Documentation Verification Report

Prod

๐Ÿ“ Source: Mathlib/Algebra/Group/Prod.lean

Statistics

MetricCount
DefinitionsprodAddUnits, prodAssoc, prodComm, prodCongr, prodProdProdComm, prodUnique, uniqueProd, coprod, fst, prod, prodMap, snd, coprod, fst, inl, inr, prod, prodMap, snd, embedProduct, coprod, fst, inl, inr, prod, prodMap, snd, prodAssoc, prodComm, prodCongr, prodProdProdComm, prodUnique, prodUnits, uniqueProd, coprod, fst, prod, prodMap, snd, SubtractionCommMonoid, instAddCancelCommMonoid, instAddCancelMonoid, instAddCommGroup, instAddCommMonoid, instAddCommSemigroup, instAddGroup, instAddLeftCancelMonoid, instAddLeftCancelSemigroup, instAddMonoid, instAddRightCancelMonoid, instAddRightCancelSemigroup, instAddSemigroup, instAddZeroClass, instCancelCommMonoid, instCancelMonoid, instCommGroup, instCommMonoid, instCommSemigroup, instDivInvMonoid, instDivisionCommMonoid, instDivisionMonoid, instGroup, instInvolutiveInv, instInvolutiveNeg, instLeftCancelMonoid, instLeftCancelSemigroup, instMonoid, instMulOneClass, instRightCancelMonoid, instRightCancelSemigroup, instSemigroup, instSubtractionMonoid, subNegMonoid, embedProduct, addAddHom, addAddMonoidHom, divMonoidHom, mulMonoidHom, mulMulHom, subAddMonoidHom
80
Theoremsprod, coe_prodAssoc, coe_prodAssoc_symm, coe_prodComm, coe_prodComm_symm, prodProdProdComm_apply, prodProdProdComm_toEquiv, prodUnique_apply, prodUnique_symm_apply, uniqueProd_apply, uniqueProd_symm_apply, coe_fst, coe_prod, coe_prodMap, coe_snd, comp_coprod, coprod_apply, fst_comp_prod, prodMap_def, prod_apply, prod_comp_prodMap, prod_unique, snd_comp_prod, addCommute_inl_inr, coe_fst, coe_prod, coe_prodMap, coe_snd, comp_coprod, coprod_apply, coprod_comp_inl, coprod_comp_inr, coprod_inl_inr, coprod_unique, fst_comp_inl, fst_comp_inr, fst_comp_prod, inl_apply, inr_apply, prodMap_def, prod_apply, prod_comp_prodMap, prod_unique, snd_comp_inl, snd_comp_inr, snd_comp_prod, prod, embedProduct_apply, embedProduct_injective, prod, coe_fst, coe_prod, coe_prodMap, coe_snd, commute_inl_inr, comp_coprod, coprod_apply, coprod_comp_inl, coprod_comp_inr, coprod_inl_inr, coprod_unique, fst_comp_inl, fst_comp_inr, fst_comp_prod, inl_apply, inr_apply, prodMap_def, prod_apply, prod_comp_prodMap, prod_unique, snd_comp_inl, snd_comp_inr, snd_comp_prod, coe_prodAssoc, coe_prodAssoc_symm, coe_prodComm, coe_prodComm_symm, prodProdProdComm_apply, prodProdProdComm_symm, prodProdProdComm_toEquiv, prodUnique_apply, prodUnique_symm_apply, uniqueProd_apply, uniqueProd_symm_apply, coe_fst, coe_prod, coe_prodMap, coe_snd, comp_coprod, coprod_apply, fst_comp_prod, prodMap_def, prod_apply, prod_comp_prodMap, prod_unique, snd_comp_prod, addCommute_iff, addSemiconjBy_iff, commute_iff, fst_add_snd, fst_mul_snd, instIsAddTorsionFree, instIsCancelAdd, instIsCancelMul, instIsLeftCancelAdd, instIsLeftCancelMul, instIsMulTorsionFree, instIsRightCancelAdd, instIsRightCancelMul, instSubsingletonAddUnits, instSubsingletonUnits, isAddUnit_iff, isUnit_iff, mk_one_mul_mk_one, mk_zero_add_mk_zero, one_mk_mul_one_mk, semiconjBy_iff, zero_mk_add_zero_mk, prod, embedProduct_apply, embedProduct_injective, addAddHom_apply, addAddMonoidHom_apply, divMonoidHom_apply, mulMonoidHom_apply, mulMulHom_apply, subAddMonoidHom_apply
127
Total207

AddCommute

Theorems

NameKindAssumesProvesValidatesDepends On
prod ๐Ÿ“–mathematicalAddCommuteProd.instAddโ€”AddSemiconjBy.prod

AddEquiv

Definitions

NameCategoryTheorems
prodAddUnits ๐Ÿ“–CompOpโ€”
prodAssoc ๐Ÿ“–CompOp
3 mathmath: coe_prodAssoc, coe_prodAssoc_symm, LinearEquiv.prodAssoc_apply
prodComm ๐Ÿ“–CompOp
2 mathmath: coe_prodComm_symm, coe_prodComm
prodCongr ๐Ÿ“–CompOp
2 mathmath: QuadraticForm.dualProdIsometry_invFun, QuadraticForm.dualProdIsometry_toFun
prodProdProdComm ๐Ÿ“–CompOp
4 mathmath: prodProdProdComm_apply, prodProdProdComm_toEquiv, RingEquiv.prodProdProdComm_toAddEquiv, LinearEquiv.prodProdProdComm_toAddEquiv
prodUnique ๐Ÿ“–CompOp
2 mathmath: prodUnique_apply, prodUnique_symm_apply
uniqueProd ๐Ÿ“–CompOp
2 mathmath: uniqueProd_symm_apply, uniqueProd_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_prodAssoc ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddEquiv
Prod.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
EquivLike.toFunLike
instEquivLike
prodAssoc
Equiv
Equiv.instEquivLike
Equiv.prodAssoc
โ€”โ€”
coe_prodAssoc_symm ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddEquiv
Prod.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
EquivLike.toFunLike
instEquivLike
symm
prodAssoc
Equiv
Equiv.instEquivLike
Equiv.symm
Equiv.prodAssoc
โ€”โ€”
coe_prodComm ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddEquiv
Prod.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
EquivLike.toFunLike
instEquivLike
prodComm
โ€”โ€”
coe_prodComm_symm ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddEquiv
Prod.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
EquivLike.toFunLike
instEquivLike
symm
prodComm
โ€”โ€”
prodProdProdComm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddEquiv
Prod.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
EquivLike.toFunLike
instEquivLike
prodProdProdComm
โ€”โ€”
prodProdProdComm_toEquiv ๐Ÿ“–mathematicalโ€”EquivLike.toEquiv
AddEquiv
Prod.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
instEquivLike
prodProdProdComm
Equiv.prodProdProdComm
โ€”โ€”
prodUnique_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddEquiv
Prod.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
EquivLike.toFunLike
instEquivLike
prodUnique
โ€”โ€”
prodUnique_symm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddEquiv
AddZero.toAdd
AddZeroClass.toAddZero
Prod.instAdd
EquivLike.toFunLike
instEquivLike
symm
prodUnique
Unique.instInhabited
โ€”โ€”
uniqueProd_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddEquiv
Prod.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
EquivLike.toFunLike
instEquivLike
uniqueProd
โ€”โ€”
uniqueProd_symm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddEquiv
AddZero.toAdd
AddZeroClass.toAddZero
Prod.instAdd
EquivLike.toFunLike
instEquivLike
symm
uniqueProd
Unique.instInhabited
โ€”โ€”

AddHom

Definitions

NameCategoryTheorems
coprod ๐Ÿ“–CompOp
2 mathmath: comp_coprod, coprod_apply
fst ๐Ÿ“–CompOp
7 mathmath: prodMap_def, AddSubsemigroup.le_prod_iff, prod_unique, coe_fst, fst_comp_prod, AddSubsemigroup.srange_fst, AddSubsemigroup.prod_top
prod ๐Ÿ“–CompOp
7 mathmath: coe_prod, prodMap_def, prod_apply, prod_unique, fst_comp_prod, snd_comp_prod, prod_comp_prodMap
prodMap ๐Ÿ“–CompOp
4 mathmath: coe_prodMap, prod_map_comap_prod', prodMap_def, prod_comp_prodMap
snd ๐Ÿ“–CompOp
7 mathmath: AddSubsemigroup.srange_snd, prodMap_def, AddSubsemigroup.le_prod_iff, prod_unique, AddSubsemigroup.top_prod, coe_snd, snd_comp_prod

Theorems

NameKindAssumesProvesValidatesDepends On
coe_fst ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddHom
Prod.instAdd
funLike
fst
โ€”โ€”
coe_prod ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddHom
Prod.instAdd
funLike
prod
Pi.prod
โ€”โ€”
coe_prodMap ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddHom
Prod.instAdd
funLike
prodMap
โ€”โ€”
coe_snd ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddHom
Prod.instAdd
funLike
snd
โ€”โ€”
comp_coprod ๐Ÿ“–mathematicalโ€”comp
Prod.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
coprod
โ€”ext
map_add
addHomClass
coprod_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddHom
Prod.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
funLike
coprod
โ€”โ€”
fst_comp_prod ๐Ÿ“–mathematicalโ€”comp
Prod.instAdd
fst
prod
โ€”ext
prodMap_def ๐Ÿ“–mathematicalโ€”prodMap
prod
Prod.instAdd
comp
fst
snd
โ€”โ€”
prod_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddHom
Prod.instAdd
funLike
prod
โ€”โ€”
prod_comp_prodMap ๐Ÿ“–mathematicalโ€”comp
Prod.instAdd
prodMap
prod
โ€”โ€”
prod_unique ๐Ÿ“–mathematicalโ€”prod
comp
Prod.instAdd
fst
snd
โ€”ext
snd_comp_prod ๐Ÿ“–mathematicalโ€”comp
Prod.instAdd
snd
prod
โ€”ext

