Documentation Verification Report

Scalar

📁 Source: Mathlib/Algebra/Group/Pointwise/Finset/Scalar.lean

Statistics

MetricCount
Definitionssmul, smulFinset, vadd, vaddFinset, vsub
5
Theoremsof_smul_left, of_smul_right, of_vadd_left, of_vadd_right, of_vsub_left, of_vsub_right, smul, smul_finset, vadd, vadd_finset, vsub, biUnion_smul_finset, biUnion_vadd_finset, card_smul_le, card_vadd_le, coe_smul, coe_smul_finset, coe_vadd, coe_vadd_finset, coe_vsub, empty_smul, empty_vadd, empty_vsub, image_smul, image_smul_comm, image_smul_product, image_vadd, image_vadd_comm, image_vadd_product, image_vsub_product, inter_smul_subset, inter_smul_union_subset_union, inter_vadd_subset, inter_vadd_union_subset_union, inter_vsub_subset, mem_smul, mem_smul_finset, mem_vadd, mem_vadd_finset, mem_vsub, op_smul_finset_smul_eq_smul_smul_finset, op_vadd_finset_vadd_eq_vadd_vadd_finset, singleton_smul, singleton_smul_singleton, singleton_vadd, singleton_vadd_singleton, singleton_vsub, singleton_vsub_singleton, smul_def, smul_empty, smul_eq_empty, smul_finset_card_le, smul_finset_def, smul_finset_empty, smul_finset_eq_empty, smul_finset_insert, smul_finset_inter_subset, smul_finset_nonempty, smul_finset_singleton, smul_finset_subset_smul, smul_finset_subset_smul_finset, smul_finset_union, smul_inter_subset, smul_mem_smul, smul_mem_smul_finset, smul_nonempty_iff, smul_singleton, smul_subset_iff, smul_subset_smul, smul_subset_smul_left, smul_subset_smul_right, smul_union, subset_smul, subset_vadd, subset_vsub, union_smul, union_smul_inter_subset_union, union_vadd, union_vadd_inter_subset_union, union_vsub, vadd_def, vadd_empty, vadd_eq_empty, vadd_finset_card_le, vadd_finset_def, vadd_finset_empty, vadd_finset_eq_empty, vadd_finset_insert, vadd_finset_inter_subset, vadd_finset_nonempty, vadd_finset_singleton, vadd_finset_subset_vadd, vadd_finset_subset_vadd_finset, vadd_finset_union, vadd_inter_subset, vadd_mem_vadd, vadd_mem_vadd_finset, vadd_nonempty_iff, vadd_singleton, vadd_subset_iff, vadd_subset_vadd, vadd_subset_vadd_left, vadd_subset_vadd_right, vadd_union, vsub_card_le, vsub_def, vsub_empty, vsub_eq_empty, vsub_inter_subset, vsub_mem_vsub, vsub_nonempty, vsub_singleton, vsub_subset_iff, vsub_subset_vsub, vsub_subset_vsub_left, vsub_subset_vsub_right, vsub_union, toFinset_smul, toFinset_smul_set, toFinset_vadd, toFinset_vadd_set, toFinset_vsub, toFinset_smul, toFinset_smul_set, toFinset_vadd, toFinset_vadd_set, toFinset_vsub
127
Total132

