero_subset, image_div_product, sup_div_right, ruzsa_covering_mul, ruzsa_triangle_inequality_mul_div_mul, sup_div_le, div_nonempty, subset_div_left, subset_div, div_def, ruzsa_triangle_inequality_mul_div_div, ruzsa_triangle_inequality_div_mul_mul, union_div, pluennecke_ruzsa_inequality_pow_div_pow_mul, card_div_mul_le_card_div_mul_card_mul, Nonempty.zero_div, pluennecke_ruzsa_inequality_pow_div, card_le_card_div_self, zero_div_subset, mem_div, div_subset_iff, inter_div_union_subset_union, div_subset_div_left, div_singleton, card_div_le, Fintype.piFinset_div, div_empty, coe_div, div_eq_empty, ruzsa_triangle_inequality_div_mul_div, cast_divConst_mul_card, div_subset_div_right, one_notMem_div_iff, cast_divConst, div_mem_div, div_inter_subset, pluennecke_ruzsa_inequality_pow_div_pow_div, empty_div, Nonempty.one_mem_div, card_le_card_div_right, sup_div_left, inf_div_left, card_le_card_div_left, inf_div_right, ruzsa_triangle_inequality_div_div_div, Nonempty.div_zero, inv_subset_div_right, div_union, image_div, inter_div_subset, singleton_div_singleton, card_mul_cast_divConst, univ_div_univ, union_div_inter_subset_union, singleton_div, Nonempty.div
divisionCommMonoid πŸ“–CompOpβ€”
divisionMonoid πŸ“–CompOpβ€”
imageAddHom πŸ“–CompOp
2 mathmath: imageAddHom_apply, imageAddMonoidHom_apply
imageAddMonoidHom πŸ“–CompOp
1 mathmath: imageAddMonoidHom_apply
imageMonoidHom πŸ“–CompOp
1 mathmath: imageMonoidHom_apply
imageMulHom πŸ“–CompOp
2 mathmath: imageMonoidHom_apply, imageMulHom_apply
imageOneHom πŸ“–CompOp
1 mathmath: imageOneHom_apply
imageZeroHom πŸ“–CompOp
1 mathmath: imageZeroHom_apply
inv πŸ“–CompOp
61 mathmath: mul_inv_eq_inv_mul_of_doubling_lt_two, card_inv, image_op_inv, ruzsa_triangle_inequality_invMul_mul_mul, inv_smul_finset_distrib, map_op_inv, inv_op_smul_finset_distrib, expect_inv_index, ruzsa_triangle_inequality_mul_mul_invMul, smul_inv_mul_eq_inv_mul_opSMul, inv_mem_inv, inv_singleton, card_inv_le, card_mul_inv_eq_convolution_inv, Equidecomp.IsDecompOn.of_leftInvOn, one_mem_inv_mul_iff, ruzsa_triangle_inequality_invMul_invMul_invMul, inf_inv, mulConst_inv_left, invMulSubgroup_eq_mul_inv, inv_zero, inv_filter_univ, inv_product, inv_smul_finset_distribβ‚€, convolution_inv, card_smul_inter, dens_inv, image_inv_eq_inv, inv_subset_inv, inv_insert, Nonempty.inv, ruzsa_triangle_inequality_mulInv_mul_mul, mem_inv', card_inv_mul_of_doubling_lt_three_halves, inv_op_smul_finset_distribβ‚€, ruzsa_triangle_inequality_mulInv_mulInv_mulInv, inv_inter, inv_univ, prod_inv_index, Fintype.piFinset_inv, card_inter_smul, preimage_inv, divConst_inv_right, mulConst_inv_right, ruzsa_triangle_inequality_mul_mulInv_mul, image_inv, one_notMem_inv_mul_iff, coe_inv, mem_inv, invMulSubgroup_eq_inv_mul, card_smul_inter_smul, sup_inv, inv_nonempty_iff, inv_eq_empty, divConst_inv_left, inv_def, inv_subset_div_right, inv_filter, sum_inv_index, inv_empty, smul_inv_mul_opSMul_eq_mul_of_doubling_lt_three_halves
monoid πŸ“–CompOp
16 mathmath: isUnit_coe, product_pow, card_pow_le, pow_right_monotone, pow_right_strictMonoOn, Nonempty.pow, image_pow_of_ne_zero, image_pow, IsUnit.finset, le_card_quotient_mul_sq_inter_subgroup, isUnit_iff_singleton, isUnit_singleton, IsApproximateSubgroup.card_pow_le, Nontrivial.pow, isUnit_iff, pow_right_strictMono
mul πŸ“–CompOp
138 mathmath: mul_inter_subset, mul_empty, mul_subset_iff_right, empty_mul, mul_subset_mul_left, subset_mul, union_mul, op_smul_finset_mul_eq_mul_smul_finset, ruzsa_triangle_inequality_invMul_mul_mul, mulConst_mul_card, convolution_ne_zero, Nontrivial.mul_right, Equidecomp.IsDecompOn.comp, op_smul_finset_subset_mul, add_mul_subset, imageMonoidHom_apply, small_alternating_pow_of_small_tripling, inf_mul_left, ruzsa_triangle_inequality_mul_div_mul, singleton_mul, ruzsa_triangle_inequality_mul_mul_invMul, Ici_mul_Ioi_subset', mulEnergy_eq_sum_sq', subset_mul_right, Nat.divisors_mul, sup_mul_le, coe_singletonMulHom, coe_mul, List.nat_divisors_prod, card_mul_mulConst, le_card_mul_mul_mulEnergy, image_mul, Ici_mul_Ici_subset', ruzsa_triangle_inequality_mul_div_div, one_mem_inv_mul_iff, ruzsa_triangle_inequality_invMul_invMul_invMul, IsApproximateSubgroup.card_mul_self_le, Iic_mul_Iic_subset', card_le_card_mul_rightβ‚€, ruzsa_triangle_inequality_div_mul_mul, singleton_mul_inter, pluennecke_ruzsa_inequality_pow_div_pow_mul, le_inf_mul, univ_mul_univ, instNoZeroDivisors, card_le_card_mul_left_of_injective, card_le_card_mul_self', card_div_mul_le_card_div_mul_card_mul, cast_mulConst_mul_card, card_le_card_mul_self, Ico_mul_Icc_subset', Ioc_mul_Ico_subset', mulDysonETransform.subset, mul_eq_empty, Nonempty.mul_zero, card_mul_iff, image_op_mul, coe_list_prod, Iic_mul_Iio_subset', instMulRightMono, mul_subset_mul_right, ruzsa_triangle_inequality_mulInv_mul_mul, ruzsa_triangle_inequality_mul_mul_mul, mul_subset_iff_left, Fintype.piFinset_mul, SkewMonoidAlgebra.support_mul, singleton_mul_singleton, mul_add_subset, product_mul_product_comm, map_op_mul, Nontrivial.mul, card_mul_le, inf_mul_right, union_mul_inter_subset, Iio_mul_Iic_subset', inter_mul_union_subset, Icc_mul_Ico_subset', inter_mul_union_subset_union, ruzsa_triangle_inequality_mulInv_mulInv_mulInv, mul_univ_of_one_mem, cast_mulConst, card_mul_cast_mulConst, imageMulHom_apply, Icc_mul_Icc_subset', cauchy_davenport_mul_of_linearOrder_isCancelMul, univ_mul_of_one_mem, mul_nonempty, card_dvd_card_mul_left, image_mul_product, card_le_card_mul_right_of_injective, card_le_card_mul_right, instMulLeftMono, convolution_eq_zero, card_le_card_mul_leftβ‚€, ruzsa_triangle_inequality_mul_mulInv_mul, mul_subset_iff, ruzsa_triangle_inequality_div_mul_div, one_notMem_inv_mul_iff, mulETransformRight.fst_mul_snd_subset, cauchy_davenport_of_isMulTorsionFree, Set.toFinset_mul, union_mul_inter_subset_union, mul_subset_mul, card_le_card_mul_selfβ‚€, singletonMulHom_apply, card_mul_singleton, Nonempty.zero_mul, Nonempty.mul, pluennecke_ruzsa_inequality_pow_mul, Nontrivial.mul_left, Set.Finite.toFinset_mul, card_le_card_mul_left, mul_def, sup_mul_left, Equidecomp.IsDecompOn.comp', biUnion_op_smul_finset, convolution_pos, cauchy_davenport_minOrder_mul, subset_mul_left, inter_mul_singleton, Ico_mul_Ioc_subset', zero_mul_subset, mul_eq_one_iff, mul_zero_subset, MonoidAlgebra.support_mul, mul_union, card_singleton_mul, mul_singleton, sup_mul_right, Subgroup.closure_mul_image_eq_top', mul_mem_mul, Ioi_mul_Ici_subset', inter_mul_subset, mulETransformLeft.fst_mul_snd_subset, mem_prod_list_ofFn, card_dvd_card_mul_right, smul_finset_subset_mul, mem_mul
mulOneClass πŸ“–CompOp
6 mathmath: Nat.divisorsHom_apply, coeMonoidHom_apply, imageMonoidHom_apply, singletonMonoidHom_apply, coe_coeMonoidHom, coe_singletonMonoidHom
neg πŸ“–CompOp
55 mathmath: image_neg, neg_insert, neg_op_vadd_finset_distrib, neg_filter_univ, addConst_neg_right, neg_filter, neg_inter, zero_mem_neg_add_iff, Fintype.piFinset_neg, prod_neg_index, neg_singleton, subConst_neg_left, ruzsa_triangle_inequality_add_add_negAdd, subConst_neg_right, neg_subset_neg, smul_neg, ruzsa_triangle_inequality_negAdd_negAdd_negAdd, card_inter_vadd, map_op_neg, neg_product, smul_finset_neg, coe_neg, neg_def, neg_empty, preimage_neg, dens_neg, card_neg, addConst_neg_left, neg_smul_finset, expect_neg_index, neg_subset_sub_right, sup_neg, image_neg_eq_neg, Nonempty.neg, neg_mem_neg, addConvolution_neg, neg_eq_empty, ruzsa_triangle_inequality_add_addNeg_add, mem_neg, card_vadd_inter, ruzsa_triangle_inequality_addNeg_addNeg_addNeg, inf_neg, neg_nonempty_iff, mem_neg', neg_univ, neg_smul, zero_notMem_neg_add_iff, card_add_neg_eq_addConvolution_neg, card_vadd_inter_vadd, card_neg_le, ruzsa_triangle_inequality_negAdd_add_add, ruzsa_triangle_inequality_addNeg_add_add, image_op_neg, neg_vadd_finset_distrib, sum_neg_index
npow πŸ“–CompOp
30 mathmath: mem_pow, singleton_pow, product_pow, pow_subset_pow_right, pow_subset_pow, image_pow_of_ne_zero, pow_mem_pow, image_pow, pow_subset_pow_mul_of_sq_subset_mul, pluennecke_ruzsa_inequality_pow_div_pow_mul, pluennecke_ruzsa_inequality_pow_div, one_mem_pow, Nonempty.card_pow_mono, empty_pow, pow_eq_empty, inter_pow_subset, card_pow_mono, card_le_card_pow, card_pow_quotient_mul_pow_inter_subgroup_le, pow_subset_pow_left, pluennecke_ruzsa_inequality_pow_div_pow_div, small_pow_of_small_tripling, image_op_pow, pluennecke_ruzsa_inequality_pow_mul, pow_ssubset_pow_succ_of_pow_ne_closure, subset_pow, add_one_le_card_pow, coe_pow, map_op_pow, univ_pow
nsmul πŸ“–CompOp
30 mathmath: nsmul_subset_nsmul, subset_nsmul, nsmul_mem_nsmul, nsmul_empty, nsmul_eq_empty, pluennecke_ruzsa_inequality_nsmul_add, map_op_nsmul, image_nsmul_of_ne_zero, add_nonneg_card_nsmul, nsmul_subset_nsmul_left, zero_mem_nsmul, Nonempty.card_nsmul_mono, card_nsmul_quotient_add_nsmul_inter_addSubgroup_le, mem_nsmul, product_nsmul, nsmul_subset_nsmul_right, image_nsmul, pluennecke_ruzsa_inequality_nsmul_sub_nsmul_sub, coe_nsmul, inter_nsmul_subset, nsmul_singleton, card_le_card_nsmul, nsmul_univ, pluennecke_ruzsa_inequality_nsmul_sub, pluennecke_ruzsa_inequality_nsmul_sub_nsmul_add, small_nsmul_of_small_tripling, card_nsmul_mono, image_op_nsmul, nsmul_ssubset_nsmul_succ_of_nsmul_ne_closure, nsmul_subset_nsmul_add_of_sq_subset_add
one πŸ“–CompOp
41 mathmath: sup_one, Nonempty.subset_one_iff, map_op_one, coe_one, MonoidAlgebra.support_one_subset, preimage_mul_left_one, max'_one, one_mem_one, SkewMonoidAlgebra.support_one, SkewMonoidAlgebra.support_one_subset, small_alternating_pow_of_small_tripling, card_one, preimage_mul_right_one', image_op_one, one_subset, map_one, min_one, inf'_one, coe_singletonOneHom, List.nat_divisors_prod, mem_one, preimage_mul_right_one, one_nonempty, subset_one_iff_eq, coe_list_prod, coe_eq_one, min'_one, preimage_mul_left_one', Set.toFinset_one, imageOneHom_apply, sup'_one, singletonOneHom_apply, inf_one, image_one, one_product_one, singleton_one, mul_eq_one_iff, MonoidAlgebra.support_one, max_one, Set.Finite.toFinset_one, mem_prod_list_ofFn
semigroup πŸ“–CompOpβ€”
singletonAddHom πŸ“–CompOp
2 mathmath: singletonAddHom_apply, coe_singletonAddHom
singletonAddMonoidHom πŸ“–CompOp
2 mathmath: singletonAddMonoidHom_apply, coe_singletonAddMonoidHom
singletonMonoidHom πŸ“–CompOp
2 mathmath: singletonMonoidHom_apply, coe_singletonMonoidHom
singletonMulHom πŸ“–CompOp
2 mathmath: coe_singletonMulHom, singletonMulHom_apply
singletonOneHom πŸ“–CompOp
2 mathmath: coe_singletonOneHom, singletonOneHom_apply
singletonZeroHom πŸ“–CompOp
2 mathmath: singletonZeroHom_apply, coe_singletonZeroHom
sub πŸ“–CompOp
56 mathmath: Nonempty.zero_mem_sub, zero_mem_sub_iff, singleton_sub, inter_sub_union_subset_union, card_mul_subConst, ruzsa_triangle_inequality_add_sub_add, ruzsa_triangle_inequality_sub_add_sub, Nonempty.sub, inf_sub_left, ruzsa_covering_add, coe_sub, inter_sub_subset, cast_subConst_mul_card, mem_sub, card_le_card_sub_right, union_sub, card_sub_add_le_card_sub_add_card_add, sub_subset_sub, inf_sub_right, card_mul_cast_subConst, sup_sub_right, sub_mem_sub, image_sub_product, sup_sub_le, singleton_sub_singleton, sub_eq_empty, Fintype.piFinset_sub, sub_singleton, zero_notMem_sub_iff, sup_sub_left, ruzsa_triangle_inequality_add_sub_sub, pluennecke_ruzsa_inequality_nsmul_sub_nsmul_sub, sub_nonempty, cast_subConst, sub_inter_subset, sub_def, sub_subset_sub_right, subset_sub_left, subConst_mul_card, subset_sub, neg_subset_sub_right, univ_sub_univ, sub_subset_iff, card_le_card_sub_self, card_le_card_sub_left, ruzsa_triangle_inequality_sub_sub_sub, sub_subset_sub_left, card_sub_le, sub_union, union_sub_inter_subset_union, pluennecke_ruzsa_inequality_nsmul_sub, sub_empty, pluennecke_ruzsa_inequality_nsmul_sub_nsmul_add, le_inf_sub, empty_sub, ruzsa_triangle_inequality_sub_add_add
subtractionCommMonoid πŸ“–CompOpβ€”
subtractionMonoid πŸ“–CompOpβ€”
zero πŸ“–CompOp
73 mathmath: Finsupp.rangeSingleton_support, map_zero, min_zero, Nonempty.zero_smul, zero_nonempty, inf'_zero, div_zero_subset, mem_zero, inf_zero, small_alternating_nsmul_of_small_tripling, preimage_add_left_zero, Finsupp.mem_rangeSingleton_apply_iff, zero_product_zero, DFinsupp.mem_singleton_apply_iff, Set.toFinset_zero, Finsupp.rangeIcc_toFun, image_zero, coe_eq_zero, max'_zero, Finsupp.rangeIcc_apply, DFinsupp.support_rangeIcc_subset, card_zero, inv_zero, instNoZeroDivisors, Nonempty.zero_div, map_op_zero, DFinsupp.Icc_eq, zero_subset, sup_zero, Behrend.sphere_zero_subset, image_op_zero, max_zero, min'_zero, Nonempty.mul_zero, add_eq_zero_iff, zero_div_subset, singleton_zero, Finsupp.mem_rangeIcc_apply_iff, AddMonoidAlgebra.support_one_subset, sup'_zero, Finsupp.card_pi, zero_mem_zero, DFinsupp.card_pi, DFinsupp.mem_pi, Finsupp.rangeSingleton_apply, coe_zero, Finsupp.coe_rangeIcc, DFinsupp.rangeIcc_apply, subset_zero_iff_eq, DFinsupp.mem_rangeIcc_apply_iff, zero_smul_finset, Nonempty.subset_zero_iff, Finsupp.Icc_eq, Finsupp.rangeIcc_support, Nonempty.zero_mul, preimage_add_left_zero', preimage_add_right_zero, zero_smul_finset_subset, singletonZeroHom_apply, zero_smul_subset, Nonempty.div_zero, zero_mul_subset, coe_list_sum, smul_zero_subset, Nonempty.smul_zero, mul_zero_subset, preimage_add_right_zero', Set.Finite.toFinset_zero, coe_singletonZeroHom, Finsupp.mem_pi, AddMonoidAlgebra.support_one, imageZeroHom_apply, mem_sum_list_ofFn
zpow πŸ“–CompOp
6 mathmath: singleton_zpow, small_alternating_pow_of_small_tripling, empty_zpow, zpow_eq_empty, Nonempty.zpow, coe_zpow
zsmul πŸ“–CompOp
6 mathmath: small_alternating_nsmul_of_small_tripling, Nonempty.zsmul, zsmul_eq_empty, zsmul_singleton, zsmul_empty, coe_zsmul