AddMonoidHom

Definitions

NameCategoryTheorems
coprod ๐Ÿ“–CompOp
7 mathmath: comp_coprod, coprod_unique, AddSubmonoid.sup_eq_range, coprod_comp_inl, coprod_inl_inr, coprod_apply, coprod_comp_inr
fst ๐Ÿ“–CompOp
25 mathmath: AddSubmonoid.prod_top, AddSubgroup.le_prod_iff, fst_comp_inr, ker_fst, AddMonoid.Coprod.fst_comp_toProd, prod_unique, AddCommGrpCat.binaryProductLimitCone_isLimit_lift, AddSubmonoid.le_prod_iff, AddCommGrpCat.binaryProductLimitCone_cone_ฯ€_app_left, AddGrpCat.binaryProductLimitCone_isLimit_lift, AddSubgroup.prod_top, mker_fst, AddSubmonoid.mrange_inr', fst_comp_prod, AddSubmonoid.mrange_fst, AddCommGrpCat.biprodIsoProd_inv_comp_desc, fst_mono, AddCommGrpCat.biprodIsoProd_inv_comp_fst, CategoryTheory.CommShiftโ‚‚Setup.z_zeroโ‚‚, CategoryTheory.CommShiftโ‚‚Setup.z_zeroโ‚, fst_comp_inl, CategoryTheory.CommShiftโ‚‚Setup.hฮต, coe_fst, CategoryTheory.CommShiftโ‚‚Setup.int_z, prodMap_def
inl ๐Ÿ“–CompOp
21 mathmath: AddSubmonoid.prod_le_iff, inl_strictMono, coprod_unique, noncommCoprod_inl_inr, noncommCoprod_comp_inl, noncommCoprod_unique, inl_apply, AddSubmonoid.map_inl, coprod_comp_inl, AddSubmonoid.mrange_inl_sup_mrange_inr, inl_mono, snd_comp_inl, Isometry.inl, coprod_inl_inr, AddSubmonoid.mrange_inl, AddSubgroup.prod_le_iff, addCommute_inl_inr, AddSubmonoid.mrange_inl', AddMonoid.Coprod.toProd_comp_inl, mker_inl, fst_comp_inl
inr ๐Ÿ“–CompOp
21 mathmath: AddSubmonoid.prod_le_iff, AddMonoid.Coprod.toProd_comp_inr, fst_comp_inr, coprod_unique, noncommCoprod_inl_inr, noncommCoprod_unique, inr_mono, AddSubmonoid.mrange_inr', AddSubmonoid.mrange_inl_sup_mrange_inr, AddSubmonoid.mrange_inr, coprod_inl_inr, noncommCoprod_comp_inr, AddSubgroup.prod_le_iff, addCommute_inl_inr, snd_comp_inr, AddSubmonoid.map_inr, Isometry.inr, mker_inr, coprod_comp_inr, inr_strictMono, inr_apply
prod ๐Ÿ“–CompOp
13 mathmath: mgraph_eq_mrange_prod, prod_comp_prodMap, coe_prod, ker_prod, prod_unique, AddCommGrpCat.binaryProductLimitCone_isLimit_lift, graph_eq_range_prod, AddGrpCat.binaryProductLimitCone_isLimit_lift, AddMonoid.Coprod.fst_prod_snd, fst_comp_prod, snd_comp_prod, prod_apply, prodMap_def
prodMap ๐Ÿ“–CompOp
9 mathmath: coe_prodMap, prod_comp_prodMap, prod_map_comap_prod', AddSubgroup.goursat_surjective, prodMap_comap_prod, mker_prod_map, ker_prodMap, AddSubgroup.goursat, prodMap_def
snd ๐Ÿ“–CompOp
25 mathmath: AddMonoid.Coprod.snd_comp_toProd, AddSubgroup.le_prod_iff, prod_unique, AddCommGrpCat.binaryProductLimitCone_isLimit_lift, AddSubmonoid.le_prod_iff, AddGrpCat.binaryProductLimitCone_isLimit_lift, snd_mono, ker_snd, coe_snd, snd_comp_inl, AddSubgroup.top_prod, AddSubmonoid.top_prod, AddSubmonoid.mrange_snd, snd_comp_prod, AddCommGrpCat.biprodIsoProd_inv_comp_desc, AddCommGrpCat.biprodIsoProd_inv_comp_snd, snd_comp_inr, AddSubmonoid.mrange_inl', CategoryTheory.CommShiftโ‚‚Setup.z_zeroโ‚‚, AddCommGrpCat.binaryProductLimitCone_cone_ฯ€_app_right, CategoryTheory.CommShiftโ‚‚Setup.z_zeroโ‚, CategoryTheory.CommShiftโ‚‚Setup.hฮต, mker_snd, CategoryTheory.CommShiftโ‚‚Setup.int_z, prodMap_def

Theorems

NameKindAssumesProvesValidatesDepends On
addCommute_inl_inr ๐Ÿ“–mathematicalโ€”AddCommute
Prod.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
DFunLike.coe
AddMonoidHom
Prod.instAddZeroClass
instFunLike
inl
inr
โ€”AddCommute.prod
AddCommute.zero_right
AddCommute.zero_left
coe_fst ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Prod.instAddZeroClass
instFunLike
fst
โ€”โ€”
coe_prod ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Prod.instAddZeroClass
instFunLike
prod
Pi.prod
โ€”โ€”
coe_prodMap ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Prod.instAddZeroClass
instFunLike
prodMap
โ€”โ€”
coe_snd ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Prod.instAddZeroClass
instFunLike
snd
โ€”โ€”
comp_coprod ๐Ÿ“–mathematicalโ€”comp
AddZeroClass.toAddZero
Prod.instAddZeroClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
coprod
โ€”ext
map_add
AddMonoidHomClass.toAddHomClass
instAddMonoidHomClass
coprod_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Prod.instAddZeroClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
coprod
AddZero.toAdd
โ€”โ€”
coprod_comp_inl ๐Ÿ“–mathematicalโ€”comp
AddZeroClass.toAddZero
Prod.instAddZeroClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
coprod
inl
โ€”ext
map_zero
AddMonoidHomClass.toZeroHomClass
instAddMonoidHomClass
add_zero
coprod_comp_inr ๐Ÿ“–mathematicalโ€”comp
AddZeroClass.toAddZero
Prod.instAddZeroClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
coprod
inr
โ€”ext
map_zero
AddMonoidHomClass.toZeroHomClass
instAddMonoidHomClass
zero_add
coprod_inl_inr ๐Ÿ“–mathematicalโ€”coprod
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Prod.instAddCommMonoid
inl
inr
id
AddZeroClass.toAddZero
Prod.instAddZeroClass
โ€”coprod_unique
coprod_unique ๐Ÿ“–mathematicalโ€”coprod
comp
AddZeroClass.toAddZero
Prod.instAddZeroClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
inl
inr
โ€”ext
map_add
AddMonoidHomClass.toAddHomClass
instAddMonoidHomClass
add_zero
zero_add
fst_comp_inl ๐Ÿ“–mathematicalโ€”comp
AddZeroClass.toAddZero
Prod.instAddZeroClass
fst
inl
id
โ€”โ€”
fst_comp_inr ๐Ÿ“–mathematicalโ€”comp
AddZeroClass.toAddZero
Prod.instAddZeroClass
fst
inr
AddMonoidHom
instZeroAddMonoidHom
โ€”โ€”
fst_comp_prod ๐Ÿ“–mathematicalโ€”comp
AddZeroClass.toAddZero
Prod.instAddZeroClass
fst
prod
โ€”ext
inl_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Prod.instAddZeroClass
instFunLike
inl
AddZero.toZero
โ€”โ€”
inr_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Prod.instAddZeroClass
instFunLike
inr
AddZero.toZero
โ€”โ€”
prodMap_def ๐Ÿ“–mathematicalโ€”prodMap
prod
Prod.instAddZeroClass
comp
AddZeroClass.toAddZero
fst
snd
โ€”โ€”
prod_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Prod.instAddZeroClass
instFunLike
prod
โ€”โ€”
prod_comp_prodMap ๐Ÿ“–mathematicalโ€”comp
AddZeroClass.toAddZero
Prod.instAddZeroClass
prodMap
prod
โ€”โ€”
prod_unique ๐Ÿ“–mathematicalโ€”prod
comp
AddZeroClass.toAddZero
Prod.instAddZeroClass
fst
snd
โ€”ext
snd_comp_inl ๐Ÿ“–mathematicalโ€”comp
AddZeroClass.toAddZero
Prod.instAddZeroClass
snd
inl
AddMonoidHom
instZeroAddMonoidHom
โ€”โ€”
snd_comp_inr ๐Ÿ“–mathematicalโ€”comp
AddZeroClass.toAddZero
Prod.instAddZeroClass
snd
inr
id
โ€”โ€”
snd_comp_prod ๐Ÿ“–mathematicalโ€”comp
AddZeroClass.toAddZero
Prod.instAddZeroClass
snd
prod
โ€”ext

AddSemiconjBy

Theorems

NameKindAssumesProvesValidatesDepends On
prod ๐Ÿ“–mathematicalAddSemiconjByProd.instAddโ€”โ€”