Finset

Definitions

NameCategoryTheorems
smul 📖CompOp
47 mathmath: smul_mem_smul, Nonempty.zero_smul, image_smul_product, isScalarTower'', smul_finset_subset_smul, card_dvd_card_smul_right, isScalarTower', smul_singleton, smulCommClass_finset'', smul_univ, Set.toFinset_smul, smul_neg, singleton_smul, smul_subset_smul_right, smul_union, inter_smul_union_subset_union, Nonempty.smul, smul_nonempty_iff, union_smul, smul_subset_smul, Set.Finite.toFinset_smul, Fintype.piFinset_smul, op_smul_finset_smul_eq_smul_smul_finset, smul_univ₀', smulCommClass, smul_def, inter_smul_subset, smul_empty, mem_smul, card_smul_le, smul_inter_subset, subset_smul, biUnion_smul_finset, smul_subset_iff, zero_smul_subset, zero_mem_smul_iff, coe_smul, smul_zero_subset, Nonempty.smul_zero, neg_smul, smul_subset_smul_left, union_smul_inter_subset_union, smul_univ₀, smulCommClass_finset', singleton_smul_singleton, empty_smul, smul_eq_empty
smulFinset 📖CompOp
94 mathmath: isScalarTower, smul_finset_subset_smul_finset_iff, smul_finset_sdiff, mul_subset_iff_right, inv_smul_mem_iff, op_smul_finset_mul_eq_mul_smul_finset, inv_smul_finset_distrib, smul_finset_subset_smul, image_smul_distrib, smul_finset_inter, smul_finset_univ, subset_smul_finset_iff, op_smul_finset_subset_mul, inv_op_smul_finset_distrib, smul_finset_subset_smul_finset_iff₀, zero_mem_smul_finset_iff, mulDysonETransform_snd, smul_mem_smul_finset_iff, smul_mem_smul_finset_iff₀, singleton_mul, smul_inv_mul_eq_inv_mul_opSMul, smul_finset_symmDiff, smul_finset_univ₀, isScalarTower', mul_mem_smul_finset_iff, mem_inv_smul_finset_iff, smul_finset_singleton, smulCommClass_finset, smulCommClass_finset'', pairwiseDisjoint_smul_iff, smul_finset_inter_subset, smul_finset_subset_iff₀, singleton_smul, smul_finset_symmDiff₀, image_smul_comm, Set.Finite.toFinset_smul_set, smul_finset_nonempty, smul_finset_subset_iff, inv_smul_finset_distrib₀, coe_smul_finset, smul_finset_subset_smul_finset, isCentralScalar, smul_finset_neg, card_smul_inter, smul_finset_empty, mulDysonETransform_fst, mulDysonETransform.smul_finset_snd_subset_fst, Nonempty.smul_finset, image_smul, MulAction.mem_stabilizer_finset_iff_smul_finset_subset, mul_subset_iff_left, op_smul_finset_smul_eq_smul_smul_finset, inv_op_smul_finset_distrib₀, smul_finset_union, smul_mem_smul_finset, smul_finset_def, smul_finset_eq_univ, op_smul_convolution_eq_convolution_smul, smul_finset_card_le, smul_finset_eq_empty, Equiv.Perm.cycleFactorsFinset_conj_eq, Fintype.piFinset_smul_finset, smul_convolution_eq_convolution_inv_mul, neg_smul_finset, mem_smul_finset, card_inter_smul, smul_finset_insert, mulETransformRight_fst, zero_smul_finset, card_smul_inter_smul, dens_smul_finset, inv_smul_mem_iff₀, mulETransformRight_snd, mem_inv_smul_finset_iff₀, subset_smul_finset_iff₀, smul_finset_inter₀, smul_finset_sdiff₀, biUnion_op_smul_finset, biUnion_smul_finset, Set.toFinset_smul_set, zero_smul_finset_subset, card_smul_finset, mulETransformLeft_snd, smulCommClass_finset', mulETransformLeft_fst, mul_singleton, Set.powersetCard.coe_smul, smul_inv_mul_opSMul_eq_mul_of_doubling_lt_three_halves, MulAction.mem_stabilizer_finset_iff_subset_smul_finset, zero_mem_smul_finset, nsmul_piAntidiag_univ, smul_finset_subset_mul, convolution_op_smul_eq_convolution_mul_inv, nsmul_piAntidiag