Theorems

NameKindAssumesProvesValidatesDepends On
add_def πŸ“–mathematicalβ€”Finset
add
image
SProd.sprod
instSProd
β€”β€”
add_empty πŸ“–mathematicalβ€”Finset
add
instEmptyCollection
β€”imageβ‚‚_empty_right
add_eq_empty πŸ“–mathematicalβ€”Finset
add
instEmptyCollection
β€”imageβ‚‚_eq_empty_iff
add_eq_zero_iff πŸ“–mathematicalβ€”Finset
add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
instSingleton
β€”coe_add
coe_zero
Set.add_eq_zero_iff
coe_singleton
add_inter_subset πŸ“–mathematicalβ€”Finset
instHasSubset
add
instInter
β€”imageβ‚‚_inter_subset_right
add_mem_add πŸ“–mathematicalFinset
instMembership
addβ€”mem_imageβ‚‚_of_mem
add_nonempty πŸ“–mathematicalβ€”Nonempty
Finset
add
β€”imageβ‚‚_nonempty_iff
add_subset_add πŸ“–mathematicalFinset
instHasSubset
addβ€”imageβ‚‚_subset
add_subset_add_left πŸ“–mathematicalFinset
instHasSubset
addβ€”imageβ‚‚_subset_left
add_subset_add_right πŸ“–mathematicalFinset
instHasSubset
addβ€”imageβ‚‚_subset_right
add_subset_iff πŸ“–mathematicalβ€”Finset
instHasSubset
add
instMembership
β€”imageβ‚‚_subset_iff
add_union πŸ“–mathematicalβ€”Finset
add
instUnion
β€”imageβ‚‚_union_right
add_univ_of_zero_mem πŸ“–mathematicalFinset
instMembership
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
add
AddZero.toAdd
univ
β€”eq_univ_iff_forall
mem_add
mem_univ
zero_add
card_add_iff πŸ“–mathematicalβ€”card
Finset
add
Set.InjOn
SProd.sprod
Set
Set.instSProd
SetLike.coe
instSetLike
β€”card_imageβ‚‚_iff
card_add_le πŸ“–mathematicalβ€”card
Finset
add
β€”card_imageβ‚‚_le
card_add_singleton πŸ“–mathematicalβ€”card
Finset
add
instSingleton
β€”card_imageβ‚‚_singleton_right
add_left_injective
card_div_le πŸ“–mathematicalβ€”card
Finset
div
β€”card_imageβ‚‚_le
card_inv πŸ“–mathematicalβ€”card
Finset
inv
InvolutiveInv.toInv
β€”card_image_of_injective
inv_injective
card_inv_le πŸ“–mathematicalβ€”card
Finset
inv
β€”card_image_le
card_le_card_add_left πŸ“–mathematicalNonemptycard
Finset
add
β€”card_le_card_add_left_of_injective
add_right_injective
card_le_card_add_left_of_injective πŸ“–mathematicalFinset
instMembership
card
add
β€”card_le_card_imageβ‚‚_left
card_le_card_add_right πŸ“–mathematicalNonemptycard
Finset
add
β€”card_le_card_add_right_of_injective
add_left_injective
card_le_card_add_right_of_injective πŸ“–mathematicalFinset
instMembership
card
add
β€”card_le_card_imageβ‚‚_right
card_le_card_add_self πŸ“–mathematicalβ€”card
Finset
add
β€”eq_empty_or_nonempty
add_empty
le_refl
card_le_card_add_left
card_le_card_add_self' πŸ“–mathematicalβ€”card
Finset
add
β€”eq_empty_or_nonempty
add_empty
le_refl
card_le_card_add_right
card_le_card_div_left πŸ“–mathematicalNonemptycard
Finset
div
DivInvMonoid.toDiv
Group.toDivInvMonoid
β€”card_le_card_imageβ‚‚_left
div_right_injective
card_le_card_div_right πŸ“–mathematicalNonemptycard
Finset
div
DivInvMonoid.toDiv
Group.toDivInvMonoid
β€”card_le_card_imageβ‚‚_right
div_left_injective
card_le_card_div_self πŸ“–mathematicalβ€”card
Finset
div
DivInvMonoid.toDiv
Group.toDivInvMonoid
β€”eq_empty_or_nonempty
div_empty
card_le_card_mul_left πŸ“–mathematicalNonemptycard
Finset
mul
β€”card_le_card_mul_left_of_injective
mul_right_injective
card_le_card_mul_left_of_injective πŸ“–mathematicalFinset
instMembership
card
mul
β€”card_le_card_imageβ‚‚_left
card_le_card_mul_right πŸ“–mathematicalNonemptycard
Finset
mul
β€”card_le_card_mul_right_of_injective
mul_left_injective
card_le_card_mul_right_of_injective πŸ“–mathematicalFinset
instMembership
card
mul
β€”card_le_card_imageβ‚‚_right
card_le_card_mul_self πŸ“–mathematicalβ€”card
Finset
mul
β€”eq_empty_or_nonempty
mul_empty
card_le_card_mul_self' πŸ“–mathematicalβ€”card
Finset
mul
β€”eq_empty_or_nonempty
mul_empty
card_le_card_nsmul πŸ“–mathematicalβ€”card
Finset
nsmul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddRightCancelMonoid.toAddMonoid
AddCancelMonoid.toAddRightCancelMonoid
AddZero.toAdd
β€”one_nsmul
card_nsmul_mono
one_ne_zero
card_le_card_pow πŸ“–mathematicalβ€”card
Finset
npow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
RightCancelMonoid.toMonoid
CancelMonoid.toRightCancelMonoid
MulOne.toMul
β€”pow_one
card_pow_mono
one_ne_zero
card_le_card_sub_left πŸ“–mathematicalNonemptycard
Finset
sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”card_le_card_imageβ‚‚_left
sub_right_injective
card_le_card_sub_right πŸ“–mathematicalNonemptycard
Finset
sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”card_le_card_imageβ‚‚_right
sub_left_injective
card_le_card_sub_self πŸ“–mathematicalβ€”card
Finset
sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”eq_empty_or_nonempty
sub_empty
le_refl
card_le_card_sub_left
card_mul_iff πŸ“–mathematicalβ€”card
Finset
mul
Set.InjOn
SProd.sprod
Set
Set.instSProd
SetLike.coe
instSetLike
β€”card_imageβ‚‚_iff
card_mul_le πŸ“–mathematicalβ€”card
Finset
mul
β€”card_imageβ‚‚_le
card_mul_singleton πŸ“–mathematicalβ€”card
Finset
mul
instSingleton
β€”card_imageβ‚‚_singleton_right
mul_left_injective
card_neg πŸ“–mathematicalβ€”card
Finset
neg
InvolutiveNeg.toNeg
β€”card_image_of_injective
neg_injective
card_neg_le πŸ“–mathematicalβ€”card
Finset
neg
β€”card_image_le
card_nsmul_le πŸ“–mathematicalβ€”card
Finset
AddMonoid.toNatSMul
addMonoid
Monoid.toNatPow
Nat.instMonoid
β€”zero_nsmul
card_zero
pow_zero
le_refl
succ_nsmul
pow_succ
LE.le.trans
card_add_le
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
Nat.instMulLeftMono
card_nsmul_mono πŸ“–mathematicalβ€”card
Finset
nsmul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddRightCancelMonoid.toAddMonoid
AddCancelMonoid.toAddRightCancelMonoid
AddZero.toAdd
β€”eq_empty_or_nonempty
nsmul_empty
Nonempty.card_nsmul_mono
card_one πŸ“–mathematicalβ€”card
Finset
one
β€”card_singleton
card_pow_le πŸ“–mathematicalβ€”card
Finset
Monoid.toNatPow
monoid
Nat.instMonoid
β€”pow_zero
card_one
pow_succ
LE.le.trans
card_mul_le
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
Nat.instMulLeftMono
card_pow_mono πŸ“–mathematicalβ€”card
Finset
npow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
RightCancelMonoid.toMonoid
CancelMonoid.toRightCancelMonoid
MulOne.toMul
β€”eq_empty_or_nonempty
empty_pow
Nonempty.card_pow_mono
card_singleton_add πŸ“–mathematicalβ€”card
Finset
add
instSingleton
β€”card_imageβ‚‚_singleton_left
add_right_injective
card_singleton_mul πŸ“–mathematicalβ€”card
Finset
mul
instSingleton
β€”card_imageβ‚‚_singleton_left
mul_right_injective
card_sub_le πŸ“–mathematicalβ€”card
Finset
sub
β€”card_imageβ‚‚_le
card_zero πŸ“–mathematicalβ€”card
Finset
zero
β€”card_singleton
coeAddMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
Finset
Set
AddZeroClass.toAddZero
addZeroClass
Set.addZeroClass
AddMonoidHom.instFunLike
coeAddMonoidHom
SetLike.coe
instSetLike
β€”β€”
coeMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Finset
Set
MulOneClass.toMulOne
mulOneClass
Set.mulOneClass
MonoidHom.instFunLike
coeMonoidHom
SetLike.coe
instSetLike
β€”β€”
coe_add πŸ“–mathematicalβ€”SetLike.coe
Finset
instSetLike
add
Set
Set.add
β€”coe_imageβ‚‚
coe_coeAddMonoidHom πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
Finset
Set
AddZeroClass.toAddZero
addZeroClass
Set.addZeroClass
AddMonoidHom.instFunLike
coeAddMonoidHom
SetLike.coe
instSetLike
β€”β€”
coe_coeMonoidHom πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Finset
Set
MulOneClass.toMulOne
mulOneClass
Set.mulOneClass
MonoidHom.instFunLike
coeMonoidHom
SetLike.coe
instSetLike
β€”β€”
coe_div πŸ“–mathematicalβ€”SetLike.coe
Finset
instSetLike
div
Set
Set.div
β€”coe_imageβ‚‚
coe_eq_one πŸ“–mathematicalβ€”SetLike.coe
Finset
instSetLike
Set
Set.one
one
β€”coe_eq_singleton
coe_eq_zero πŸ“–mathematicalβ€”SetLike.coe
Finset
instSetLike
Set
Set.zero
zero
β€”coe_eq_singleton
coe_inv πŸ“–mathematicalβ€”SetLike.coe
Finset
instSetLike
inv
InvolutiveInv.toInv
Set
Set.inv
β€”coe_image
Set.image_inv_eq_inv
coe_list_prod πŸ“–mathematicalβ€”SetLike.coe
Finset
instSetLike
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
one
MulOne.toOne
Set
Set.mul
Set.one
β€”map_list_prod
MonoidHom.instMonoidHomClass
coe_list_sum πŸ“–mathematicalβ€”SetLike.coe
Finset
instSetLike
add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
zero
AddZero.toZero
Set
Set.add
Set.zero
β€”map_list_sum
AddMonoidHom.instAddMonoidHomClass
coe_mul πŸ“–mathematicalβ€”SetLike.coe
Finset
instSetLike
mul
Set
Set.mul
β€”coe_imageβ‚‚
coe_neg πŸ“–mathematicalβ€”SetLike.coe
Finset
instSetLike
neg
InvolutiveNeg.toNeg
Set
Set.neg
β€”coe_image
Set.image_neg_eq_neg
coe_nsmul πŸ“–mathematicalβ€”SetLike.coe
Finset
instSetLike
nsmul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddZero.toAdd
Set
Set.NSMul
β€”nsmulRec.eq_1
zero_nsmul
coe_zero
nsmulRec.eq_2
succ_nsmul
coe_add
coe_one πŸ“–mathematicalβ€”SetLike.coe
Finset
instSetLike
one
Set
Set.one
β€”coe_singleton
coe_pow πŸ“–mathematicalβ€”SetLike.coe
Finset
instSetLike
npow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toMul
Set
Set.NPow
β€”npowRec.eq_1
pow_zero
coe_one
npowRec.eq_2
pow_succ
coe_mul
coe_singletonAddHom πŸ“–mathematicalβ€”DFunLike.coe
AddHom
Finset
add
AddHom.funLike
singletonAddHom
instSingleton
β€”β€”
coe_singletonAddMonoidHom πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
Finset
AddZeroClass.toAddZero
addZeroClass
AddMonoidHom.instFunLike
singletonAddMonoidHom
instSingleton
β€”β€”
coe_singletonMonoidHom πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Finset
MulOneClass.toMulOne
mulOneClass
MonoidHom.instFunLike
singletonMonoidHom
instSingleton
β€”β€”