AddUnits

Definitions

NameCategoryTheorems
embedProduct ๐Ÿ“–CompOp
7 mathmath: embedProduct_injective, embedProduct_apply, range_embedProduct, continuous_embedProduct, isClosedEmbedding_embedProduct, isEmbedding_embedProduct, isInducing_embedProduct

Theorems

NameKindAssumesProvesValidatesDepends On
embedProduct_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddMonoidHom
AddUnits
AddOpposite
AddZeroClass.toAddZero
instAddZeroClass
Prod.instAddZeroClass
AddMonoid.toAddZeroClass
AddOpposite.instAddZeroClass
AddMonoidHom.instFunLike
embedProduct
val
AddOpposite.op
instNeg
โ€”โ€”
embedProduct_injective ๐Ÿ“–mathematicalโ€”AddUnits
AddOpposite
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
instAddZeroClass
Prod.instAddZeroClass
AddMonoid.toAddZeroClass
AddOpposite.instAddZeroClass
AddMonoidHom.instFunLike
embedProduct
โ€”ext

Commute

Theorems

NameKindAssumesProvesValidatesDepends On
prod ๐Ÿ“–mathematicalCommuteProd.instMulโ€”SemiconjBy.prod

MonoidHom

Definitions

NameCategoryTheorems
coprod ๐Ÿ“–CompOp
7 mathmath: coprod_apply, coprod_comp_inr, coprod_inl_inr, coprod_unique, Submonoid.sup_eq_range, coprod_comp_inl, comp_coprod
fst ๐Ÿ“–CompOp
18 mathmath: Submonoid.mrange_inr', Submonoid.prod_top, GrpCat.binaryProductLimitCone_isLimit_lift, fst_comp_inr, fst_comp_inl, prodMap_def, Subgroup.le_prod_iff, Submonoid.le_prod_iff, Subgroup.prod_top, mker_fst, ker_fst, fst_mono, fst_comp_prod, prod_unique, coe_fst, Submonoid.mrange_fst, Monoid.Coprod.fst_comp_toProd, CommGrpCat.binaryProductLimitCone_isLimit_lift
inl ๐Ÿ“–CompOp
20 mathmath: Submonoid.mrange_inl', Submonoid.mrange_inl_sup_mrange_inr, mker_inl, noncommCoprod_unique, fst_comp_inl, inl_mono, inl_apply, noncommCoprod_inl_inr, commute_inl_inr, coprod_inl_inr, Subgroup.prod_le_iff, inl_strictMono, coprod_unique, Monoid.Coprod.toProd_comp_inl, snd_comp_inl, Submonoid.mrange_inl, Submonoid.prod_le_iff, Submonoid.map_inl, noncommCoprod_comp_inl, coprod_comp_inl
inr ๐Ÿ“–CompOp
20 mathmath: Submonoid.mrange_inr', Submonoid.map_inr, coprod_comp_inr, noncommCoprod_comp_inr, Submonoid.mrange_inl_sup_mrange_inr, inr_apply, inr_mono, Submonoid.mrange_inr, fst_comp_inr, noncommCoprod_unique, snd_comp_inr, mker_inr, noncommCoprod_inl_inr, commute_inl_inr, coprod_inl_inr, Subgroup.prod_le_iff, Monoid.Coprod.toProd_comp_inr, coprod_unique, inr_strictMono, Submonoid.prod_le_iff
prod ๐Ÿ“–CompOp
13 mathmath: prod_comp_prodMap, graph_eq_range_prod, GrpCat.binaryProductLimitCone_isLimit_lift, prodMap_def, mgraph_eq_mrange_prod, snd_comp_prod, prod_apply, ker_prod, fst_comp_prod, prod_unique, CommGrpCat.binaryProductLimitCone_isLimit_lift, Monoid.Coprod.fst_prod_snd, coe_prod
prodMap ๐Ÿ“–CompOp
9 mathmath: prod_comp_prodMap, ker_prodMap, coe_prodMap, prod_map_comap_prod', prodMap_def, Subgroup.goursat_surjective, prodMap_comap_prod, mker_prod_map, Subgroup.goursat
snd ๐Ÿ“–CompOp
18 mathmath: mker_snd, Submonoid.mrange_inl', Submonoid.top_prod, coe_snd, Subgroup.top_prod, GrpCat.binaryProductLimitCone_isLimit_lift, snd_comp_inr, Monoid.Coprod.snd_comp_toProd, prodMap_def, Subgroup.le_prod_iff, snd_comp_prod, Submonoid.le_prod_iff, Submonoid.mrange_snd, prod_unique, snd_comp_inl, CommGrpCat.binaryProductLimitCone_isLimit_lift, ker_snd, snd_mono

Theorems

NameKindAssumesProvesValidatesDepends On
coe_fst ๐Ÿ“–mathematicalโ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Prod.instMulOneClass
instFunLike
fst
โ€”โ€”
coe_prod ๐Ÿ“–mathematicalโ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Prod.instMulOneClass
instFunLike
prod
Pi.prod
โ€”โ€”
coe_prodMap ๐Ÿ“–mathematicalโ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Prod.instMulOneClass
instFunLike
prodMap
โ€”โ€”
coe_snd ๐Ÿ“–mathematicalโ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Prod.instMulOneClass
instFunLike
snd
โ€”โ€”
commute_inl_inr ๐Ÿ“–mathematicalโ€”Commute
Prod.instMul
MulOne.toMul
MulOneClass.toMulOne
DFunLike.coe
MonoidHom
Prod.instMulOneClass
instFunLike
inl
inr
โ€”Commute.prod
Commute.one_right
Commute.one_left
comp_coprod ๐Ÿ“–mathematicalโ€”comp
MulOneClass.toMulOne
Prod.instMulOneClass
Monoid.toMulOneClass
CommMonoid.toMonoid
coprod
โ€”ext
map_mul
MonoidHomClass.toMulHomClass
instMonoidHomClass
coprod_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Prod.instMulOneClass
Monoid.toMulOneClass
CommMonoid.toMonoid
instFunLike
coprod
MulOne.toMul
โ€”โ€”
coprod_comp_inl ๐Ÿ“–mathematicalโ€”comp
MulOneClass.toMulOne
Prod.instMulOneClass
Monoid.toMulOneClass
CommMonoid.toMonoid
coprod
inl
โ€”ext
map_one
MonoidHomClass.toOneHomClass
instMonoidHomClass
mul_one
coprod_comp_inr ๐Ÿ“–mathematicalโ€”comp
MulOneClass.toMulOne
Prod.instMulOneClass
Monoid.toMulOneClass
CommMonoid.toMonoid
coprod
inr
โ€”ext
map_one
MonoidHomClass.toOneHomClass
instMonoidHomClass
one_mul
coprod_inl_inr ๐Ÿ“–mathematicalโ€”coprod
Monoid.toMulOneClass
CommMonoid.toMonoid
Prod.instCommMonoid
inl
inr
id
MulOneClass.toMulOne
Prod.instMulOneClass
โ€”coprod_unique
coprod_unique ๐Ÿ“–mathematicalโ€”coprod
comp
MulOneClass.toMulOne
Prod.instMulOneClass
Monoid.toMulOneClass
CommMonoid.toMonoid
inl
inr
โ€”ext
MonoidHomClass.toMulHomClass
instMonoidHomClass
mul_one
one_mul
fst_comp_inl ๐Ÿ“–mathematicalโ€”comp
MulOneClass.toMulOne
Prod.instMulOneClass
fst
inl
id
โ€”โ€”
fst_comp_inr ๐Ÿ“–mathematicalโ€”comp
MulOneClass.toMulOne
Prod.instMulOneClass
fst
inr
MonoidHom
instOneMonoidHom
โ€”โ€”
fst_comp_prod ๐Ÿ“–mathematicalโ€”comp
MulOneClass.toMulOne
Prod.instMulOneClass
fst
prod
โ€”ext
inl_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Prod.instMulOneClass
instFunLike
inl
MulOne.toOne
โ€”โ€”
inr_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Prod.instMulOneClass
instFunLike
inr
MulOne.toOne
โ€”โ€”
prodMap_def ๐Ÿ“–mathematicalโ€”prodMap
prod
Prod.instMulOneClass
comp
MulOneClass.toMulOne
fst
snd
โ€”โ€”
prod_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Prod.instMulOneClass
instFunLike
prod
โ€”โ€”
prod_comp_prodMap ๐Ÿ“–mathematicalโ€”comp
MulOneClass.toMulOne
Prod.instMulOneClass
prodMap
prod
โ€”โ€”
prod_unique ๐Ÿ“–mathematicalโ€”prod
comp
MulOneClass.toMulOne
Prod.instMulOneClass
fst
snd
โ€”ext
snd_comp_inl ๐Ÿ“–mathematicalโ€”comp
MulOneClass.toMulOne
Prod.instMulOneClass
snd
inl
MonoidHom
instOneMonoidHom
โ€”โ€”
snd_comp_inr ๐Ÿ“–mathematicalโ€”comp
MulOneClass.toMulOne
Prod.instMulOneClass
snd
inr
id
โ€”โ€”
snd_comp_prod ๐Ÿ“–mathematicalโ€”comp
MulOneClass.toMulOne
Prod.instMulOneClass
snd
prod
โ€”ext