vadd 📖CompOp
38 mathmath: vadd_nonempty_iff, vaddAssocClass'', vadd_eq_empty, vadd_mem_vadd, Fintype.piFinset_vadd, vadd_empty, card_vadd_le, inter_vadd_subset, mem_vadd, vadd_subset_iff, union_vadd_inter_subset_union, vadd_inter_subset, vadd_union, singleton_vadd_singleton, Nonempty.vadd, vaddCommClass_finset'', coe_vadd, subset_vadd, biUnion_vadd_finset, vadd_subset_vadd_right, op_vadd_finset_vadd_eq_vadd_vadd_finset, vadd_univ, vadd_finset_subset_vadd, Set.toFinset_vadd, vaddAssocClass', Set.Finite.toFinset_vadd, inter_vadd_union_subset_union, vadd_singleton, vadd_subset_vadd, vaddCommClass_finset', empty_vadd, vadd_def, union_vadd, vadd_subset_vadd_left, image_vadd_product, singleton_vadd, card_dvd_card_vadd_right, vaddCommClass
vaddFinset 📖CompOp
72 mathmath: Fintype.piFinset_vadd_finset, isCentralVAdd, image_vadd_comm, vadd_finset_eq_univ, neg_op_vadd_finset_distrib, coe_vadd_finset, vadd_finset_singleton, add_singleton, vadd_finset_univ, vadd_addConvolution_eq_addConvolution_neg_add, image_vadd_distrib, card_vadd_finset, op_vadd_finset_subset_add, vaddAssocClass, vadd_finset_symmDiff, vadd_finset_inter, Set.toFinset_vadd_set, addDysonETransform_snd, vadd_finset_subset_iff, vadd_finset_nonempty, Set.Finite.toFinset_vadd_set, vadd_finset_def, add_subset_iff_right, mem_vadd_finset, vaddCommClass_finset'', add_mem_vadd_finset_iff, vadd_finset_subsetSum_subset_subsetSum_insert, card_inter_vadd, addDysonETransform_fst, biUnion_op_vadd_finset, vadd_finset_card_le, mem_neg_vadd_finset_iff, op_vadd_finset_add_eq_add_vadd_finset, add_subset_iff_left, singleton_add, image_vadd, vadd_finset_union, vadd_finset_insert, vaddCommClass_finset, op_vadd_addConvolution_eq_addConvolution_vadd, vadd_finset_empty, vadd_finset_subset_add, biUnion_vadd_finset, pairwiseDisjoint_vadd_iff, AddAction.mem_stabilizer_finset_iff_subset_vadd_finset, vadd_finset_inter_subset, addETransformRight_snd, addETransformLeft_snd, op_vadd_finset_vadd_eq_vadd_vadd_finset, addDysonETransform.vadd_finset_snd_subset_fst, vadd_finset_eq_empty, addETransformLeft_fst, vadd_finset_subset_vadd, vaddAssocClass', Nonempty.vadd_finset, vadd_mem_vadd_finset_iff, card_vadd_inter, neg_vadd_mem_iff, vadd_finset_subset_vadd_finset_iff, subset_vadd_finset_iff, vadd_mem_vadd_finset, addConvolution_op_vadd_eq_addConvolution_add_neg, vaddCommClass_finset', vadd_finset_subset_vadd_finset, vadd_finset_sdiff, addETransformRight_fst, card_vadd_inter_vadd, dens_vadd_finset, neg_vadd_finset_distrib, singleton_vadd, Set.powersetCard.coe_vadd, AddAction.mem_stabilizer_finset_iff_vadd_finset_subset
vsub 📖CompOp
25 mathmath: Set.Finite.toFinset_vsub, empty_vsub, vsub_subset_vsub_left, singleton_vsub_singleton, vsub_mem_vsub, image_vsub_product, vsub_subset_vsub, vsub_subset_iff, Set.toFinset_vsub, inter_vsub_subset, vsub_eq_empty, vsub_empty, union_vsub, vsub_nonempty, vsub_union, mem_vsub, Nonempty.vsub, singleton_vsub, vsub_card_le, vsub_subset_vsub_right, subset_vsub, coe_vsub, vsub_singleton, vsub_def, vsub_inter_subset