coe_singletonMulHom πŸ“–mathematicalβ€”DFunLike.coe
MulHom
Finset
mul
MulHom.funLike
singletonMulHom
instSingleton
β€”β€”
coe_singletonOneHom πŸ“–mathematicalβ€”DFunLike.coe
OneHom
Finset
one
OneHom.funLike
singletonOneHom
instSingleton
β€”β€”
coe_singletonZeroHom πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
Finset
zero
ZeroHom.funLike
singletonZeroHom
instSingleton
β€”β€”
coe_sub πŸ“–mathematicalβ€”SetLike.coe
Finset
instSetLike
sub
Set
Set.sub
β€”coe_imageβ‚‚
coe_zero πŸ“–mathematicalβ€”SetLike.coe
Finset
instSetLike
zero
Set
Set.zero
β€”coe_singleton
coe_zpow πŸ“–mathematicalβ€”SetLike.coe
Finset
instSetLike
zpow
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
InvOneClass.toInv
Set
Set.ZPow
β€”coe_pow
coe_inv
coe_zsmul πŸ“–mathematicalβ€”SetLike.coe
Finset
instSetLike
zsmul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
NegZeroClass.toNeg
Set
Set.ZSMul
β€”coe_nsmul
coe_neg
div_def πŸ“–mathematicalβ€”Finset
div
image
SProd.sprod
instSProd
β€”β€”
div_empty πŸ“–mathematicalβ€”Finset
div
instEmptyCollection
β€”imageβ‚‚_empty_right
div_eq_empty πŸ“–mathematicalβ€”Finset
div
instEmptyCollection
β€”imageβ‚‚_eq_empty_iff
div_inter_subset πŸ“–mathematicalβ€”Finset
instHasSubset
div
instInter
β€”imageβ‚‚_inter_subset_right
div_mem_div πŸ“–mathematicalFinset
instMembership
divβ€”mem_imageβ‚‚_of_mem
div_nonempty πŸ“–mathematicalβ€”Nonempty
Finset
div
β€”imageβ‚‚_nonempty_iff
div_singleton πŸ“–mathematicalβ€”Finset
div
instSingleton
image
β€”imageβ‚‚_singleton_right
div_subset_div πŸ“–mathematicalFinset
instHasSubset
divβ€”imageβ‚‚_subset
div_subset_div_left πŸ“–mathematicalFinset
instHasSubset
divβ€”imageβ‚‚_subset_left
div_subset_div_right πŸ“–mathematicalFinset
instHasSubset
divβ€”imageβ‚‚_subset_right
div_subset_iff πŸ“–mathematicalβ€”Finset
instHasSubset
div
instMembership
β€”imageβ‚‚_subset_iff
div_union πŸ“–mathematicalβ€”Finset
div
instUnion
β€”imageβ‚‚_union_right
empty_add πŸ“–mathematicalβ€”Finset
add
instEmptyCollection
β€”imageβ‚‚_empty_left
empty_div πŸ“–mathematicalβ€”Finset
div
instEmptyCollection
β€”imageβ‚‚_empty_left
empty_mul πŸ“–mathematicalβ€”Finset
mul
instEmptyCollection
β€”imageβ‚‚_empty_left
empty_pow πŸ“–mathematicalβ€”Finset
npow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toMul
instEmptyCollection
β€”pow_succ
mul_empty
empty_sub πŸ“–mathematicalβ€”Finset
sub
instEmptyCollection
β€”imageβ‚‚_empty_left
empty_zpow πŸ“–mathematicalβ€”Finset
zpow
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
InvOneClass.toInv
instEmptyCollection
β€”zpow_natCast
empty_pow
zpow_negSucc
imageAddHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddHom
Finset
add
AddHom.funLike
imageAddHom
image
β€”β€”
imageAddMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
Finset
AddZeroClass.toAddZero
addZeroClass
AddMonoidHom.instFunLike
imageAddMonoidHom
AddHom.toFun
add
AddZero.toAdd
imageAddHom
β€”β€”
imageMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Finset
MulOneClass.toMulOne
mulOneClass
MonoidHom.instFunLike
imageMonoidHom
MulHom.toFun
mul
MulOne.toMul
imageMulHom
β€”β€”
imageMulHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MulHom
Finset
mul
MulHom.funLike
imageMulHom
image
β€”β€”
imageOneHom_apply πŸ“–mathematicalβ€”DFunLike.coe
OneHom
Finset
one
OneHom.funLike
imageOneHom
image
β€”β€”
imageZeroHom_apply πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
Finset
zero
ZeroHom.funLike
imageZeroHom
image
β€”β€”
image_add πŸ“–mathematicalβ€”image
DFunLike.coe
Finset
add
β€”image_imageβ‚‚_distrib
map_add
image_add_left πŸ“–mathematicalβ€”image
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
preimage
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Function.Injective.injOn
add_right_injective
AddLeftCancelSemigroup.toIsLeftCancelAdd
AddLeftCancelMonoid.toAddLeftCancelSemigroup
AddCancelMonoid.toAddLeftCancelMonoid
AddGroup.toAddCancelMonoid
Set.preimage
SetLike.coe
Finset
instSetLike
β€”coe_injective
Function.Injective.injOn
add_right_injective
AddLeftCancelSemigroup.toIsLeftCancelAdd
coe_image
Set.image_add_left
coe_preimage
image_add_left' πŸ“–mathematicalβ€”image
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
preimage
Function.Injective.injOn
add_right_injective
AddLeftCancelSemigroup.toIsLeftCancelAdd
AddLeftCancelMonoid.toAddLeftCancelSemigroup
AddCancelMonoid.toAddLeftCancelMonoid
AddGroup.toAddCancelMonoid
Set.preimage
SetLike.coe
Finset
instSetLike
β€”Function.Injective.injOn
add_right_injective
AddLeftCancelSemigroup.toIsLeftCancelAdd
neg_neg
image_add_left
preimage.congr_simp
image_add_product πŸ“–mathematicalβ€”image
SProd.sprod
Finset
instSProd
add
β€”β€”
image_add_right πŸ“–mathematicalβ€”image
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
preimage
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Function.Injective.injOn
add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Set.preimage
SetLike.coe
Finset
instSetLike
β€”coe_injective
Function.Injective.injOn
add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
coe_image
Set.image_add_right
coe_preimage
image_add_right' πŸ“–mathematicalβ€”image
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
preimage
Function.Injective.injOn
add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Set.preimage
SetLike.coe
Finset
instSetLike
β€”Function.Injective.injOn
add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
neg_neg
image_add_right
preimage.congr_simp
image_div πŸ“–mathematicalβ€”image
DFunLike.coe
Finset
div
DivInvMonoid.toDiv
Group.toDivInvMonoid
DivisionMonoid.toDivInvMonoid
β€”image_imageβ‚‚_distrib
map_div
image_div_product πŸ“–mathematicalβ€”image
SProd.sprod
Finset
instSProd
div
β€”β€”
image_inv πŸ“–mathematicalβ€”image
DFunLike.coe
Finset
inv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”image_comm
map_inv
image_inv_eq_inv πŸ“–mathematicalβ€”image
Finset
inv
β€”β€”
image_mul πŸ“–mathematicalβ€”image
DFunLike.coe
Finset
mul
β€”image_imageβ‚‚_distrib
map_mul
image_mul_left πŸ“–mathematicalβ€”image
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
preimage
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Function.Injective.injOn
mul_right_injective
LeftCancelSemigroup.toIsLeftCancelMul
LeftCancelMonoid.toLeftCancelSemigroup
CancelMonoid.toLeftCancelMonoid
Group.toCancelMonoid
Set.preimage
SetLike.coe
Finset
instSetLike
β€”coe_injective
Function.Injective.injOn
mul_right_injective
LeftCancelSemigroup.toIsLeftCancelMul
coe_image
Set.image_mul_left
coe_preimage
image_mul_left' πŸ“–mathematicalβ€”image
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
preimage
Function.Injective.injOn
mul_right_injective
LeftCancelSemigroup.toIsLeftCancelMul
LeftCancelMonoid.toLeftCancelSemigroup
CancelMonoid.toLeftCancelMonoid
Group.toCancelMonoid
Set.preimage
SetLike.coe
Finset
instSetLike
β€”Function.Injective.injOn
mul_right_injective
LeftCancelSemigroup.toIsLeftCancelMul
inv_inv
image_mul_left
preimage.congr_simp
image_mul_product πŸ“–mathematicalβ€”image
SProd.sprod
Finset
instSProd
mul
β€”β€”
image_mul_right πŸ“–mathematicalβ€”image
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
preimage
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Function.Injective.injOn
mul_left_injective
RightCancelSemigroup.toIsRightCancelMul
RightCancelMonoid.toRightCancelSemigroup
CancelMonoid.toRightCancelMonoid
Group.toCancelMonoid
Set.preimage
SetLike.coe
Finset
instSetLike
β€”coe_injective
Function.Injective.injOn
mul_left_injective
RightCancelSemigroup.toIsRightCancelMul
coe_image
Set.image_mul_right
coe_preimage
image_mul_right' πŸ“–mathematicalβ€”image
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
preimage
Function.Injective.injOn
mul_left_injective
RightCancelSemigroup.toIsRightCancelMul
RightCancelMonoid.toRightCancelSemigroup
CancelMonoid.toRightCancelMonoid
Group.toCancelMonoid
Set.preimage
SetLike.coe
Finset
instSetLike
β€”Function.Injective.injOn
mul_left_injective
RightCancelSemigroup.toIsRightCancelMul
inv_inv
image_mul_right
preimage.congr_simp
image_neg πŸ“–mathematicalβ€”image
DFunLike.coe
Finset
neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”image_comm
map_neg
image_neg_eq_neg πŸ“–mathematicalβ€”image
Finset
neg
β€”β€”
image_nsmul πŸ“–mathematicalβ€”image
DFunLike.coe
Finset
AddMonoid.toNatSMul
addMonoid
nsmul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddZero.toAdd
β€”zero_nsmul
image_zero
map_zero
AddMonoidHomClass.toZeroHomClass
image_nsmul_of_ne_zero
AddMonoidHomClass.toAddHomClass
image_nsmul_of_ne_zero πŸ“–mathematicalβ€”image
DFunLike.coe
Finset
AddMonoid.toNatSMul
addMonoid
nsmul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddZero.toAdd
β€”one_nsmul
succ_nsmul
image_add
one_ne_zero
image_one πŸ“–mathematicalβ€”image
Finset
one
instSingleton
β€”image_singleton
image_op_add πŸ“–mathematicalβ€”image
AddOpposite
AddOpposite.instDecidableEq
AddOpposite.op
Finset
add
AddOpposite.instAdd
β€”image_imageβ‚‚_antidistrib
AddOpposite.op_add
image_op_inv πŸ“–mathematicalβ€”image
MulOpposite
MulOpposite.instDecidableEq
MulOpposite.op
Finset
inv
MulOpposite.instInv
β€”image_comm
MulOpposite.op_inv
image_op_mul πŸ“–mathematicalβ€”image
MulOpposite
MulOpposite.instDecidableEq
MulOpposite.op
Finset
mul
MulOpposite.instMul
β€”image_imageβ‚‚_antidistrib
MulOpposite.op_mul
image_op_neg πŸ“–mathematicalβ€”image
AddOpposite
AddOpposite.instDecidableEq
AddOpposite.op
Finset
neg
AddOpposite.instNeg
β€”image_comm
AddOpposite.op_neg
image_op_nsmul πŸ“–mathematicalβ€”image
AddOpposite
AddOpposite.instDecidableEq