MulEquiv

Definitions

NameCategoryTheorems
prodAssoc ๐Ÿ“–CompOp
2 mathmath: coe_prodAssoc, coe_prodAssoc_symm
prodComm ๐Ÿ“–CompOp
2 mathmath: coe_prodComm_symm, coe_prodComm
prodCongr ๐Ÿ“–CompOpโ€”
prodProdProdComm ๐Ÿ“–CompOp
4 mathmath: prodProdProdComm_apply, prodProdProdComm_toEquiv, RingEquiv.prodProdProdComm_toMulEquiv, prodProdProdComm_symm
prodUnique ๐Ÿ“–CompOp
2 mathmath: prodUnique_symm_apply, prodUnique_apply
prodUnits ๐Ÿ“–CompOpโ€”
uniqueProd ๐Ÿ“–CompOp
2 mathmath: uniqueProd_symm_apply, uniqueProd_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_prodAssoc ๐Ÿ“–mathematicalโ€”DFunLike.coe
MulEquiv
Prod.instMul
MulOne.toMul
MulOneClass.toMulOne
EquivLike.toFunLike
instEquivLike
prodAssoc
Equiv
Equiv.instEquivLike
Equiv.prodAssoc
โ€”โ€”
coe_prodAssoc_symm ๐Ÿ“–mathematicalโ€”DFunLike.coe
MulEquiv
Prod.instMul
MulOne.toMul
MulOneClass.toMulOne
EquivLike.toFunLike
instEquivLike
symm
prodAssoc
Equiv
Equiv.instEquivLike
Equiv.symm
Equiv.prodAssoc
โ€”โ€”
coe_prodComm ๐Ÿ“–mathematicalโ€”DFunLike.coe
MulEquiv
Prod.instMul
MulOne.toMul
MulOneClass.toMulOne
EquivLike.toFunLike
instEquivLike
prodComm
โ€”โ€”
coe_prodComm_symm ๐Ÿ“–mathematicalโ€”DFunLike.coe
MulEquiv
Prod.instMul
MulOne.toMul
MulOneClass.toMulOne
EquivLike.toFunLike
instEquivLike
symm
prodComm
โ€”โ€”
prodProdProdComm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
MulEquiv
Prod.instMul
MulOne.toMul
MulOneClass.toMulOne
EquivLike.toFunLike
instEquivLike
prodProdProdComm
โ€”โ€”
prodProdProdComm_symm ๐Ÿ“–mathematicalโ€”symm
Prod.instMul
MulOne.toMul
MulOneClass.toMulOne
prodProdProdComm
โ€”โ€”
prodProdProdComm_toEquiv ๐Ÿ“–mathematicalโ€”EquivLike.toEquiv
MulEquiv
Prod.instMul
MulOne.toMul
MulOneClass.toMulOne
instEquivLike
prodProdProdComm
Equiv.prodProdProdComm
โ€”โ€”
prodUnique_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
MulEquiv
Prod.instMul
MulOne.toMul
MulOneClass.toMulOne
EquivLike.toFunLike
instEquivLike
prodUnique
โ€”โ€”
prodUnique_symm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Prod.instMul
EquivLike.toFunLike
instEquivLike
symm
prodUnique
Unique.instInhabited
โ€”โ€”
uniqueProd_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
MulEquiv
Prod.instMul
MulOne.toMul
MulOneClass.toMulOne
EquivLike.toFunLike
instEquivLike
uniqueProd
โ€”โ€”
uniqueProd_symm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Prod.instMul
EquivLike.toFunLike
instEquivLike
symm
uniqueProd
Unique.instInhabited
โ€”โ€”

MulHom

Definitions

NameCategoryTheorems
coprod ๐Ÿ“–CompOp
2 mathmath: comp_coprod, coprod_apply
fst ๐Ÿ“–CompOp
7 mathmath: coe_fst, prodMap_def, prod_unique, Subsemigroup.prod_top, Subsemigroup.srange_fst, fst_comp_prod, Subsemigroup.le_prod_iff
prod ๐Ÿ“–CompOp
7 mathmath: prodMap_def, coe_prod, prod_unique, prod_apply, snd_comp_prod, fst_comp_prod, prod_comp_prodMap
prodMap ๐Ÿ“–CompOp
4 mathmath: coe_prodMap, prodMap_def, prod_map_comap_prod', prod_comp_prodMap
snd ๐Ÿ“–CompOp
7 mathmath: coe_snd, Subsemigroup.srange_snd, prodMap_def, prod_unique, Subsemigroup.top_prod, snd_comp_prod, Subsemigroup.le_prod_iff

Theorems

NameKindAssumesProvesValidatesDepends On
coe_fst ๐Ÿ“–mathematicalโ€”DFunLike.coe
MulHom
Prod.instMul
funLike
fst
โ€”โ€”
coe_prod ๐Ÿ“–mathematicalโ€”DFunLike.coe
MulHom
Prod.instMul
funLike
prod
Pi.prod
โ€”โ€”
coe_prodMap ๐Ÿ“–mathematicalโ€”DFunLike.coe
MulHom
Prod.instMul
funLike
prodMap
โ€”โ€”
coe_snd ๐Ÿ“–mathematicalโ€”DFunLike.coe
MulHom
Prod.instMul
funLike
snd
โ€”โ€”
comp_coprod ๐Ÿ“–mathematicalโ€”comp
Prod.instMul
CommMagma.toMul
CommSemigroup.toCommMagma
coprod
โ€”ext
map_mul
mulHomClass
coprod_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
MulHom
Prod.instMul
CommMagma.toMul
CommSemigroup.toCommMagma
funLike
coprod
โ€”โ€”
fst_comp_prod ๐Ÿ“–mathematicalโ€”comp
Prod.instMul
fst
prod
โ€”ext
prodMap_def ๐Ÿ“–mathematicalโ€”prodMap
prod
Prod.instMul
comp
fst
snd
โ€”โ€”
prod_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
MulHom
Prod.instMul
funLike
prod
โ€”โ€”
prod_comp_prodMap ๐Ÿ“–mathematicalโ€”comp
Prod.instMul
prodMap
prod
โ€”โ€”
prod_unique ๐Ÿ“–mathematicalโ€”prod
comp
Prod.instMul
fst
snd
โ€”ext
snd_comp_prod ๐Ÿ“–mathematicalโ€”comp
Prod.instMul
snd
prod
โ€”ext