Theorems

NameKindAssumesProvesValidatesDepends On
biUnion_smul_finset 📖mathematicalbiUnion
Finset
smulFinset
smul
biUnion_image_left
biUnion_vadd_finset 📖mathematicalbiUnion
HVAdd.hVAdd
Finset
instHVAdd
vaddFinset
vadd
biUnion_image_left
card_smul_le 📖mathematicalcard
Finset
smul
card_image₂_le
card_vadd_le 📖mathematicalcard
HVAdd.hVAdd
Finset
instHVAdd
vadd
card_image₂_le
coe_smul 📖mathematicalSetLike.coe
Finset
instSetLike
smul
Set
Set.smul
coe_image₂
coe_smul_finset 📖mathematicalSetLike.coe
Finset
instSetLike
smulFinset
Set
Set.smulSet
coe_image
coe_vadd 📖mathematicalSetLike.coe
Finset
instSetLike
HVAdd.hVAdd
instHVAdd
vadd
Set
Set.vadd
coe_image₂
coe_vadd_finset 📖mathematicalSetLike.coe
Finset
instSetLike
HVAdd.hVAdd
instHVAdd
vaddFinset
Set
Set.vaddSet
coe_image
coe_vsub 📖mathematicalSetLike.coe
Finset
instSetLike
VSub.vsub
vsub
Set
Set.vsub
coe_image₂
empty_smul 📖mathematicalFinset
smul
instEmptyCollection
image₂_empty_left
empty_vadd 📖mathematicalHVAdd.hVAdd
Finset
instHVAdd
vadd
instEmptyCollection
image₂_empty_left
empty_vsub 📖mathematicalVSub.vsub
Finset
vsub
instEmptyCollection
image₂_empty_left
image_smul 📖mathematicalimage
Finset
smulFinset
image_smul_comm 📖mathematicalimage
Finset
smulFinset
image_comm
image_smul_product 📖mathematicalimage
SProd.sprod
Finset
instSProd
smul
image_vadd 📖mathematicalimage
HVAdd.hVAdd
instHVAdd
Finset
vaddFinset
image_vadd_comm 📖mathematicalHVAdd.hVAdd
instHVAdd
image
Finset
vaddFinset
image_comm
image_vadd_product 📖mathematicalimage
HVAdd.hVAdd
instHVAdd
SProd.sprod
Finset
instSProd
vadd
image_vsub_product 📖mathematicalimage₂
VSub.vsub
Finset
vsub
inter_smul_subset 📖mathematicalFinset
instHasSubset
smul
instInter
image₂_inter_subset_left
inter_smul_union_subset_union 📖mathematicalFinset
instHasSubset
smul
instInter
instUnion
image₂_inter_union_subset_union
inter_vadd_subset 📖mathematicalFinset
instHasSubset
HVAdd.hVAdd
instHVAdd
vadd
instInter
image₂_inter_subset_left
inter_vadd_union_subset_union 📖mathematicalFinset
instHasSubset
HVAdd.hVAdd
instHVAdd
vadd
instInter
instUnion
image₂_inter_union_subset_union
inter_vsub_subset 📖mathematicalFinset
instHasSubset
VSub.vsub
vsub
instInter
image₂_inter_subset_left
mem_smul 📖mathematicalFinset
instMembership
smul
mem_image₂
mem_smul_finset 📖mathematicalFinset
instMembership
smulFinset
mem_vadd 📖mathematicalFinset
instMembership
HVAdd.hVAdd
instHVAdd
vadd
mem_image₂
mem_vadd_finset 📖mathematicalFinset
instMembership
HVAdd.hVAdd
instHVAdd
vaddFinset
mem_image
mem_vsub 📖mathematicalFinset
instMembership
VSub.vsub
vsub
mem_image₂
op_smul_finset_smul_eq_smul_smul_finset 📖mathematicalMulOpposite
MulOpposite.op
Finset
smul
smulFinset
ext
op_vadd_finset_vadd_eq_vadd_vadd_finset 📖mathematicalHVAdd.hVAdd
instHVAdd
AddOpposite
AddOpposite.op
Finset
vadd
vaddFinset
ext
mem_vadd
mem_vadd_finset
exists_exists_and_eq_and
singleton_smul 📖mathematicalFinset
smul
instSingleton
smulFinset
image₂_singleton_left
singleton_smul_singleton 📖mathematicalFinset
smul
instSingleton
image₂_singleton
singleton_vadd 📖mathematicalHVAdd.hVAdd
Finset
instHVAdd
vadd
instSingleton
vaddFinset
image₂_singleton_left
singleton_vadd_singleton 📖mathematicalHVAdd.hVAdd
Finset
instHVAdd
vadd
instSingleton
image₂_singleton