AddOpposite.op
Finset
nsmul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddZero.toAdd
AddOpposite.instZero
AddOpposite.instAdd
β€”zero_nsmul
image_zero
succ_nsmul
succ_nsmul'
image_op_add
image_op_one πŸ“–mathematicalβ€”image
MulOpposite
MulOpposite.instDecidableEq
MulOpposite.op
Finset
one
MulOpposite.instOne
β€”β€”
image_op_pow πŸ“–mathematicalβ€”image
MulOpposite
MulOpposite.instDecidableEq
MulOpposite.op
Finset
npow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toMul
MulOpposite.instOne
MulOpposite.instMul
β€”pow_zero
image_one
pow_succ
pow_succ'
image_op_mul
image_op_zero πŸ“–mathematicalβ€”image
AddOpposite
AddOpposite.instDecidableEq
AddOpposite.op
Finset
zero
AddOpposite.instZero
β€”β€”
image_pow πŸ“–mathematicalβ€”image
DFunLike.coe
Finset
Monoid.toNatPow
monoid
npow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toMul
β€”pow_zero
image_one
map_one
MonoidHomClass.toOneHomClass
image_pow_of_ne_zero
MonoidHomClass.toMulHomClass
image_pow_of_ne_zero πŸ“–mathematicalβ€”image
DFunLike.coe
Finset
Monoid.toNatPow
monoid
npow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toMul
β€”pow_one
pow_succ
image_mul
image_sub_product πŸ“–mathematicalβ€”image
SProd.sprod
Finset
instSProd
sub
β€”β€”
image_zero πŸ“–mathematicalβ€”image
Finset
zero
instSingleton
β€”image_singleton
inf'_inv πŸ“–mathematicalNonempty
Finset
inv
inf'
Nonempty.of_inv
β€”inf'_image
inf'_neg πŸ“–mathematicalNonempty
Finset
neg
inf'
Nonempty.of_neg
β€”inf'_image
inf'_one πŸ“–mathematicalβ€”inf'
Finset
one
one_nonempty
β€”one_nonempty
inf'_zero πŸ“–mathematicalβ€”inf'
Finset
zero
zero_nonempty
β€”zero_nonempty
inf_add_left πŸ“–mathematicalβ€”inf
Finset
add
β€”inf_imageβ‚‚_left
inf_add_right πŸ“–mathematicalβ€”inf
Finset
add
β€”inf_imageβ‚‚_right
inf_div_left πŸ“–mathematicalβ€”inf
Finset
div
β€”inf_imageβ‚‚_left
inf_div_right πŸ“–mathematicalβ€”inf
Finset
div
β€”inf_imageβ‚‚_right
inf_inv πŸ“–mathematicalβ€”inf
Finset
inv
β€”inf_image
inf_mul_left πŸ“–mathematicalβ€”inf
Finset
mul
β€”inf_imageβ‚‚_left
inf_mul_right πŸ“–mathematicalβ€”inf
Finset
mul
β€”inf_imageβ‚‚_right
inf_neg πŸ“–mathematicalβ€”inf
Finset
neg
β€”inf_image
inf_one πŸ“–mathematicalβ€”inf
Finset
one
β€”inf_singleton
inf_sub_left πŸ“–mathematicalβ€”inf
Finset
sub
β€”inf_imageβ‚‚_left
inf_sub_right πŸ“–mathematicalβ€”inf
Finset
sub
β€”inf_imageβ‚‚_right
inf_zero πŸ“–mathematicalβ€”inf
Finset
zero
β€”inf_singleton
instAddLeftMono πŸ“–mathematicalβ€”AddLeftMono
Finset
add
Preorder.toLE
PartialOrder.toPreorder
partialOrder
β€”add_subset_add_left
instAddRightMono πŸ“–mathematicalβ€”AddRightMono
Finset
add
Preorder.toLE
PartialOrder.toPreorder
partialOrder
β€”add_subset_add_right
instMulLeftMono πŸ“–mathematicalβ€”MulLeftMono
Finset
mul
Preorder.toLE
PartialOrder.toPreorder
partialOrder
β€”mul_subset_mul_left
instMulRightMono πŸ“–mathematicalβ€”MulRightMono
Finset
mul
Preorder.toLE
PartialOrder.toPreorder
partialOrder
β€”mul_subset_mul_right
inter_add_singleton πŸ“–mathematicalβ€”Finset
add
instInter
instSingleton
β€”imageβ‚‚_inter_singleton
add_left_injective
inter_add_subset πŸ“–mathematicalβ€”Finset
instHasSubset
add
instInter
β€”imageβ‚‚_inter_subset_left
inter_add_union_subset πŸ“–mathematicalβ€”Finset
instHasSubset
add
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
instInter
instUnion
β€”imageβ‚‚_inter_union_subset
add_comm
inter_add_union_subset_union πŸ“–mathematicalβ€”Finset
instHasSubset
add
instInter
instUnion
β€”imageβ‚‚_inter_union_subset_union
inter_div_subset πŸ“–mathematicalβ€”Finset
instHasSubset
div
instInter
β€”imageβ‚‚_inter_subset_left
inter_div_union_subset_union πŸ“–mathematicalβ€”Finset
instHasSubset
div
instInter
instUnion
β€”imageβ‚‚_inter_union_subset_union
inter_mul_singleton πŸ“–mathematicalβ€”Finset
mul
instInter
instSingleton
β€”imageβ‚‚_inter_singleton
mul_left_injective
inter_mul_subset πŸ“–mathematicalβ€”Finset
instHasSubset
mul
instInter
β€”imageβ‚‚_inter_subset_left
inter_mul_union_subset πŸ“–mathematicalβ€”Finset
instHasSubset
mul
CommMagma.toMul
CommSemigroup.toCommMagma
instInter
instUnion
β€”imageβ‚‚_inter_union_subset
mul_comm
inter_mul_union_subset_union πŸ“–mathematicalβ€”Finset
instHasSubset
mul
instInter
instUnion
β€”imageβ‚‚_inter_union_subset_union
inter_nsmul_subset πŸ“–mathematicalβ€”Finset
instHasSubset
nsmul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddZero.toAdd
instInter
β€”subset_inter
nsmul_subset_nsmul_left
inter_subset_left
inter_subset_right
inter_pow_subset πŸ“–mathematicalβ€”Finset
instHasSubset
npow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toMul
instInter
β€”subset_inter
pow_subset_pow_left
inter_sub_subset πŸ“–mathematicalβ€”Finset
instHasSubset
sub
instInter
β€”imageβ‚‚_inter_subset_left
inter_sub_union_subset_union πŸ“–mathematicalβ€”Finset
instHasSubset
sub
instInter
instUnion
β€”imageβ‚‚_inter_union_subset_union
inv_def πŸ“–mathematicalβ€”Finset
inv
image
β€”β€”
inv_empty πŸ“–mathematicalβ€”Finset
inv
instEmptyCollection
β€”β€”
inv_eq_empty πŸ“–mathematicalβ€”Finset
inv
instEmptyCollection
β€”image_eq_empty
inv_filter πŸ“–mathematicalβ€”Finset
inv
InvolutiveInv.toInv
filter
β€”ext
inv_filter_univ πŸ“–mathematicalβ€”SetLike.coe
Finset
instSetLike
inv
InvolutiveInv.toInv
filter
univ
setOf
β€”inv_filter
coe_filter
inv_insert πŸ“–mathematicalβ€”Finset
inv
instInsert
β€”image_insert
inv_inter πŸ“–mathematicalβ€”Finset
inv
InvolutiveInv.toInv
instInter
β€”coe_injective
coe_inv
coe_inter
Set.inter_inv
inv_mem_inv πŸ“–mathematicalFinset
instMembership
invβ€”mem_image_of_mem
inv_nonempty_iff πŸ“–mathematicalβ€”Nonempty
Finset
inv
β€”image_nonempty
inv_product πŸ“–mathematicalβ€”Finset
inv
Prod.instInv
InvolutiveInv.toInv
SProd.sprod
instSProd
β€”Set.inv_prod
inv_singleton πŸ“–mathematicalβ€”Finset
inv
instSingleton
β€”image_singleton
inv_subset_div_right πŸ“–mathematicalFinset
instMembership
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
instHasSubset
inv
InvOneClass.toInv
div
DivInvMonoid.toDiv
DivisionMonoid.toDivInvMonoid
β€”div_eq_mul_inv
subset_mul_right
inv_subset_inv πŸ“–mathematicalFinset
instHasSubset
invβ€”image_subset_image
inv_univ πŸ“–mathematicalβ€”Finset
inv
InvolutiveInv.toInv
univ
β€”ext
isAddUnit_coe πŸ“–mathematicalβ€”IsAddUnit
Set
Set.addMonoid
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
SetLike.coe
Finset
instSetLike
addMonoid
β€”isAddUnit_iff
Set.isAddUnit_iff
coe_eq_singleton
isAddUnit_iff πŸ“–mathematicalβ€”IsAddUnit
Finset
addMonoid
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
instSingleton
β€”add_eq_zero_iff
AddUnits.add_neg
singleton_injective
singleton_add_singleton
AddUnits.neg_add
IsAddUnit.finset
isAddUnit_singleton πŸ“–mathematicalβ€”IsAddUnit
Finset
addMonoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instSingleton
β€”IsAddUnit.finset
AddGroup.isAddUnit
isUnit_coe πŸ“–mathematicalβ€”IsUnit
Set
Set.monoid
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
SetLike.coe
Finset
instSetLike
monoid
β€”β€”
isUnit_iff πŸ“–mathematicalβ€”IsUnit
Finset
monoid
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
instSingleton
β€”mul_eq_one_iff
Units.mul_inv
singleton_injective
singleton_mul_singleton
Units.inv_mul
IsUnit.finset
isUnit_iff_singleton πŸ“–mathematicalβ€”IsUnit
Finset
monoid
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instSingleton
β€”β€”
isUnit_iff_singleton_aux πŸ“–mathematicalβ€”Finset
instSingleton
IsUnit
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”β€”
isUnit_singleton πŸ“–mathematicalβ€”IsUnit
Finset
monoid
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instSingleton
β€”IsUnit.finset
Group.isUnit
le_inf_add πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
inf
Finset
add
β€”le_inf_imageβ‚‚
le_inf_div πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
inf
Finset
div
β€”le_inf_imageβ‚‚
le_inf_mul πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
inf
Finset
mul
β€”le_inf_imageβ‚‚
le_inf_sub πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
inf
Finset
sub
β€”le_inf_imageβ‚‚
map_one πŸ“–mathematicalβ€”map
Finset
one
instSingleton
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”map_singleton
map_op_add πŸ“–mathematicalβ€”map
AddOpposite
Equiv.toEmbedding
AddOpposite.opEquiv
Finset
add
AddOpposite.instDecidableEq
AddOpposite.instAdd
β€”map_eq_image
image_op_add
map_op_inv πŸ“–mathematicalβ€”map
MulOpposite
Equiv.toEmbedding
MulOpposite.opEquiv
Finset
inv
MulOpposite.instDecidableEq
MulOpposite.instInv
β€”map_eq_image
image_op_inv
map_op_mul πŸ“–mathematicalβ€”map
MulOpposite
Equiv.toEmbedding
MulOpposite.opEquiv
Finset
mul
MulOpposite.instDecidableEq
MulOpposite.instMul
β€”map_eq_image
image_op_mul
map_op_neg πŸ“–mathematicalβ€”map
AddOpposite
Equiv.toEmbedding
AddOpposite.opEquiv
Finset
neg
AddOpposite.instDecidableEq
AddOpposite.instNeg
β€”map_eq_image
image_op_neg
map_op_nsmul πŸ“–mathematicalβ€”map
AddOpposite
Equiv.toEmbedding
AddOpposite.opEquiv
Finset
nsmul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddZero.toAdd
AddOpposite.instDecidableEq
AddOpposite.instZero
AddOpposite.instAdd
β€”zero_nsmul
map_zero
succ_nsmul
succ_nsmul'
map_op_add
map_op_one πŸ“–mathematicalβ€”map
MulOpposite
Equiv.toEmbedding
MulOpposite.opEquiv
Finset
one
MulOpposite.instOne
β€”β€”
map_op_pow πŸ“–mathematicalβ€”map
MulOpposite
Equiv.toEmbedding
MulOpposite.opEquiv
Finset
npow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toMul
MulOpposite.instDecidableEq
MulOpposite.instOne
MulOpposite.instMul
β€”pow_zero