Prod

Definitions

NameCategoryTheorems
SubtractionCommMonoid ๐Ÿ“–CompOpโ€”
instAddCancelCommMonoid ๐Ÿ“–CompOpโ€”
instAddCancelMonoid ๐Ÿ“–CompOpโ€”
instAddCommGroup ๐Ÿ“–CompOp
299 mathmath: NumberField.mixedEmbedding.fundamentalDomain_integerLattice, fderiv_snd, AddCommGrpCat.binaryProductLimitCone_cone_pt, ContinuousAffineEquiv.prodComm_apply, Submodule.orthogonalDecomposition_symm_apply, CliffordAlgebraQuaternion.j_quaternionBasis, ContinuousLinearMap.map_add_add, IsBoundedBilinearMap.hasFDerivAt, Submodule.toLinearEquiv_orthogonalDecomposition_symm, LinearIsometryEquiv.withLpProdComm_symm, ImplicitFunctionData.isInvertible_fderiv_prodFun, intervalIntegral.integral_hasFDerivAt_of_tendsto_ae, ContinuousAffineMap.prodMap_apply, intervalIntegral.fderiv_integral_of_tendsto_ae, CliffordAlgebraQuaternion.toQuaternion_star, DifferentiableAt.prodMap, Submodule.toLinearEquiv_orthogonalDecomposition, ContinuousWithinAt.continuousLinearMapCoprod, det_fderivPolarCoordSymm, ContinuousAlternatingMap.hasStrictFDerivAt_compContinuousLinearMap, WithLp.prod_norm_eq_idemFst_of_L1, ContinuousAffineEquiv.prodCongr_toContinuousAffineMap, HasFDerivWithinAt.prodMap, ContinuousAffineEquiv.prodAssoc_toAffineEquiv, NumberField.mixedEmbedding.mem_idealLattice, QuadraticMap.polarBilin_prod, hasStrictFDerivAt_snd, WithLp.sndL_apply, WithLp.prodContinuousLinearEquiv_symm_apply, CliffordAlgebra.toProd_comp_ofProd, QuadraticMap.polar_prod, AffineEquiv.prodComm_apply, CliffordAlgebraQuaternion.toQuaternion_ofQuaternion, differentiable_fst, DifferentiableAt.fderiv_prodMk, Real.hasStrictFDerivAt_rpow_of_pos, WithLp.neg_snd, ContinuousAffineMap.prodMap_toAffineMap, DifferentiableWithinAt.fderivWithin_prodMk, CliffordAlgebra.toProd_ฮน_tmul_one, WithLp.sub_fst, CliffordAlgebra.EquivEven.reverse_e0, IsContDiffImplicitAt.hasFDerivAt, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, hasFDerivAt_snd, WithLp.idemSnd_compl, Submodule.coe_orthogonalDecomposition_symm, CliffordAlgebra.EquivEven.ฮน_eq_v_add_smul_e0, AffineEquiv.prodAssoc_symm_apply, Complex.hasStrictFDerivAt_cpow', MDifferentiableAt.clm_prodMap, QuadraticMap.associated_prod, ModuleCat.biprodIsoProd_inv_comp_snd_apply, NumberField.mixedEmbedding.euclidean.stdOrthonormalBasis_map_eq, ContinuousAffineEquiv.prodCongr_apply, PiLp.sumPiLpEquivProdLpPiLp_symm_apply_ofLp, differentiable_snd, ModuleCat.binaryProductLimitCone_cone_ฯ€_app_right, CliffordAlgebraQuaternion.k_quaternionBasis, DifferentiableWithinAt.prodMk, ContinuousAffineEquiv.prodComm_symm_apply, WithLp.zero_fst, hasFDerivAt_jacobiThetaโ‚‚_term, NumberField.mixedEmbedding.fundamentalDomain_idealLattice, CliffordAlgebraQuaternion.i_quaternionBasis, HasStrictFDerivAt.prodMk, IsBoundedBilinearMap.differentiableOn, summable_jacobiThetaโ‚‚_term_fderiv_iff, NumberField.mixedEmbedding.mem_span_fractionalIdealLatticeBasis, NumberField.mixedEmbedding.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIdealLattice, Complex.hasStrictFDerivAt_cpow, CliffordAlgebra.coe_toEven_reverse_involute, LinearMap.det_prodMap, AddCommGrpCat.biprodIsoProd_inv_comp_snd_apply, subset_tangentConeAt_prod_right, AffineEquiv.prodAssoc_apply, AddCommGrpCat.binaryProductLimitCone_isLimit_lift, instPolynormableSpaceProd, CliffordAlgebra.EquivEven.neg_e0_mul_v, Real.differentiableAt_rpow_of_ne, subset_tangentConeAt_prod_left, MeasureTheory.hasFDerivAt_convolution_right_with_param, AddCommGrpCat.binaryProductLimitCone_cone_ฯ€_app_left, NumberField.mixedEmbedding.span_idealLatticeBasis, hasFDerivAt_prodMk_left, WithLp.add_snd, AffineEquiv.linear_prodAssoc, CliffordAlgebra.EquivEven.e0_mul_v_mul_e0, WithLp.prod_norm_eq_idemFst_sup_idemSnd, CliffordAlgebraQuaternion.equiv_apply, MDifferentiableOn.clm_prodMap, ContinuousAffineEquiv.prodComm_toAffineEquiv, differentiable_inner, HasFDerivWithinAt.prodMk, CliffordAlgebraQuaternion.equiv_symm_apply, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mkโ‚€_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, LinearPMap.snd_apply, hasSum_jacobiThetaโ‚‚_term_fderiv, NumberField.mixedEmbedding.mem_span_latticeBasis, CliffordAlgebraQuaternion.ofQuaternion_star, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed, WithLp.prod_norm_eq_add_idemFst, Submodule.coe_orthogonalDecomposition, differentiableAt_fst, CliffordAlgebraQuaternion.toQuaternion_comp_ofQuaternion, intervalIntegral.integral_hasStrictFDerivAt_of_tendsto_ae, Complex.hasFDerivAt_cpow, WithLp.prodContinuousLinearEquiv_symm_apply_ofLp, WithLp.idemFst_compl, Submodule.fst_orthogonalDecomposition_apply, ContinuousLinearMap.prodMapL_apply, ModuleCat.biprodIsoProd_inv_comp_snd, intervalIntegral.integral_hasStrictFDerivAt, IsBoundedBilinearMap.differentiableAt, Continuous.continuousLinearMapCoprod, CliffordAlgebra.toEven_comp_ofEven, IsBoundedBilinearMap.hasFDerivWithinAt, NumberField.mixedEmbedding.det_basisOfFractionalIdeal_eq_norm, WithLp.coe_fstL, CliffordAlgebra.EquivEven.neg_v_mul_e0, AffineMap.prod_linear, AffineEquiv.coe_prodCongr, ContinuousAffineMap.prod_contLinear, AffineMap.coe_fst, ProbabilityTheory.indepFun_iff_charFunDual_prod', LinearPMap.fst_apply, LinearIsometryEquiv.withLpProdCongr_symm_apply, ContinuousOn.prod_mapL, ContinuousAt.continuousLinearMapCoprod, ContinuousAffineMap.prodMap_contLinear, hasFDerivAtFilter_snd, ImplicitFunctionData.hasStrictFDerivAt, NumberField.mixedEmbedding.span_latticeBasis, ContinuousLinearMap.coprodEquivL_apply_apply, AffineMap.fst_lineMap, MDifferentiable.clm_prodMap, AddCommGrpCat.tensorObj_eq, Submodule.sndL_comp_coe_orthogonalDecomposition, OnePoint.equivProjectivization_symm_apply_mk, Differentiable.prodMk, CliffordAlgebraQuaternion.ofQuaternion_mk, HasFDerivAtFilter.prodMk, DifferentiableAt.prodMk, hasFDerivAtFilter_fst, LinearIsometryEquiv.coe_withLpProdUnique, hasFDerivAt_polarCoord_symm, AffineMap.prodMap_linear, AffineEquiv.prodCongr_apply, Continuous.prod_map_equivL, IsBoundedBilinearMap.fderiv, NumberField.mixedEmbedding.euclidean.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, Submodule.goursatSnd_toAddSubgroup, ModuleCat.binaryProductLimitCone_cone_ฯ€_app_left, CliffordAlgebra.EquivEven.v_sq_scalar, Module.rankAtStalk_prod, hasFDerivAt_jacobiThetaโ‚‚, AffineMap.coe_prodMap, WithLp.sndโ‚—_apply, hasStrictFDerivAt_fst, LinearPMap.coprod_apply, CliffordAlgebra.ofEven_comp_toEven, CliffordAlgebra.prodEquiv_symm_apply, PeriodPair.latticeEquiv_symm_apply, IsBoundedBilinearMap.hasStrictFDerivAt, ContMDiffAt.clm_prodMap, WithLp.neg_fst, Module.length_prod, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_biprodIsoProd_inv_apply, CliffordAlgebra.prodEquiv_apply, AffineMap.prod_apply, AddCommGrpCat.biprodIsoProd_inv_comp_desc, WithLp.idemSnd_apply, ContinuousAffineEquiv.prodCongr_symm, AddCommGrpCat.biprodIsoProd_inv_comp_snd, intervalIntegral.integral_hasFDerivWithinAt_of_tendsto_ae, NumberField.mixedEmbedding.