singleton_vsub 📖mathematicalVSub.vsub
Finset
vsub
instSingleton
image
image₂_singleton_left
singleton_vsub_singleton 📖mathematicalVSub.vsub
Finset
vsub
instSingleton
image₂_singleton
smul_def 📖mathematicalFinset
smul
image
SProd.sprod
instSProd
smul_empty 📖mathematicalFinset
smul
instEmptyCollection
image₂_empty_right
smul_eq_empty 📖mathematicalFinset
smul
instEmptyCollection
image₂_eq_empty_iff
smul_finset_card_le 📖mathematicalcard
Finset
smulFinset
card_image_le
smul_finset_def 📖mathematicalFinset
smulFinset
image
smul_finset_empty 📖mathematicalFinset
smulFinset
instEmptyCollection
smul_finset_eq_empty 📖mathematicalFinset
smulFinset
instEmptyCollection
image_eq_empty
smul_finset_insert 📖mathematicalFinset
smulFinset
instInsert
image_insert
smul_finset_inter_subset 📖mathematicalFinset
instHasSubset
smulFinset
instInter
image_inter_subset
smul_finset_nonempty 📖mathematicalNonempty
Finset
smulFinset
image_nonempty
smul_finset_singleton 📖mathematicalFinset
smulFinset
instSingleton
image_singleton
smul_finset_subset_smul 📖mathematicalFinset
instMembership
instHasSubset
smulFinset
smul
image_subset_image₂_right
smul_finset_subset_smul_finset 📖mathematicalFinset
instHasSubset
smulFinsetimage_subset_image
smul_finset_union 📖mathematicalFinset
smulFinset
instUnion
image_union
smul_inter_subset 📖mathematicalFinset
instHasSubset
smul
instInter
image₂_inter_subset_right
smul_mem_smul 📖mathematicalFinset
instMembership
smulmem_image₂_of_mem
smul_mem_smul_finset 📖mathematicalFinset
instMembership
smulFinsetmem_image_of_mem
smul_nonempty_iff 📖mathematicalNonempty
Finset
smul
image₂_nonempty_iff
smul_singleton 📖mathematicalFinset
smul
instSingleton
image
image₂_singleton_right
smul_subset_iff 📖mathematicalFinset
instHasSubset
smul
instMembership
image₂_subset_iff
smul_subset_smul 📖mathematicalFinset
instHasSubset
smulimage₂_subset
smul_subset_smul_left 📖mathematicalFinset
instHasSubset
smulimage₂_subset_left
smul_subset_smul_right 📖mathematicalFinset
instHasSubset
smulimage₂_subset_right
smul_union 📖mathematicalFinset
smul
instUnion
image₂_union_right
subset_smul 📖mathematicalSet
Set.instHasSubset
SetLike.coe
Finset
instSetLike
Set.smul
instHasSubset
smul
subset_set_image₂
subset_vadd 📖mathematicalSet
Set.instHasSubset
SetLike.coe
Finset
instSetLike
HVAdd.hVAdd
instHVAdd
Set.vadd
instHasSubset
vadd
subset_set_image₂
subset_vsub 📖mathematicalSet
Set.instHasSubset
SetLike.coe
Finset
instSetLike
VSub.vsub
Set.vsub
instHasSubset
vsub
subset_set_image₂
union_smul 📖mathematicalFinset
smul
instUnion
image₂_union_left
union_smul_inter_subset_union 📖mathematicalFinset
instHasSubset
smul
instUnion
instInter
image₂_union_inter_subset_union
union_vadd 📖mathematicalHVAdd.hVAdd
Finset
instHVAdd
vadd
instUnion
image₂_union_left
union_vadd_inter_subset_union 📖mathematicalFinset
instHasSubset
HVAdd.hVAdd
instHVAdd
vadd
instUnion
instInter
image₂_union_inter_subset_union
union_vsub 📖mathematicalVSub.vsub
Finset
vsub
instUnion
image₂_union_left
vadd_def 📖mathematicalHVAdd.hVAdd
Finset
instHVAdd
vadd
image
SProd.sprod
instSProd
vadd_empty 📖mathematicalHVAdd.hVAdd
Finset
instHVAdd
vadd
instEmptyCollection
image₂_empty_right
vadd_eq_empty 📖mathematicalHVAdd.hVAdd
Finset
instHVAdd
vadd
instEmptyCollection
image₂_eq_empty_iff