map_one
pow_succ
pow_succ'
map_op_mul
map_op_zero πŸ“–mathematicalβ€”map
AddOpposite
Equiv.toEmbedding
AddOpposite.opEquiv
Finset
zero
AddOpposite.instZero
β€”β€”
map_zero πŸ“–mathematicalβ€”map
Finset
zero
instSingleton
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”map_singleton
max'_one πŸ“–mathematicalβ€”max'
Finset
one
one_nonempty
β€”one_nonempty
max'_zero πŸ“–mathematicalβ€”max'
Finset
zero
zero_nonempty
β€”zero_nonempty
max_one πŸ“–mathematicalβ€”max
Finset
one
WithBot
WithBot.one
β€”β€”
max_zero πŸ“–mathematicalβ€”max
Finset
zero
WithBot
WithBot.zero
β€”β€”
mem_add πŸ“–mathematicalβ€”Finset
instMembership
add
β€”mem_imageβ‚‚
mem_div πŸ“–mathematicalβ€”Finset
instMembership
div
β€”mem_imageβ‚‚
mem_inv πŸ“–mathematicalβ€”Finset
instMembership
inv
β€”mem_image
mem_inv' πŸ“–mathematicalβ€”Finset
instMembership
inv
InvolutiveInv.toInv
β€”β€”
mem_mul πŸ“–mathematicalβ€”Finset
instMembership
mul
β€”mem_imageβ‚‚
mem_neg πŸ“–mathematicalβ€”Finset
instMembership
neg
β€”mem_image
mem_neg' πŸ“–mathematicalβ€”Finset
instMembership
neg
InvolutiveNeg.toNeg
β€”mem_neg
neg_eq_iff_eq_neg
mem_nsmul πŸ“–mathematicalβ€”Finset
instMembership
nsmul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddZero.toAdd
SetLike.instMembership
instSetLike
β€”mem_coe
coe_nsmul
Set.mem_nsmul
mem_one πŸ“–mathematicalβ€”Finset
instMembership
one
β€”mem_singleton
mem_pow πŸ“–mathematicalβ€”Finset
instMembership
npow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toMul
SetLike.instMembership
instSetLike
β€”mem_coe
coe_pow
mem_prod_list_ofFn πŸ“–mathematicalβ€”Finset
instMembership
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
one
MulOne.toOne
SetLike.instMembership
instSetLike
β€”mem_coe
coe_list_prod
List.map_ofFn
Set.mem_prod_list_ofFn
mem_sub πŸ“–mathematicalβ€”Finset
instMembership
sub
β€”mem_imageβ‚‚
mem_sum_list_ofFn πŸ“–mathematicalβ€”Finset
instMembership
add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
zero
AddZero.toZero
SetLike.instMembership
instSetLike
β€”mem_coe
coe_list_sum
List.map_ofFn
Set.mem_sum_list_ofFn
mem_zero πŸ“–mathematicalβ€”Finset
instMembership
zero
β€”mem_singleton
min'_one πŸ“–mathematicalβ€”min'
Finset
one
one_nonempty
β€”one_nonempty
min'_zero πŸ“–mathematicalβ€”min'
Finset
zero
zero_nonempty
β€”zero_nonempty
min_one πŸ“–mathematicalβ€”min
Finset
one
WithTop
WithTop.one
β€”β€”
min_zero πŸ“–mathematicalβ€”min
Finset
zero
WithTop
WithTop.zero
β€”β€”
mul_def πŸ“–mathematicalβ€”Finset
mul
image
SProd.sprod
instSProd
β€”β€”
mul_empty πŸ“–mathematicalβ€”Finset
mul
instEmptyCollection
β€”imageβ‚‚_empty_right
mul_eq_empty πŸ“–mathematicalβ€”Finset
mul
instEmptyCollection
β€”imageβ‚‚_eq_empty_iff
mul_eq_one_iff πŸ“–mathematicalβ€”Finset
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
one
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
instSingleton
β€”coe_mul
coe_one
coe_singleton
mul_inter_subset πŸ“–mathematicalβ€”Finset
instHasSubset
mul
instInter
β€”imageβ‚‚_inter_subset_right
mul_mem_mul πŸ“–mathematicalFinset
instMembership
mulβ€”mem_imageβ‚‚_of_mem
mul_nonempty πŸ“–mathematicalβ€”Nonempty
Finset
mul
β€”imageβ‚‚_nonempty_iff
mul_subset_iff πŸ“–mathematicalβ€”Finset
instHasSubset
mul
instMembership
β€”imageβ‚‚_subset_iff
mul_subset_mul πŸ“–mathematicalFinset
instHasSubset
mulβ€”imageβ‚‚_subset
mul_subset_mul_left πŸ“–mathematicalFinset
instHasSubset
mulβ€”imageβ‚‚_subset_left
mul_subset_mul_right πŸ“–mathematicalFinset
instHasSubset
mulβ€”imageβ‚‚_subset_right
mul_union πŸ“–mathematicalβ€”Finset
mul
instUnion
β€”imageβ‚‚_union_right
mul_univ_of_one_mem πŸ“–mathematicalFinset
instMembership
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
mul
MulOne.toMul
univ
β€”eq_univ_iff_forall
mem_mul
mem_univ
one_mul
neg_def πŸ“–mathematicalβ€”Finset
neg
image
β€”β€”
neg_empty πŸ“–mathematicalβ€”Finset
neg
instEmptyCollection
β€”β€”
neg_eq_empty πŸ“–mathematicalβ€”Finset
neg
instEmptyCollection
β€”image_eq_empty
neg_filter πŸ“–mathematicalβ€”Finset
neg
InvolutiveNeg.toNeg
filter
β€”ext
mem_neg'
mem_filter
neg_filter_univ πŸ“–mathematicalβ€”SetLike.coe
Finset
instSetLike
neg
InvolutiveNeg.toNeg
filter
univ
setOf
β€”neg_filter
coe_filter
mem_neg'
mem_univ
neg_insert πŸ“–mathematicalβ€”Finset
neg
instInsert
β€”image_insert
neg_inter πŸ“–mathematicalβ€”Finset
neg
InvolutiveNeg.toNeg
instInter
β€”coe_injective
coe_neg
coe_inter
Set.inter_neg
neg_mem_neg πŸ“–mathematicalFinset
instMembership
negβ€”mem_image_of_mem
neg_nonempty_iff πŸ“–mathematicalβ€”Nonempty
Finset
neg
β€”image_nonempty
neg_product πŸ“–mathematicalβ€”Finset
neg
Prod.instNeg
InvolutiveNeg.toNeg
SProd.sprod
instSProd
β€”coe_product
coe_neg
SetLike.coe_set_eq
Set.neg_prod
neg_singleton πŸ“–mathematicalβ€”Finset
neg
instSingleton
β€”image_singleton
neg_subset_neg πŸ“–mathematicalFinset
instHasSubset
negβ€”image_subset_image
neg_subset_sub_right πŸ“–mathematicalFinset
instMembership
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
instHasSubset
neg
NegZeroClass.toNeg
sub
SubNegMonoid.toSub
SubtractionMonoid.toSubNegMonoid
β€”sub_eq_add_neg
subset_add_right
neg_univ πŸ“–mathematicalβ€”Finset
neg
InvolutiveNeg.toNeg
univ
β€”ext
mem_neg'
mem_univ
nsmul_empty πŸ“–mathematicalβ€”Finset
nsmul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddZero.toAdd
instEmptyCollection
β€”succ_nsmul
add_empty
nsmul_eq_empty πŸ“–mathematicalβ€”Finset
nsmul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddZero.toAdd
instEmptyCollection
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_or_eq
nonempty_iff_ne_empty
Nonempty.nsmul
zero_nsmul
zero_nonempty
nsmul_empty
nsmul_mem_nsmul πŸ“–mathematicalFinset
instMembership
nsmul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddZero.toAdd
AddMonoid.toNatSMul
β€”nsmul_singleton
singleton_subset_iff
nsmul_subset_nsmul_left
nsmul_right_monotone πŸ“–mathematicalFinset
instMembership
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Monotone
Nat.instPreorder
PartialOrder.toPreorder
partialOrder
AddMonoid.toNatSMul
addMonoid
β€”nsmul_left_monotone
instAddLeftMono
zero_subset
nsmul_singleton πŸ“–mathematicalβ€”Finset
nsmul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddZero.toAdd
instSingleton
AddMonoid.toNatSMul
β€”zero_nsmul
succ_nsmul
singleton_add_singleton
nsmul_subset_nsmul πŸ“–mathematicalFinset
instHasSubset
instMembership
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
nsmul
AddZero.toAdd
β€”HasSubset.Subset.trans
instIsTransSubset
nsmul_subset_nsmul_left
nsmul_subset_nsmul_right
nsmul_subset_nsmul_add_of_sq_subset_add πŸ“–mathematicalFinset
instHasSubset
AddMonoid.toNatSMul
addMonoid
add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
nsmul
AddZero.toZero
β€”subset_of_le
nsmul_le_nsmul_add_of_sq_le_add
instAddRightMono
instAddLeftMono
nsmul_subset_nsmul_left πŸ“–mathematicalFinset
instHasSubset
nsmul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddZero.toAdd
β€”subset_of_le
nsmul_right_mono
instAddLeftMono
instAddRightMono
nsmul_subset_nsmul_right πŸ“–mathematicalFinset
instMembership
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instHasSubset
nsmul
AddZero.toAdd
β€”nsmul_right_monotone
nsmul_univ πŸ“–mathematicalβ€”Finset
nsmul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddZero.toAdd
univ
β€”coe_injective
coe_nsmul
coe_univ
Set.nsmul_univ
one_mem_div_iff πŸ“–mathematicalβ€”Finset
instMembership
div
DivInvMonoid.toDiv
Group.toDivInvMonoid
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Disjoint
partialOrder
instOrderBot
β€”mem_coe
disjoint_coe
coe_div
Set.one_mem_div_iff
one_mem_inv_mul_iff πŸ“–mathematicalβ€”Finset
instMembership
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
inv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
InvOneClass.toOne
Disjoint
partialOrder
instOrderBot
β€”inv_inv
one_mem_one πŸ“–mathematicalβ€”Finset
instMembership
one
β€”mem_singleton_self
one_mem_pow πŸ“–mathematicalFinset
instMembership
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
npow
MulOne.toMul
β€”one_pow
pow_mem_pow
one_nonempty πŸ“–mathematicalβ€”Nonempty
Finset
one
β€”one_mem_one
one_notMem_div_iff πŸ“–mathematicalβ€”Finset
instMembership
div
DivInvMonoid.toDiv
Group.toDivInvMonoid
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Disjoint
partialOrder
instOrderBot
β€”Iff.not_left
one_mem_div_iff
one_notMem_inv_mul_iff πŸ“–mathematicalβ€”Finset
instMembership
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
inv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
InvOneClass.toOne
Disjoint
partialOrder
instOrderBot
β€”Iff.not_left
one_mem_inv_mul_iff
one_product_one πŸ“–mathematicalβ€”SProd.sprod
Finset
instSProd
one
Prod.instOne
β€”ext
one_subset πŸ“–mathematicalβ€”Finset
instHasSubset
one
instMembership
β€”singleton_subset_iff
pow_eq_empty πŸ“–mathematicalβ€”Finset
npow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toMul
instEmptyCollection
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_or_eq
Nonempty.pow
pow_zero
empty_pow
pow_mem_pow πŸ“–mathematicalFinset
instMembership
npow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toMul
Monoid.toNatPow
β€”singleton_pow
pow_subset_pow_left
singleton_subset_iff
pow_right_monotone πŸ“–mathematicalFinset
instMembership
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
Monotone
Nat.instPreorder
PartialOrder.toPreorder
partialOrder
Monoid.toNatPow
monoid
β€”pow_right_monotone
instMulLeftMono
one_subset
pow_subset_pow πŸ“–mathematicalFinset
instHasSubset
instMembership
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
npow
MulOne.toMul
β€”HasSubset.Subset.trans
instIsTransSubset
pow_subset_pow_left
pow_subset_pow_right
pow_subset_pow_left πŸ“–mathematicalFinset
instHasSubset
npow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toMul
β€”subset_of_le
pow_left_mono
instMulLeftMono
instMulRightMono
pow_subset_pow_mul_of_sq_subset_mul πŸ“–mathematicalFinset
instHasSubset
Monoid.toNatPow
monoid
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
npow
MulOne.toOne
β€”subset_of_le
pow_le_pow_mul_of_sq_le_mul
instMulRightMono
instMulLeftMono
pow_subset_pow_right πŸ“–mathematicalFinset
instMembership
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
instHasSubset
npow
MulOne.toMul
β€”pow_right_monotone
preimage_add_left_singleton πŸ“–mathematicalβ€”preimage
Finset
instSingleton
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Function.Injective.injOn
add_right_injective
AddLeftCancelSemigroup.toIsLeftCancelAdd
AddLeftCancelMonoid.toAddLeftCancelSemigroup
AddCancelMonoid.toAddLeftCancelMonoid
AddGroup.toAddCancelMonoid
Set.preimage
SetLike.coe
instSetLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”Function.Injective.injOn
add_right_injective
AddLeftCancelSemigroup.toIsLeftCancelAdd
image_add_left'
image_singleton
preimage_add_left_zero πŸ“–mathematicalβ€”preimage
Finset
zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Function.Injective.injOn
add_right_injective
AddLeftCancelSemigroup.toIsLeftCancelAdd
AddLeftCancelMonoid.toAddLeftCancelSemigroup
AddCancelMonoid.toAddLeftCancelMonoid
AddGroup.toAddCancelMonoid
Set.preimage
SetLike.coe
instSetLike
instSingleton
NegZeroClass.toNeg
β€”Function.Injective.injOn
add_right_injective
AddLeftCancelSemigroup.toIsLeftCancelAdd
image_add_left'
image_zero
add_zero
preimage_add_left_zero' πŸ“–mathematicalβ€”preimage
Finset
zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toNeg
Function.Injective.injOn
add_right_injective
AddLeftCancelSemigroup.toIsLeftCancelAdd
AddLeftCancelMonoid.toAddLeftCancelSemigroup
AddCancelMonoid.toAddLeftCancelMonoid
AddGroup.toAddCancelMonoid
Set.preimage
SetLike.coe
instSetLike
instSingleton
β€”Function.Injective.injOn
add_right_injective
AddLeftCancelSemigroup.toIsLeftCancelAdd
preimage_add_left_zero
neg_neg
preimage_add_right_singleton πŸ“–mathematicalβ€”preimage
Finset
instSingleton
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Function.Injective.injOn
add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Set.preimage
SetLike.coe
instSetLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”Function.Injective.injOn
add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
image_add_right'
image_singleton
preimage_add_right_zero πŸ“–mathematicalβ€”preimage
Finset
zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Function.Injective.injOn
add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Set.preimage
SetLike.coe
instSetLike
instSingleton
NegZeroClass.toNeg
β€”Function.Injective.injOn
add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
image_add_right'
image_zero
zero_add
preimage_add_right_zero' πŸ“–mathematicalβ€”preimage
Finset
zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toNeg
Function.Injective.injOn
add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Set.preimage
SetLike.coe
instSetLike
instSingleton
β€”Function.Injective.injOn
add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
preimage_add_right_zero
neg_neg
preimage_inv πŸ“–mathematicalβ€”preimage
InvolutiveInv.toInv
Function.Injective.injOn
inv_injective
Set.preimage
SetLike.coe
Finset
instSetLike
inv
β€”coe_injective
Function.Injective.injOn
inv_injective
coe_preimage
Set.inv_preimage
coe_inv
preimage_mul_left_one πŸ“–mathematicalβ€”preimage
Finset
one
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Function.Injective.injOn
mul_right_injective
LeftCancelSemigroup.toIsLeftCancelMul
LeftCancelMonoid.toLeftCancelSemigroup
CancelMonoid.toLeftCancelMonoid
Group.toCancelMonoid
Set.preimage
SetLike.coe
instSetLike
instSingleton
InvOneClass.toInv
β€”Function.Injective.injOn
mul_right_injective
LeftCancelSemigroup.toIsLeftCancelMul
image_mul_left'
image_one
mul_one
preimage_mul_left_one' πŸ“–mathematicalβ€”preimage
Finset
one
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
Function.Injective.injOn
mul_right_injective
LeftCancelSemigroup.toIsLeftCancelMul
LeftCancelMonoid.toLeftCancelSemigroup
CancelMonoid.toLeftCancelMonoid
Group.toCancelMonoid
Set.preimage
SetLike.coe
instSetLike
instSingleton
β€”Function.Injective.injOn
mul_right_injective
LeftCancelSemigroup.toIsLeftCancelMul
preimage_mul_left_one
inv_inv
preimage_mul_left_singleton πŸ“–mathematicalβ€”preimage
Finset
instSingleton
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Function.Injective.injOn
mul_right_injective
LeftCancelSemigroup.toIsLeftCancelMul
LeftCancelMonoid.toLeftCancelSemigroup
CancelMonoid.toLeftCancelMonoid
Group.toCancelMonoid
Set.preimage
SetLike.coe
instSetLike
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”Function.Injective.injOn
mul_right_injective
LeftCancelSemigroup.toIsLeftCancelMul
image_mul_left'
image_singleton
preimage_mul_right_one πŸ“–mathematicalβ€”preimage
Finset
one
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Function.Injective.injOn
mul_left_injective
RightCancelSemigroup.toIsRightCancelMul
RightCancelMonoid.toRightCancelSemigroup
CancelMonoid.toRightCancelMonoid
Group.toCancelMonoid
Set.preimage
SetLike.coe
instSetLike
instSingleton
InvOneClass.toInv
β€”Function.Injective.injOn
mul_left_injective
RightCancelSemigroup.toIsRightCancelMul
image_mul_right'
image_one
one_mul
preimage_mul_right_one' πŸ“–mathematicalβ€”preimage
Finset
one
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
Function.Injective.injOn
mul_left_injective
RightCancelSemigroup.toIsRightCancelMul
RightCancelMonoid.toRightCancelSemigroup
CancelMonoid.toRightCancelMonoid
Group.toCancelMonoid
Set.preimage
SetLike.coe
instSetLike
instSingleton
β€”Function.Injective.injOn
mul_left_injective
RightCancelSemigroup.toIsRightCancelMul
preimage_mul_right_one
inv_inv
preimage_mul_right_singleton πŸ“–mathematicalβ€”preimage
Finset
instSingleton
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Function.Injective.injOn
mul_left_injective
RightCancelSemigroup.toIsRightCancelMul
RightCancelMonoid.toRightCancelSemigroup
CancelMonoid.toRightCancelMonoid
Group.toCancelMonoid
Set.preimage
SetLike.coe
instSetLike
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”Function.Injective.injOn
mul_left_injective
RightCancelSemigroup.toIsRightCancelMul
image_mul_right'
image_singleton
preimage_neg πŸ“–mathematicalβ€”preimage
InvolutiveNeg.toNeg
Function.Injective.injOn
neg_injective
Set.preimage
SetLike.coe
Finset
instSetLike
neg
β€”coe_injective
Function.Injective.injOn
neg_injective
coe_preimage
Set.neg_preimage
coe_neg
product_add_product_comm πŸ“–mathematicalβ€”Finset
add
Prod.instAdd
SProd.sprod
instSProd
β€”coe_product
coe_add
SetLike.coe_set_eq
Set.prod_add_prod_comm
product_mul_product_comm πŸ“–mathematicalβ€”Finset
mul
Prod.instMul
SProd.sprod
instSProd
β€”Set.prod_mul_prod_comm
product_nsmul πŸ“–mathematicalβ€”Finset
nsmul
Prod.instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Prod.instAdd
AddZero.toAdd
SProd.sprod
instSProd
AddMonoid.toNatSMul
addMonoid
β€”zero_nsmul
zero_product_zero
succ_nsmul
product_add_product_comm
product_pow πŸ“–mathematicalβ€”Finset
npow
Prod.instOne
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
Prod.instMul
MulOne.toMul
SProd.sprod
instSProd
Monoid.toNatPow
monoid
β€”pow_zero
one_product_one
pow_succ
product_mul_product_comm
singletonAddHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddHom
Finset
add
AddHom.funLike
singletonAddHom
instSingleton
β€”β€”
singletonAddMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
Finset
AddZeroClass.toAddZero
addZeroClass
AddMonoidHom.instFunLike
singletonAddMonoidHom
instSingleton
β€”β€”
singletonMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Finset
MulOneClass.toMulOne
mulOneClass
MonoidHom.instFunLike
singletonMonoidHom
instSingleton
β€”β€”
singletonMulHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MulHom
Finset
mul
MulHom.funLike
singletonMulHom
instSingleton
β€”β€”
singletonOneHom_apply πŸ“–mathematicalβ€”DFunLike.coe
OneHom
Finset
one
OneHom.funLike
singletonOneHom
instSingleton
β€”β€”
singletonZeroHom_apply πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
Finset
zero
ZeroHom.funLike
singletonZeroHom
instSingleton
β€”β€”
singleton_add_inter πŸ“–mathematicalβ€”Finset
add
instSingleton
instInter
β€”imageβ‚‚_singleton_inter
add_right_injective
singleton_add_singleton πŸ“–mathematicalβ€”Finset
add
instSingleton
β€”imageβ‚‚_singleton
singleton_div πŸ“–mathematicalβ€”Finset
div
instSingleton
image
β€”imageβ‚‚_singleton_left
singleton_div_singleton πŸ“–mathematicalβ€”Finset
div
instSingleton
β€”imageβ‚‚_singleton
singleton_mul_inter πŸ“–mathematicalβ€”Finset
mul
instSingleton
instInter
β€”imageβ‚‚_singleton_inter
mul_right_injective
singleton_mul_singleton πŸ“–mathematicalβ€”Finset
mul
instSingleton
β€”imageβ‚‚_singleton
singleton_one πŸ“–mathematicalβ€”Finset
instSingleton
one
β€”β€”
singleton_pow πŸ“–mathematicalβ€”Finset
npow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toMul
instSingleton
Monoid.toNatPow
β€”pow_zero
pow_succ
singleton_mul_singleton
singleton_sub πŸ“–mathematicalβ€”Finset
sub
instSingleton
image
β€”imageβ‚‚_singleton_left
singleton_sub_singleton πŸ“–mathematicalβ€”Finset