vadd_finset_card_le 📖mathematicalcard
HVAdd.hVAdd
Finset
instHVAdd
vaddFinset
card_image_le
vadd_finset_def 📖mathematicalHVAdd.hVAdd
Finset
instHVAdd
vaddFinset
image
vadd_finset_empty 📖mathematicalHVAdd.hVAdd
Finset
instHVAdd
vaddFinset
instEmptyCollection
vadd_finset_eq_empty 📖mathematicalHVAdd.hVAdd
Finset
instHVAdd
vaddFinset
instEmptyCollection
image_eq_empty
vadd_finset_insert 📖mathematicalHVAdd.hVAdd
Finset
instHVAdd
vaddFinset
instInsert
image_insert
vadd_finset_inter_subset 📖mathematicalFinset
instHasSubset
HVAdd.hVAdd
instHVAdd
vaddFinset
instInter
image_inter_subset
vadd_finset_nonempty 📖mathematicalNonempty
HVAdd.hVAdd
Finset
instHVAdd
vaddFinset
image_nonempty
vadd_finset_singleton 📖mathematicalHVAdd.hVAdd
Finset
instHVAdd
vaddFinset
instSingleton
image_singleton
vadd_finset_subset_vadd 📖mathematicalFinset
instMembership
instHasSubset
HVAdd.hVAdd
instHVAdd
vaddFinset
vadd
image_subset_image₂_right
vadd_finset_subset_vadd_finset 📖mathematicalFinset
instHasSubset
HVAdd.hVAdd
instHVAdd
vaddFinset
image_subset_image
vadd_finset_union 📖mathematicalHVAdd.hVAdd
Finset
instHVAdd
vaddFinset
instUnion
image_union
vadd_inter_subset 📖mathematicalFinset
instHasSubset
HVAdd.hVAdd
instHVAdd
vadd
instInter
image₂_inter_subset_right
vadd_mem_vadd 📖mathematicalFinset
instMembership
HVAdd.hVAdd
instHVAdd
vadd
mem_image₂_of_mem
vadd_mem_vadd_finset 📖mathematicalFinset
instMembership
HVAdd.hVAdd
instHVAdd
vaddFinset
mem_image_of_mem
vadd_nonempty_iff 📖mathematicalNonempty
HVAdd.hVAdd
Finset
instHVAdd
vadd
image₂_nonempty_iff
vadd_singleton 📖mathematicalHVAdd.hVAdd
Finset
instHVAdd
vadd
instSingleton
image
image₂_singleton_right
vadd_subset_iff 📖mathematicalFinset
instHasSubset
HVAdd.hVAdd
instHVAdd
vadd
instMembership
image₂_subset_iff
vadd_subset_vadd 📖mathematicalFinset
instHasSubset
HVAdd.hVAdd
instHVAdd
vadd
image₂_subset
vadd_subset_vadd_left 📖mathematicalFinset
instHasSubset
HVAdd.hVAdd
instHVAdd
vadd
image₂_subset_left
vadd_subset_vadd_right 📖mathematicalFinset
instHasSubset
HVAdd.hVAdd
instHVAdd
vadd
image₂_subset_right
vadd_union 📖mathematicalHVAdd.hVAdd
Finset
instHVAdd
vadd
instUnion
image₂_union_right
vsub_card_le 📖mathematicalcard
VSub.vsub
Finset
vsub
card_image₂_le
vsub_def 📖mathematicalVSub.vsub
Finset
vsub
image₂
vsub_empty 📖mathematicalVSub.vsub
Finset
vsub
instEmptyCollection
image₂_empty_right
vsub_eq_empty 📖mathematicalVSub.vsub
Finset
vsub
instEmptyCollection
image₂_eq_empty_iff
vsub_inter_subset 📖mathematicalFinset
instHasSubset
VSub.vsub
vsub
instInter
image₂_inter_subset_right
vsub_mem_vsub 📖mathematicalFinset
instMembership
VSub.vsub
vsub
mem_image₂_of_mem
vsub_nonempty 📖mathematicalNonempty
VSub.vsub
Finset
vsub
image₂_nonempty_iff
vsub_singleton 📖mathematicalVSub.vsub
Finset
vsub
instSingleton
image
image₂_singleton_right
vsub_subset_iff 📖mathematicalFinset
instHasSubset
VSub.vsub
vsub
instMembership
image₂_subset_iff
vsub_subset_vsub 📖mathematicalFinset
instHasSubset
VSub.vsub
vsub
image₂_subset
vsub_subset_vsub_left 📖mathematicalFinset
instHasSubset
VSub.vsub
vsub
image₂_subset_left
vsub_subset_vsub_right 📖mathematicalFinset
instHasSubset
VSub.vsub
vsub
image₂_subset_right
vsub_union 📖mathematicalVSub.vsub
Finset
vsub
instUnion
image₂_union_right