sub
instSingleton
β€”imageβ‚‚_singleton
singleton_zero πŸ“–mathematicalβ€”Finset
instSingleton
zero
β€”β€”
singleton_zpow πŸ“–mathematicalβ€”Finset
zpow
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
InvOneClass.toInv
instSingleton
DivInvMonoid.toZPow
β€”zpow_natCast
singleton_pow
zpow_negSucc
inv_singleton
sub_def πŸ“–mathematicalβ€”Finset
sub
image
SProd.sprod
instSProd
β€”β€”
sub_empty πŸ“–mathematicalβ€”Finset
sub
instEmptyCollection
β€”imageβ‚‚_empty_right
sub_eq_empty πŸ“–mathematicalβ€”Finset
sub
instEmptyCollection
β€”imageβ‚‚_eq_empty_iff
sub_inter_subset πŸ“–mathematicalβ€”Finset
instHasSubset
sub
instInter
β€”imageβ‚‚_inter_subset_right
sub_mem_sub πŸ“–mathematicalFinset
instMembership
subβ€”mem_imageβ‚‚_of_mem
sub_nonempty πŸ“–mathematicalβ€”Nonempty
Finset
sub
β€”imageβ‚‚_nonempty_iff
sub_singleton πŸ“–mathematicalβ€”Finset
sub
instSingleton
image
β€”imageβ‚‚_singleton_right
sub_subset_iff πŸ“–mathematicalβ€”Finset
instHasSubset
sub
instMembership
β€”imageβ‚‚_subset_iff
sub_subset_sub πŸ“–mathematicalFinset
instHasSubset
subβ€”imageβ‚‚_subset
sub_subset_sub_left πŸ“–mathematicalFinset
instHasSubset
subβ€”imageβ‚‚_subset_left
sub_subset_sub_right πŸ“–mathematicalFinset
instHasSubset
subβ€”imageβ‚‚_subset_right
sub_union πŸ“–mathematicalβ€”Finset
sub
instUnion
β€”imageβ‚‚_union_right
subset_add πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Finset
instSetLike
Set.add
instHasSubset
add
β€”subset_set_imageβ‚‚
subset_add_left πŸ“–mathematicalFinset
instMembership
AddZero.toZero
AddZeroClass.toAddZero
instHasSubset
add
AddZero.toAdd
β€”mem_add
add_zero
subset_add_right πŸ“–mathematicalFinset
instMembership
AddZero.toZero
AddZeroClass.toAddZero
instHasSubset
add
AddZero.toAdd
β€”mem_add
zero_add
subset_div πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Finset
instSetLike
Set.div
instHasSubset
div
β€”subset_set_imageβ‚‚
subset_div_left πŸ“–mathematicalFinset
instMembership
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
instHasSubset
div
DivInvMonoid.toDiv
DivisionMonoid.toDivInvMonoid
β€”div_eq_mul_inv
subset_mul_left
inv_one
subset_mul πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Finset
instSetLike
Set.mul
instHasSubset
mul
β€”subset_set_imageβ‚‚
subset_mul_left πŸ“–mathematicalFinset
instMembership
MulOne.toOne
MulOneClass.toMulOne
instHasSubset
mul
MulOne.toMul
β€”mem_mul
mul_one
subset_mul_right πŸ“–mathematicalFinset
instMembership
MulOne.toOne
MulOneClass.toMulOne
instHasSubset
mul
MulOne.toMul
β€”mem_mul
one_mul
subset_nsmul πŸ“–mathematicalFinset
instMembership
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instHasSubset
nsmul
AddZero.toAdd
β€”one_nsmul
nsmul_subset_nsmul_right
subset_one_iff_eq πŸ“–mathematicalβ€”Finset
instHasSubset
one
instEmptyCollection
β€”subset_singleton_iff
subset_pow πŸ“–mathematicalFinset
instMembership
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
instHasSubset
npow
MulOne.toMul
β€”pow_one
pow_subset_pow_right
subset_sub πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Finset
instSetLike
Set.sub
instHasSubset
sub
β€”subset_set_imageβ‚‚
subset_sub_left πŸ“–mathematicalFinset
instMembership
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
instHasSubset
sub
SubNegMonoid.toSub
SubtractionMonoid.toSubNegMonoid
β€”sub_eq_add_neg
subset_add_left
mem_neg'
neg_zero
subset_zero_iff_eq πŸ“–mathematicalβ€”Finset
instHasSubset
zero
instEmptyCollection
β€”subset_singleton_iff
sup'_inv πŸ“–mathematicalNonempty
Finset
inv
sup'
Nonempty.of_inv
β€”sup'_image
sup'_neg πŸ“–mathematicalNonempty
Finset
neg
sup'
Nonempty.of_neg
β€”sup'_image
sup'_one πŸ“–mathematicalβ€”sup'
Finset
one
one_nonempty
β€”one_nonempty
sup'_zero πŸ“–mathematicalβ€”sup'
Finset
zero
zero_nonempty
β€”zero_nonempty
sup_add_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
sup
Finset
add
β€”sup_imageβ‚‚_le
sup_add_left πŸ“–mathematicalβ€”sup
Finset
add
β€”sup_imageβ‚‚_left
sup_add_right πŸ“–mathematicalβ€”sup
Finset
add
β€”sup_imageβ‚‚_right
sup_div_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
sup
Finset
div
β€”sup_imageβ‚‚_le
sup_div_left πŸ“–mathematicalβ€”sup
Finset
div
β€”sup_imageβ‚‚_left
sup_div_right πŸ“–mathematicalβ€”sup
Finset
div
β€”sup_imageβ‚‚_right
sup_inv πŸ“–mathematicalβ€”sup
Finset
inv
β€”sup_image
sup_mul_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
sup
Finset
mul
β€”sup_imageβ‚‚_le
sup_mul_left πŸ“–mathematicalβ€”sup
Finset
mul
β€”sup_imageβ‚‚_left
sup_mul_right πŸ“–mathematicalβ€”sup
Finset
mul
β€”sup_imageβ‚‚_right
sup_neg πŸ“–mathematicalβ€”sup
Finset
neg
β€”sup_image
sup_one πŸ“–mathematicalβ€”sup
Finset
one
β€”sup_singleton
sup_sub_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
sup
Finset
sub
β€”sup_imageβ‚‚_le
sup_sub_left πŸ“–mathematicalβ€”sup
Finset
sub
β€”sup_imageβ‚‚_left
sup_sub_right πŸ“–mathematicalβ€”sup
Finset
sub
β€”sup_imageβ‚‚_right
sup_zero πŸ“–mathematicalβ€”sup
Finset
zero
β€”sup_singleton
union_add πŸ“–mathematicalβ€”Finset
add
instUnion
β€”imageβ‚‚_union_left
union_add_inter_subset πŸ“–mathematicalβ€”Finset
instHasSubset
add
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
instUnion
instInter
β€”imageβ‚‚_union_inter_subset
add_comm
union_add_inter_subset_union πŸ“–mathematicalβ€”Finset
instHasSubset
add
instUnion
instInter
β€”imageβ‚‚_union_inter_subset_union
union_div πŸ“–mathematicalβ€”Finset
div
instUnion
β€”imageβ‚‚_union_left
union_div_inter_subset_union πŸ“–mathematicalβ€”Finset
instHasSubset
div
instUnion
instInter
β€”imageβ‚‚_union_inter_subset_union
union_mul πŸ“–mathematicalβ€”Finset
mul
instUnion
β€”imageβ‚‚_union_left
union_mul_inter_subset πŸ“–mathematicalβ€”Finset
instHasSubset
mul
CommMagma.toMul
CommSemigroup.toCommMagma
instUnion
instInter
β€”imageβ‚‚_union_inter_subset
mul_comm
union_mul_inter_subset_union πŸ“–mathematicalβ€”Finset
instHasSubset
mul
instUnion
instInter
β€”imageβ‚‚_union_inter_subset_union
union_sub πŸ“–mathematicalβ€”Finset
sub
instUnion
β€”imageβ‚‚_union_left
union_sub_inter_subset_union πŸ“–mathematicalβ€”Finset
instHasSubset
sub
instUnion
instInter
β€”imageβ‚‚_union_inter_subset_union
univ_add_of_zero_mem πŸ“–mathematicalFinset
instMembership
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
add
AddZero.toAdd
univ
β€”eq_univ_iff_forall
mem_add
mem_univ
add_zero
univ_add_univ πŸ“–mathematicalβ€”Finset
add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
univ
β€”add_univ_of_zero_mem
mem_univ
univ_div_univ πŸ“–mathematicalβ€”Finset
div
DivInvMonoid.toDiv
DivisionMonoid.toDivInvMonoid
univ
β€”div_eq_mul_inv
inv_univ
univ_mul_univ
univ_mul_of_one_mem πŸ“–mathematicalFinset
instMembership
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
mul
MulOne.toMul
univ
β€”eq_univ_iff_forall
mem_mul
mem_univ
mul_one
univ_mul_univ πŸ“–mathematicalβ€”Finset
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
univ
β€”mul_univ_of_one_mem
mem_univ
univ_pow πŸ“–mathematicalβ€”Finset
npow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toMul
univ
β€”coe_injective
coe_pow
coe_univ
Set.univ_pow
univ_sub_univ πŸ“–mathematicalβ€”Finset
sub
SubNegMonoid.toSub
SubtractionMonoid.toSubNegMonoid
univ
β€”sub_eq_add_neg
neg_univ
univ_add_univ
zero_mem_neg_add_iff πŸ“–mathematicalβ€”Finset
instMembership
add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
NegZeroClass.toZero
Disjoint
partialOrder
instOrderBot
β€”mem_add
mem_neg'
add_eq_zero_iff_eq_neg
neg_neg
not_disjoint_iff_nonempty_inter
mem_inter
zero_mem_nsmul πŸ“–mathematicalFinset
instMembership
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
nsmul
AddZero.toAdd
β€”nsmul_zero
nsmul_mem_nsmul
zero_mem_sub_iff πŸ“–mathematicalβ€”Finset
instMembership
sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Disjoint
partialOrder
instOrderBot
β€”mem_coe
disjoint_coe
coe_sub
Set.zero_mem_sub_iff
zero_mem_zero πŸ“–mathematicalβ€”Finset
instMembership
zero
β€”mem_singleton_self
zero_nonempty πŸ“–mathematicalβ€”Nonempty
Finset
zero
β€”zero_mem_zero
zero_notMem_neg_add_iff πŸ“–mathematicalβ€”Finset
instMembership
add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
NegZeroClass.toZero
Disjoint
partialOrder
instOrderBot
β€”Iff.not_left
zero_mem_neg_add_iff
zero_notMem_sub_iff πŸ“–mathematicalβ€”Finset
instMembership
sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Disjoint
partialOrder
instOrderBot
β€”Iff.not_left
zero_mem_sub_iff
zero_product_zero πŸ“–mathematicalβ€”SProd.sprod
Finset
instSProd
zero
Prod.instZero
β€”ext
mem_product
mem_zero
zero_subset πŸ“–mathematicalβ€”Finset
instHasSubset
zero
instMembership
β€”singleton_subset_iff
zpow_eq_empty πŸ“–mathematicalβ€”Finset
zpow
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
InvOneClass.toInv
instEmptyCollection
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_or_eq
Nonempty.zpow
zpow_zero
empty_zpow
zsmul_empty πŸ“–mathematicalβ€”Finset
zsmul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
NegZeroClass.toNeg
instEmptyCollection
β€”natCast_zsmul
nsmul_empty
negSucc_zsmul
one_ne_zero
zsmul_eq_empty πŸ“–mathematicalβ€”Finset
zsmul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
NegZeroClass.toNeg
instEmptyCollection
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_or_eq
nonempty_iff_ne_empty
Nonempty.zsmul
zero_zsmul
zero_nonempty
zsmul_empty
zsmul_singleton πŸ“–mathematicalβ€”Finset
zsmul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
NegZeroClass.toNeg
instSingleton
SubNegMonoid.toZSMul
β€”natCast_zsmul
nsmul_singleton
negSucc_zsmul
neg_singleton