Finset.Nonempty

Theorems

NameKindAssumesProvesValidatesDepends On
of_smul_left 📖Finset.Nonempty
Finset
Finset.smul
of_image₂_left
of_smul_right 📖Finset.Nonempty
Finset
Finset.smul
of_image₂_right
of_vadd_left 📖Finset.Nonempty
HVAdd.hVAdd
Finset
instHVAdd
Finset.vadd
of_image₂_left
of_vadd_right 📖Finset.Nonempty
HVAdd.hVAdd
Finset
instHVAdd
Finset.vadd
of_image₂_right
of_vsub_left 📖Finset.Nonempty
VSub.vsub
Finset
Finset.vsub
of_image₂_left
of_vsub_right 📖Finset.Nonempty
VSub.vsub
Finset
Finset.vsub
of_image₂_right
smul 📖mathematicalFinset.NonemptyFinset
Finset.smul
image₂
smul_finset 📖mathematicalFinset.NonemptyFinset
Finset.smulFinset
image
vadd 📖mathematicalFinset.NonemptyHVAdd.hVAdd
Finset
instHVAdd
Finset.vadd
image₂
vadd_finset 📖mathematicalFinset.NonemptyHVAdd.hVAdd
Finset
instHVAdd
Finset.vaddFinset
image
vsub 📖mathematicalFinset.NonemptyVSub.vsub
Finset
Finset.vsub
image₂

Set

Theorems

NameKindAssumesProvesValidatesDepends On
toFinset_smul 📖mathematicaltoFinset
Set
smul
Finset
Finset.smul
toFinset_image2
toFinset_smul_set 📖mathematicaltoFinset
Set
smulSet
Finset
Finset.smulFinset
toFinset_image
toFinset_vadd 📖mathematicaltoFinset
HVAdd.hVAdd
Set
instHVAdd
vadd
Finset
Finset.vadd
toFinset_image2
toFinset_vadd_set 📖mathematicaltoFinset
HVAdd.hVAdd
Set
instHVAdd
vaddSet
Finset
Finset.vaddFinset
toFinset_image
toFinset_vsub 📖mathematicaltoFinset
VSub.vsub
Set
vsub
Finset
Finset.vsub
toFinset_image2

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
toFinset_smul 📖mathematicaltoFinset
Set
Set.smul
Finset
Finset.smul
toFinset_image2
image2
toFinset_smul_set 📖mathematicaltoFinset
Set
Set.smulSet
Finset
Finset.smulFinset
toFinset_image
toFinset_vadd 📖mathematicaltoFinset
HVAdd.hVAdd
Set
instHVAdd
Set.vadd
Finset
Finset.vadd
toFinset_image2
image2
toFinset_vadd_set 📖mathematicaltoFinset
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
Finset
Finset.vaddFinset
toFinset_image
toFinset_vsub 📖mathematicaltoFinset
VSub.vsub
Set
Set.vsub
Finset
Finset.vsub
toFinset_image2
image2

---

← Back to Index