Finset.Nonempty

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalFinset.NonemptyFinset
Finset.add
β€”imageβ‚‚
card_nsmul_mono πŸ“–mathematicalFinset.NonemptyMonotone
Nat.instPreorder
Finset.card
Finset
Finset.nsmul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddRightCancelMonoid.toAddMonoid
AddCancelMonoid.toAddRightCancelMonoid
AddZero.toAdd
β€”monotone_nat_of_le_succ
succ_nsmul
Finset.card_le_card_add_right
AddRightCancelSemigroup.toIsRightCancelAdd
card_pow_mono πŸ“–mathematicalFinset.NonemptyMonotone
Nat.instPreorder
Finset.card
Finset
Finset.npow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
RightCancelMonoid.toMonoid
CancelMonoid.toRightCancelMonoid
MulOne.toMul
β€”monotone_nat_of_le_succ
pow_succ
Finset.card_le_card_mul_right
RightCancelSemigroup.toIsRightCancelMul
div πŸ“–mathematicalFinset.NonemptyFinset
Finset.div
β€”imageβ‚‚
inv πŸ“–mathematicalFinset.NonemptyFinset
Finset.inv
β€”Finset.inv_nonempty_iff
mul πŸ“–mathematicalFinset.NonemptyFinset
Finset.mul
β€”imageβ‚‚
neg πŸ“–mathematicalFinset.NonemptyFinset
Finset.neg
β€”Finset.neg_nonempty_iff
nsmul πŸ“–mathematicalFinset.NonemptyFinset
AddMonoid.toNatSMul
Finset.addMonoid
β€”zero_nsmul
Finset.zero_nonempty
succ_nsmul
add
of_add_left πŸ“–β€”Finset.Nonempty
Finset
Finset.add
β€”β€”of_imageβ‚‚_left
of_add_right πŸ“–β€”Finset.Nonempty
Finset
Finset.add
β€”β€”of_imageβ‚‚_right
of_div_left πŸ“–β€”Finset.Nonempty
Finset
Finset.div
β€”β€”of_imageβ‚‚_left
of_div_right πŸ“–β€”Finset.Nonempty
Finset
Finset.div
β€”β€”of_imageβ‚‚_right
of_inv πŸ“–β€”Finset.Nonempty
Finset
Finset.inv
β€”β€”Finset.inv_nonempty_iff
of_mul_left πŸ“–β€”Finset.Nonempty
Finset
Finset.mul
β€”β€”of_imageβ‚‚_left
of_mul_right πŸ“–β€”Finset.Nonempty
Finset
Finset.mul
β€”β€”of_imageβ‚‚_right
of_neg πŸ“–β€”Finset.Nonempty
Finset
Finset.neg
β€”β€”Finset.neg_nonempty_iff
of_sub_left πŸ“–β€”Finset.Nonempty
Finset
Finset.sub
β€”β€”of_imageβ‚‚_left
of_sub_right πŸ“–β€”Finset.Nonempty
Finset
Finset.sub
β€”β€”of_imageβ‚‚_right
one_mem_div πŸ“–mathematicalFinset.NonemptyFinset
Finset.instMembership
Finset.div
DivInvMonoid.toDiv
Group.toDivInvMonoid
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”Finset.mem_div
div_self'
pow πŸ“–mathematicalFinset.NonemptyFinset
Monoid.toNatPow
Finset.monoid
β€”pow_zero
pow_succ
mul
sub πŸ“–mathematicalFinset.NonemptyFinset
Finset.sub
β€”imageβ‚‚
subset_one_iff πŸ“–mathematicalFinset.NonemptyFinset
Finset.instHasSubset
Finset.one
β€”subset_singleton_iff
subset_zero_iff πŸ“–mathematicalFinset.NonemptyFinset
Finset.instHasSubset
Finset.zero
β€”subset_singleton_iff
zero_mem_sub πŸ“–mathematicalFinset.NonemptyFinset
Finset.instMembership
Finset.sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”Finset.mem_sub
sub_self
zpow πŸ“–mathematicalFinset.NonemptyFinset
Finset.zpow
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
InvOneClass.toInv
β€”pow
zpow_negSucc
zsmul πŸ“–mathematicalFinset.NonemptyFinset
Finset.zsmul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
NegZeroClass.toNeg
β€”nsmul
negSucc_zsmul
Finset.neg_nonempty_iff

Finset.Nontrivial

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalFinset.NontrivialFinset
Finset.add
β€”add_left
nonempty
add_left πŸ“–mathematicalFinset.Nontrivial
Finset.Nonempty
Finset
Finset.add
β€”Finset.add_mem_add
add_right πŸ“–mathematicalFinset.Nontrivial
Finset.Nonempty
Finset
Finset.add
β€”Finset.add_mem_add
mul πŸ“–mathematicalFinset.NontrivialFinset
Finset.mul
β€”mul_left
nonempty
mul_left πŸ“–mathematicalFinset.Nontrivial
Finset.Nonempty
Finset
Finset.mul
β€”Finset.mul_mem_mul
mul_right πŸ“–mathematicalFinset.Nontrivial
Finset.Nonempty
Finset
Finset.mul
β€”Finset.mul_mem_mul
nsmul πŸ“–mathematicalFinset.NontrivialFinset
AddMonoid.toNatSMul
Finset.addMonoid
AddRightCancelMonoid.toAddMonoid
AddCancelMonoid.toAddRightCancelMonoid
β€”one_nsmul
succ_nsmul
add
AddLeftCancelSemigroup.toIsLeftCancelAdd
pow πŸ“–mathematicalFinset.NontrivialFinset
Monoid.toNatPow
Finset.monoid
RightCancelMonoid.toMonoid
CancelMonoid.toRightCancelMonoid
β€”pow_one
pow_succ
mul
LeftCancelSemigroup.toIsLeftCancelMul

Fintype

Theorems

NameKindAssumesProvesValidatesDepends On
piFinset_add πŸ“–mathematicalβ€”piFinset
Finset
Finset.add
decidablePiFintype
Pi.instAdd
β€”piFinset_imageβ‚‚
piFinset_div πŸ“–mathematicalβ€”piFinset
Finset
Finset.div
decidablePiFintype
Pi.instDiv
β€”piFinset_imageβ‚‚
piFinset_inv πŸ“–mathematicalβ€”piFinset
Finset
Finset.inv
decidablePiFintype
Pi.instInv
β€”piFinset_image
piFinset_mul πŸ“–mathematicalβ€”piFinset
Finset
Finset.mul
decidablePiFintype
Pi.instMul
β€”piFinset_imageβ‚‚
piFinset_neg πŸ“–mathematicalβ€”piFinset
Finset
Finset.neg
decidablePiFintype
Pi.instNeg
β€”piFinset_image
piFinset_sub πŸ“–mathematicalβ€”piFinset
Finset
Finset.sub
decidablePiFintype
Pi.instSub
β€”piFinset_imageβ‚‚

IsAddUnit

Theorems

NameKindAssumesProvesValidatesDepends On
finset πŸ“–mathematicalIsAddUnitFinset
Finset.addMonoid
Finset.instSingleton
β€”map
AddMonoidHom.instAddMonoidHomClass

IsUnit

Theorems

NameKindAssumesProvesValidatesDepends On
finset πŸ“–mathematicalIsUnitFinset
Finset.monoid
Finset.instSingleton
β€”map
MonoidHom.instMonoidHomClass

Set

Definitions

NameCategoryTheorems
instFintypeOne πŸ“–CompOp
1 mathmath: toFinset_one
instFintypeZero πŸ“–CompOp
1 mathmath: toFinset_zero

Theorems

NameKindAssumesProvesValidatesDepends On
toFinset_add πŸ“–mathematicalβ€”toFinset
Set
add
Finset
Finset.add
β€”toFinset_image2
toFinset_mul πŸ“–mathematicalβ€”toFinset
Set
mul
Finset
Finset.mul
β€”toFinset_image2
toFinset_one πŸ“–mathematicalβ€”toFinset
Set
one
instFintypeOne
Finset
Finset.one
β€”β€”
toFinset_zero πŸ“–mathematicalβ€”toFinset
Set
zero
instFintypeZero
Finset
Finset.zero
β€”β€”

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
toFinset_add πŸ“–mathematicalβ€”toFinset
Set
Set.add
Finset
Finset.add
β€”toFinset_image2
image2
toFinset_mul πŸ“–mathematicalβ€”toFinset
Set
Set.mul
Finset
Finset.mul
β€”toFinset_image2
image2
toFinset_one πŸ“–mathematicalβ€”toFinset
Set
Set.one
Finset
Finset.one
β€”toFinset_singleton
toFinset_zero πŸ“–mathematicalβ€”toFinset
Set
Set.zero
Finset
Finset.zero
β€”toFinset_singleton

---

← Back to Index