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, LinearIsometryEquiv.withLpProdCongr_apply, CliffordAlgebra.toEven_ฮน, ContinuousMultilinearMap.hasStrictFDerivAt_compContinuousLinearMap, OnePoint.smul_infty_def, LinearIsometryEquiv.withLpProdUnique_symm_apply, intervalIntegral.fderivWithin_integral_of_tendsto_ae, HasFDerivAt.prodMk, AddCommGrpCat.biprodIsoProd_inv_comp_desc_apply, CliffordAlgebra.ofProd_comp_toProd, ContinuousLinearMap.hasFDerivAt_uncurry_of_multilinear, hasFDerivWithinAt_fst, ContMDiff.clm_prodMap, intervalIntegral.integral_hasFDerivWithinAt, MeasureTheory.charFunDual_prod', AddCommGrpCat.biprodIsoProd_inv_comp_fst_apply, WithLp.coe_sndL, AffineMap.snd_lineMap, Submodule.goursatFst_toAddSubgroup, HasStrictFDerivAt.prodMap, HasDerivAtFilter.prodMk, AffineEquiv.prodComm_symm, AffineEquiv.prodCongr_symm, Matrix.toLin_finTwoProd_toContinuousLinearMap, HasStrictDerivAt.prodMk, det_fderivPiPolarCoordSymm, LinearMap.charpoly_prodMap, WithLp.idemFst_add_idemSnd, NumberField.mixedEmbedding.hasFDerivAt_polarCoordReal_symm, ContinuousLinearMap.prodL_apply, WithLp.add_fst, WithLp.idemFst_apply, HasDerivAt.prodMk, hasFDerivAt_pi_polarCoord_symm, WithLp.sub_snd, AddCommGrpCat.biprodIsoProd_inv_comp_fst, WithLp.zero_snd, CliffordAlgebra.EquivEven.e0_mul_e0, HasDerivWithinAt.prodMk, AffineMap.prodMap_apply, CliffordAlgebra.toProd_one_tmul_ฮน, LinearIsometryEquiv.withLpProdUnique_apply, ModuleCat.binaryProductLimitCone_isLimit_lift, CliffordAlgebra.even.lift.aux_apply, AffineMap.snd_linear, differentiableWithinAt_snd, ContinuousMultilinearMap.neg_prod_neg, differentiableAt_snd, Submodule.fstL_comp_coe_orthogonalDecomposition, ModuleCat.biprodIsoProd_inv_comp_fst, ContinuousAffineEquiv.prodComm_symm, CliffordAlgebra.EquivEven.involute_e0, ContinuousAffineMap.prod_apply, CliffordAlgebraQuaternion.ofQuaternion_comp_toQuaternion, AffineEquiv.linear_prodCongr, AffineMap.fst_linear, CliffordAlgebra.ofEven_ฮน, ContMDiffWithinAt.clm_prodMap, ModuleCat.binaryProductLimitCone_cone_pt, ContinuousAffineEquiv.prodAssoc_apply, LinearIsometry.withLpProdMap_apply, ContinuousAffineEquiv.prodCongr_toAffineEquiv, Submodule.snd_orthogonalDecomposition_apply, LinearIsometryEquiv.withLpProdComm_apply, fderiv_fst, LinearIsometryEquiv.withLpProdAssoc_apply, NumberField.mixedEmbedding.euclidean.finrank, ProbabilityTheory.HasGaussianLaw.toLp_prodMk, Submodule.orthogonalDecomposition_apply, DifferentiableOn.prodMk, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed_symm, CliffordAlgebra.EquivEven.reverse_v, ContinuousAffineMap.prod_toAffineMap, UniqueDiffWithinAt.prod, IsBoundedBilinearMap.differentiable, CliffordAlgebra.ofProd_ฮน_mk, ContMDiffOn.clm_prodMap, NumberField.mixedEmbedding.det_fderivPolarCoordRealSymm, HasFDerivAt.prodMap, OnePoint.equivProjectivization_apply_coe, Real.hasStrictFDerivAt_rpow_of_neg, intervalIntegral.integral_hasFDerivAt, intervalIntegral.fderiv_integral, ContinuousMultilinearMap.sub_prod_sub, AddCommGrpCat.binaryProductLimitCone_cone_ฯ€_app_right, LinearIsometryEquiv.withLpUniqueProd_apply, WithLp.instProdIsBoundedSMul, CliffordAlgebraQuaternion.toQuaternion_ฮน, WithLp.fstL_apply, MDifferentiableWithinAt.clm_prodMap, WithCStarModule.prod_inner, hasFDerivAt_fst, ContinuousMultilinearMap.hasStrictFDerivAt_uncurry, MeasureTheory.charFunDual_eq_prod_iff', ContinuousAffineEquiv.prodAssoc_symm_apply, differentiableOn_snd, LinearIsometryEquiv.withLpUniqueProd_symm_apply, ContinuousOn.continuousLinearMapCoprod, ContinuousAffineMap.coe_prod, AffineMap.coe_snd, ContinuousAffineMap.coe_prodMap, ContinuousLinearMap.coprodEquivL_symm_apply, ContinuousOn.prod_map_equivL, differentiableWithinAt_fst, CliffordAlgebra.EquivEven.involute_v, ContinuousLinearMap.fpowerSeriesBilinear_apply_one, AffineMap.coe_prod, PiLp.sumPiLpEquivProdLpPiLp_apply_ofLp, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_apply, ContinuousLinearMap.coe_derivโ‚‚, LinearIsometryEquiv.withLpProdAssoc_symm_apply, Continuous.prod_mapL, differentiableOn_fst, hasFDerivWithinAt_snd, LinearIsometryEquiv.coe_withLpUniqueProd, IsBoundedBilinearMap.differentiableWithinAt, WithLp.fstโ‚—_apply, OnePoint.equivProjectivization_apply_infinity, hasFDerivAt_prodMk_right, UniqueDiffOn.prod, ModuleCat.biprodIsoProd_inv_comp_fst_apply, AffineEquiv.linear_prodComm, CliffordAlgebraQuaternion.ofQuaternion_toQuaternion, WithLp.prodContinuousLinearEquiv_apply
instAddCommMonoid ๐Ÿ“–CompOp
689 mathmath: continuous_decomposeProdAdjoint, Finsupp.snd_sumFinsuppLEquivProdFinsupp, LinearPMap.inverse_graph, Polynomial.degreeLT.addLinearEquiv_symm_apply_inr, Finsupp.fst_sumFinsuppLEquivProdFinsupp, NumberField.mixedEmbedding.fundamentalDomain_integerLattice, StarModule.decomposeProdAdjointL_symm_apply, Submodule.prod_inf_prod, LinearMap.inl_map_mul, LinearMap.prod_eq_inf_comap, LinearMap.range_prodMap, ContinuousAlternatingMap.opNorm_prod, NumberField.mixedEmbedding.normAtComplexPlaces_mixedSpaceOfRealSpace, QuadraticMap.Isometry.inl_apply, ContinuousLinearMap.opNorm_prod, ContinuousLinearMap.snd_comp_inr, ContinuousLinearMap.norm_inr_le_one, LinearMap.inr_apply, Submodule.range_snd, Algebra.TensorProduct.prodRight_tmul_fst, LinearMap.ker_coprod_of_disjoint_range, LinearMap.prodMap_one, ContinuousLinearMap.map_add_add, LinearMap.prod_comp, Manifold.IsImmersionAtOfComplement.target_subset_preimage_target, Polynomial.toMatrix_sylvesterMap', Manifold.IsImmersionAt.map_target_subset_target, norm_jacobiThetaโ‚‚_term_fderiv_ge, ContinuousLinearMap.norm_inl_le_one, intervalIntegral.integral_hasFDerivAt_of_tendsto_ae, Finsupp.sumFinsuppLEquivProdFinsupp_apply, ContinuousLinearEquiv.coe_prodAssoc, Submodule.prodEquivOfIsCompl_symm_apply_snd_eq_zero, ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl_toLinearEquiv, LinearMap.fst_prod, intervalIntegral.fderiv_integral_of_tendsto_ae, ContinuousLinearEquiv.snd_equivOfRightInverse, Submodule.toLinearEquiv_orthogonalDecomposition, ContinuousWithinAt.continuousLinearMapCoprod, LinearMap.fst_comp_inr, ContinuousAlternatingMap.hasStrictFDerivAt_compContinuousLinearMap, LinearPMap.neg_graph, LinearEquiv.skewSwap_symm_apply, Submodule.fst_sup_snd, counit_comp_inr, LinearMap.prodMap_add, ContinuousAffineEquiv.prodAssoc_toAffineEquiv, NumberField.mixedEmbedding.mem_idealLattice, ContinuousLinearMap.coprod_comp_prodComm, ContinuousMultilinearMap.eq_prod_iff, ContinuousLinearMap.coprodEquiv_apply, QuadraticMap.polarBilin_prod, image_mk_openSegment_left, LinearMap.prodMap_apply, Algebra.TensorProduct.prodRight_symm_tmul, AlternatingMap.coe_prod, extremePoints_prod, ContinuousLinearEquiv.prodProdProdComm_symm, ContinuousLinearMap.comp_inl_add_comp_inr, LinearMap.inl_injective, Module.Basis.prod_repr_inl, WithLp.prodContinuousLinearEquiv_symm_apply, ContinuousLinearMap.coe_snd, ContinuousMultilinearMap.prod_ext_iff, Submodule.FG.prod, LinearEquiv.piFinTwo_symm_apply, QuadraticMap.polar_prod, Module.FinitePresentation.prod, LinearMap.fst_surjective, HasFDerivWithinAt.fst, zero_prodMap_dualTensorHom, NumberField.mixedEmbedding.commMap_apply_of_isComplex, Real.hasStrictFDerivAt_rpow_of_pos, Submodule.comap_fst, segment_subset, StarModule.decomposeProdAdjointL_apply, LinearMap.coe_equivProdOfSurjectiveOfIsCompl, LinearPMap.mem_inverse_graph, LinearMap.coprod_zero_right, Submodule.prod_coe, Submodule.toLinearPMap_range, ContinuousLinearMap.coe_equivProdOfSurjectiveOfIsCompl, LinearMap.coe_inr, NumberField.mixedEmbedding.negAt_apply_snd, ContinuousLinearMap.norm_fst_le, LinearMap.coprod_zero_left, instSMulCommClassMatrixFinOfNatNatProd, Fin.consEquivL_apply, Submodule.mem_prod, NumberField.mixedEmbedding.negAt_preimage, ContinuousLinearMap.fst_comp_prod, LinearMap.ofIsComplProd_apply, ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl_apply, Submodule.coe_orthogonalDecomposition_symm, Lex.isOrderedAddMonoid, LinearMap.prodEquiv_apply, NumberField.mixedEmbedding.iUnion_negAt_plusPart_ae, moduleIsTorsionFree, StarConvex.prod, Submodule.prod_mono, Manifold.IsImmersionAtOfComplement.map_target_subset_target, Submodule.prod_comap_inr, AffineEquiv.prodAssoc_symm_apply, QuadraticMap.IsOrtho.prod, Submodule.sup_eq_range, Module.Basis.prod_apply_inr_fst, NumberField.mixedEmbedding.stdBasis_apply_isComplex_snd, Complex.hasStrictFDerivAt_cpow', NumberField.mixedEmbedding.negAt_signSet_apply_isComplex, LinearPMap.le_graph_iff, ContinuousLinearMap.opNNNorm_prod, MDifferentiableAt.clm_prodMap, Module.Basis.prod_apply_inl_snd, QuadraticMap.associated_prod, isArtinian_prod, LinearMap.isCompl_range_inl_inr, LinearMap.prodMap_comap_prod, NumberField.mixedEmbedding.euclidean.stdOrthonormalBasis_map_eq, LinearMap.isSymm_dualProd, LinearMap.prodMap_comp, Submodule.goursat, Submodule.coe_prodEquivOfIsCompl', NumberField.mixedEmbedding.normAtComplexPlaces_polarSpaceCoord_symm, LinearMap.pair_fst_snd, ContinuousLinearEquiv.uniqueProd_symm_apply, LinearMap.disjoint_inl_inr, OrthonormalBasis.prod_apply, Polynomial.degreeLT.addLinearEquiv_castAdd, Submodule.prod_le_iff, QuadraticMap.IsometryEquiv.prodProdProdComm_invFun, ContinuousLinearEquiv.finTwoArrow_symm_apply, prod_mk_sum, NumberField.mixedEmbedding.fundamentalCone.logMap_expMapBasis, LinearMap.graph_eq_range_prod, ConcaveOn.convex_strict_hypograph, PiLp.sumPiLpEquivProdLpPiLp_symm_apply_ofLp, isNoetherian_prod, LinearMap.IsProj.eq_conj_prodMap, ContinuousLinearMap.HasLeftInverse.inl, Polynomial.degreeLT.addLinearEquiv_apply_fst, LinearEquiv.skewSwap_apply, Submodule.ker_inl, HasStrictFDerivAt.fst, Submodule.coe_prodEquivOfIsCompl, LinearMap.span_inl_union_inr, MeasureTheory.charFunDual_prod, LinearEquiv.uniqueProd_apply, Complex.equivRealProdCLM_symm_apply, IsLinearMap.isLinearMap_sub, Representation.prod_apply_apply, LinearMap.map_coprod_prod, NumberField.mixedEmbedding.negAt_signSet_apply_isReal, QuadraticMap.isOrtho_inl_inl_iff, LinearMap.coprod_inr, locallyConvexSpace, LinearMap.snd_comp_inl, NumberField.mixedEmbedding.fundamentalDomain_idealLattice, continuous_decomposeProdAdjoint_symm, LinearMap.prodMap_id, QuadraticMap.Isometry.snd_comp_inl, ConvexOn.openSegment_subset_strict_epigraph, image_mk_segment_left, TensorProduct.prodLeft_tmul, ContinuousLinearEquiv.prodCongr_symm, summable_jacobiThetaโ‚‚_term_fderiv_iff, NumberField.mixedEmbedding.mem_span_fractionalIdealLatticeBasis, Finsupp.sumFinsuppLEquivProdFinsupp_symm_apply, LinearMap.coprod_apply, LinearEquiv.fst_comp_prodComm, NumberField.mixedEmbedding.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIdealLattice, LinearMap.ker_prodMap, Submodule.prod_top, Complex.hasStrictFDerivAt_cpow, ContinuousLinearMap.coe_coprod, Manifold.IsImmersionAt.writtenInCharts, Submodule.snd_map_fst, subset_tangentConeAt_prod_right, TensorProduct.prodLeft_symm_tmul, Polynomial.degreeLT.addLinearEquiv_apply_snd, AffineEquiv.prodAssoc_apply, LinearMap.coe_fst, LinearEquiv.sumPiEquivProdPi_apply, Module.Free.prod, LinearMap.dualProd_apply_apply, ContinuousLinearMap.coprod_comp_inl_inr, Algebra.Generators.CotangentSpace.compEquiv_symm_zero, subset_tangentConeAt_prod_left, LinearEquiv.sumArrowLequivProdArrow_symm_apply_inr, QuadraticMap.Isometry.snd_apply, QuadraticMap.prod_apply, LinearMap.trace_prodMap, QuadraticForm.dualProd_apply, NumberField.mixedEmbedding.span_idealLatticeBasis, NumberField.mixedEmbedding.fundamentalCone.norm_expMapBasis, Submodule.fst_inf_snd, Finsupp.sumFinsuppLEquivProdFinsupp_symm_inl, instOrderedSMulProd, AffineEquiv.linear_prodAssoc, ContinuousMultilinearMap.prodEquiv_symm_apply_fst, HasFDerivWithinAt.inner, fderivWithin.snd, ContinuousLinearMap.coprod_add, Submodule.span_prod_le, LinearMap.prodEquiv_symm_apply, LinearIsometryEquiv.coe_prodAssoc_symm, Module.Finite.prod, ConvexOn.convex_epigraph, Polynomial.adjSylvester_comp_sylveserMap, ContinuousLinearMap.prod_ext_iff, Trivialization.prod.isLinear, StarModule.decomposeProdAdjoint_symm_apply, MDifferentiableOn.clm_prodMap, instIsCocomm, Module.Basis.prod_apply, Submodule.snd_map_snd, LinearMap.ker_prod_ker_le_ker_coprod, Submodule.prod_eq_bot_iff, lift_rank_add_lift_rank_le_rank_prod, ContinuousLinearMap.fpowerSeriesBilinear_apply_add_three, LinearPMap.snd_apply, Submodule.prodEquivOfIsCompl_symm_apply_fst_eq_zero, hasSum_jacobiThetaโ‚‚_term_fderiv, NumberField.mixedEmbedding.mem_span_latticeBasis, LinearEquiv.coe_prodUnique, Algebra.Generators.cotangentCompLocalizationAwayEquiv_symm_comp_inl, ContinuousMultilinearMap.prodL_apply, QuadraticForm.dualProdIsometry_invFun, Function.Exact.split_tfae, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed, mk_mem_convexHull_prod, Matrix.fin_two_smul_prod, NumberField.mixedEmbedding.negAt_apply_isReal_and_notMem, Submodule.coe_orthogonalDecomposition, LinearMap.sup_range_inl_inr, ContinuousLinearMap.coe_inr, ContinuousLinearEquiv.prodComm_apply, QuadraticMap.IsometryEquiv.prodComm_invFun, ContinuousLinearEquiv.coe_prodCongr, intervalIntegral.integral_hasStrictFDerivAt_of_tendsto_ae, NumberField.mixedEmbedding.volume_preserving_negAt, LinearMap.coprod_inl_inr, LinearMap.inr_injective, NumberField.mixedEmbedding.negAt_apply_isComplex, Complex.hasFDerivAt_cpow, IsAddFreimanIso.prodMap, WithLp.prodContinuousLinearEquiv_symm_apply_ofLp, ContinuousLinearEquiv.finTwoArrow_apply, NumberField.mixedEmbedding.normAtComplexPlaces_normAtAllPlaces, IsBoundedBilinearMap.isBoundedLinearMap_deriv, Multiset.snd_sum, Polynomial.degreeLT.addLinearEquiv_apply, ContinuousLinearMap.prodMapL_apply, LinearEquiv.prodComm_apply, TensorProduct.prodRight_symm_tmul, Complex.equivRealProdLm_apply, intervalIntegral.integral_hasStrictFDerivAt, linearIndependent_inl_union_inr', NumberField.mixedEmbedding.mem_negAt_plusPart_of_mem, ContinuousLinearMap.continuousMultilinearMapOption_apply_eq_self, Algebra.Generators.snd_comp_cotangentCompLocalizationAwayEquiv, LinearMap.range_inl, ContinuousLinearMap.comp_coprod, Continuous.continuousLinearMapCoprod, comul_apply, ContinuousLinearMap.uncurryBilinear_apply, CliffordAlgebra.EquivEven.Q'_apply, Submodule.comap_snd, NumberField.mixedEmbedding.fundamentalCone.normAtAllPlaces_mem_fundamentalCone_iff, snd_sum, Algebra.Generators.H1Cotangent.ฮดAux_ofComp, ContinuousMultilinearMap.smul_prod_smul, fderiv.snd, ContinuousMultilinearMap.prodEquiv_symm_apply, LinearMap.prodMapLinear_apply, LinearEquiv.finTwoArrow_apply, Submodule.prodEquivOfIsCompl_symm_apply, LinearEquiv.skewProd_symm_apply, LinearMap.coe_prod, Matrix.toLin_finTwoProd_apply, LinearPMap.mem_domain_iff, LinearMap.range_prod_eq, ContinuousLinearMap.norm_inr, IsBaseChange.prodMap, openSegment_subset, ProbabilityTheory.indepFun_iff_charFunDual_prod', Submodule.prodComm_trans_prodEquivOfIsCompl, LinearPMap.fst_apply, Module.dualProdDualEquivDual_apply_apply, Function.Exact.inr_fst, Polynomial.degreeLT.addLinearEquiv_apply', ContinuousOn.prod_mapL, ContinuousAlternatingMap.prod_apply, image_mk_openSegment_right, Submodule.prod_eq_top_iff, ConcaveOn.convex_hypograph, LinearMap.ker_snd, ContinuousAt.continuousLinearMapCoprod, NumberField.mixedEmbedding.stdBasis_apply_isComplex_fst, Complex.equivRealProdLm_symm_apply, Complex.equivRealProdLm_symm_apply_im, QuadraticMap.IsOrtho.inr_inl, ContinuousLinearEquiv.coe_prodProdProdComm, LinearMap.equivProdOfSurjectiveOfIsCompl_apply, LinearMap.coprod_comp_prod, image_mk_segment_right, ConvexOn.convex_re_epigraph, ImplicitFunctionData.hasStrictFDerivAt, NumberField.mixedEmbedding.span_latticeBasis, ContinuousLinearMap.coprodEquivL_apply_apply, MDifferentiable.clm_prodMap, ContinuousLinearEquiv.skewProd_apply, Submodule.prodEquivOfIsCompl_symm_apply_left, LinearEquiv.snd_comp_prodComm, Submodule.map_inr, LinearEquiv.uniqueProd_symm_apply, Submodule.goursatFst_prod_goursatSnd_le, Polynomial.degreeLT.addLinearEquiv_symm_apply_inl, MeasureTheory.integral_continuousLinearMap_prod, Polynomial.degreeLT.addLinearEquiv_symm_apply_inr_basis, instModuleIsReflexive, NumberField.mixedEmbedding.stdBasis_repr_eq_matrixToStdBasis_mul, ContinuousMultilinearMap.prodEquiv_apply, ContinuousLinearMap.HasLeftInverse.prodMap, Algebra.adjoin_inl_union_inr_eq_prod, LinearMap.range_coprod, QuadraticMap.posDef_prod_iff, Module.Basis.coe_finTwoProd_repr, LinearMap.coe_snd, QuadraticForm.dualProdIsometry_toFun, NumberField.mixedEmbedding.fundamentalCone.norm_normAtAllPlaces, LinearEquiv.snd_comp_prodAssoc, ProbabilityTheory.IsGaussian.map_rotation_eq_self, ContinuousLinearEquiv.prodUnique_symm_apply, LinearPMap.mem_graph_iff, instIsOrderedAddCancelMonoid, QuadraticMap.isOrtho_inr_inr_iff, HasFDerivAt.inner, QuadraticMap.Equivalent.prod, Submodule.toLinearMap_prodEquivOfIsCompl_symm, ContinuousMultilinearMap.prodEquiv_symm_apply_snd, LinearEquiv.finTwoArrow_symm_apply, Submodule.toLinearPMap_domain, Module.dualProdDualEquivDual_apply, LinearMap.prodMapAlgHom_apply_apply, QuadraticForm.toDualProd_apply, ContinuousLinearMap.inr_apply, ContinuousLinearEquiv.uniqueProd_apply, Multiset.fst_sum, Continuous.prod_map_equivL, AffineMap.toConstProdLinearMap_apply, HasFDerivAtFilter.fst, LinearEquiv.prodProdProdComm_apply, LinearEquiv.sumPiEquivProdPi_symm_apply, LinearMap.range_prod_le, Function.Exact.split_tfae', HasFDerivWithinAt.snd, LinearMap.toMatrix_prodMap, Convex.prod, IsContDiffImplicitAt.bijective, ContinuousMultilinearMap.opNNNorm_prod, LinearMap.prod_ext_iff, ContinuousLinearMap.snd_comp_prod, NumberField.mixedEmbedding.negAt_symm, associatedPrimes.prod, IsLocalizedModule.prodMap, ContinuousLinearMap.ker_prod, Submodule.fst_map_fst, QuadraticMap.Isometry.fst_apply, Polynomial.degreeLT.addLinearEquiv_symm_apply, ConcaveOn.openSegment_subset_strict_hypograph, AffineMap.toConstProdLinearMap_symm_apply, NumberField.mixedEmbedding.negAt_apply_isReal_and_mem, ContinuousLinearMap.fst_comp_inl, NumberField.mixedEmbedding.volume_negAt_plusPart, HasFDerivAt.snd, ContinuousLinearEquiv.prodAssoc_apply, AddMonoidHom.coprod_inl_inr, ContinuousLinearMap.fst_comp_inr, ProbabilityTheory.IsGaussianProcess.hasGaussianLaw_prodMk, LinearMap.prodMap_zero, LinearEquiv.prodUnique_symm_apply, QuadraticMap.Isometry.fst_comp_inl, LinearMap.prodMap_map_prod, LinearMap.fst_apply, NumberField.mixedEmbedding.iUnion_negAt_plusPart_union, LinearEquiv.prodCongr_symm, Submodule.fst_map_snd, ContinuousLinearEquiv.prodComm_symm, PeriodPair.latticeEquiv_symm_apply, Complex.equivRealProdLm_symm_apply_re, ContinuousLinearEquiv.coe_uniqueProd, ProbabilityTheory.HasGaussianLaw.prodMk, LinearMap.coe_inl, ContinuousLinearEquiv.prodAssoc_toLinearEquiv, ContMDiffAt.clm_prodMap, HasFDerivAtFilter.snd, Trivialization.continuousLinearEquivAt_prod, Module.equiv_free_prod_directSum, ContinuousLinearEquiv.prodProdProdComm_toLinearEquiv, ContinuousLinearMap.rotation_apply, IsLinearMap.isLinearMap_add, LinearIndependent.inl_union_inr, NumberField.mixedEmbedding.injective_mixedSpaceOfRealSpace, LinearEquiv.sumArrowLequivProdArrow_apply_fst, LinearMap.coprod_inl, LinearMap.IsProj.eq_conj_prod_map', Polynomial.degreeLT.addLinearEquiv_symm_apply', Submodule.map_inl, LinearMap.range_inr, SmoothBumpCovering.comp_embeddingPiTangent_mfderiv, Finsupp.sumFinsuppLEquivProdFinsupp_symm_inr, HasSum.prodMk, dualTensorHom_prodMap_zero, LinearEquiv.prodCongr_apply, NumberField.mixedEmbedding.stdBasis_apply_isReal, HasFDerivAt.fst, intervalIntegral.integral_hasFDerivWithinAt_of_tendsto_ae, NumberField.mixedEmbedding.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, LinearPMap.mem_graph_iff', MeasureTheory.ComplexMeasure.equivSignedMeasureโ‚—_symm_apply, LinearMap.snd_prod, ContinuousMultilinearMap.hasStrictFDerivAt_compContinuousLinearMap, LinearMap.coprodEquiv_apply, NumberField.mixedEmbedding.convexBodyLT_convex, IsAddFreimanHom.prodMap, ContinuousLinearMap.norm_fst, LinearMap.snd_prodOfFinsuppNat, AlternatingMap.prod_apply, intervalIntegral.fderivWithin_integral_of_tendsto_ae, Submodule.prod_comap_inl, Manifold.IsImmersionAt.target_subset_preimage_target, Submodule.prodEquivOfIsCompl_symm_apply_right, Algebra.Generators.CotangentSpace.compEquiv_symm_inr, LinearEquiv.prodProdProdComm_symm, ContinuousLinearMap.hasFDerivAt_uncurry_of_multilinear, ContMDiff.clm_prodMap, intervalIntegral.integral_hasFDerivWithinAt, MeasureTheory.charFunDual_prod', IsBoundedBilinearMap.deriv_apply, ContinuousLinearMap.range_eq_map_coprodSubtypeLEquivOfIsCompl, ContinuousLinearEquiv.skewProd_symm_apply, comul_comp_fst, LinearMap.ker_prod, Submodule.toLinearPMap_apply_aux, QuadraticMap.Isometry.fst_comp_inr, NumberField.mixedEmbedding.latticeBasis_apply, QuadraticMap.IsometryEquiv.prodComm_toFun, ContinuousLinearMap.HasRightInverse.prodMap, LinearPMap.closure_def, ContinuousMultilinearMap.prodL_symm_apply, ContinuousLinearMap.norm_inl, CliffordAlgebra.foldr'Aux_apply_apply, Submodule.prod_bot, Matrix.toLin_finTwoProd_toContinuousLinearMap, LinearMap.comap_prod_prod, comul_comp_snd, LinearMap.coe_prodMap, det_fderivPiPolarCoordSymm, LinearPMap.mem_graph, NumberField.mixedEmbedding.commMap_apply_of_isReal, LinearEquiv.sumArrowLequivProdArrow_apply_snd, fderiv.fst, NumberField.mixedEmbedding.hasFDerivAt_polarCoordReal_symm, LinearMap.prodMap_smul, QuadraticForm.dualProdProdIsometry_toFun, ContinuousLinearMap.prodL_apply, Complex.equivRealProdCLM_symm_apply_re, LinearMap.snd_comp_inr, ContinuousLinearMap.coprod_apply, ContinuousLinearMap.coe_fst', hasFDerivAt_pi_polarCoord_symm, NumberField.mixedEmbedding.latticeBasis_repr_apply, ContinuousLinearEquiv.prodUnique_apply, fst_sum, LinearPMap.smul_graph, LinearEquiv.piFinTwo_apply, ContinuousAlternatingMap.prodLIE_apply, Manifold.IsImmersionAtOfComplement.writtenInCharts, Submodule.mem_adjoint_iff, NumberField.mixedEmbedding.normAtPlace_negAt, ContinuousLinearMap.coprod_comp_inr, LinearMap.fst_comp_inl, LinearMap.mem_graph_iff, LinearEquiv.prodAssoc_apply, ContinuousLinearMap.coe_snd', Polynomial.toMatrix_sylvesterMap, ProbabilityTheory.IndepFun.hasGaussianLaw, TensorProduct.prodRight_tmul, ContinuousLinearMap.HasLeftInverse.inr, Matrix.toLin_finTwoProd, CliffordAlgebra.even.lift.aux_apply, NumberField.mixedEmbedding.finrank, QuadraticMap.IsometryEquiv.prodProdProdComm_toFun, LinearMap.ker_fst, rank_prod', Algebra.Generators.snd_cotangentCompLocalizationAwayEquiv, ContinuousLinearMap.coe_prodMap', NumberField.mixedEmbedding.fractionalIdealLatticeBasis_apply, LinearMap.snd_surjective, LinearEquiv.sumArrowLequivProdArrow_symm_apply_inl, Module.Basis.finTwoProd_zero, ContinuousLinearMap.prodEquiv_apply, Submodule.ClosedComplemented.exists_submodule_equiv_prod, LinearMap.inl_apply, NumberField.mixedEmbedding.negAt_apply_norm_isReal, ContinuousMultilinearMap.neg_prod_neg, ConvexOn.convex_strict_epigraph, ContinuousLinearMap.snd_comp_inl, ContinuousLinearMap.ker_prod_ker_le_ker_coprod, ContinuousLinearMap.fst_prod_snd, Polynomial.sylvesterMap_apply_coe, LinearMap.coprod_map_prod, Polynomial.degreeLT.addLinearEquiv_natAdd, ContinuousLinearMap.inl_apply, ContinuousLinearMap.HasRightInverse.snd, rank_add_rank_le_rank_prod, ContinuousLinearEquiv.prodProdProdComm_apply, convexHull_prod, MeasureTheory.integrable_continuousLinearMap_prod, LinearEquiv.fst_comp_prodAssoc, comul_comp_inl, ContinuousLinearEquiv.coe_prodUnique, fderivWithin.fst, QuadraticMap.Isometry.inr_apply, ContinuousLinearMap.coe_fst, Polynomial.degreeLT.addLinearEquiv_symm_apply_inl_basis, ProbabilityTheory.variance_dual_prod, Module.Basis.prod_apply_inl_fst, ContinuousLinearMap.coe_inl, ContMDiffWithinAt.clm_prodMap, LinearPMap.le_graph_of_le, Algebra.TensorProduct.prodRight_tmul, Algebra.TensorProduct.prodRight_tmul_snd, Complex.equivRealProdCLM_symm_apply_im, ContinuousAffineEquiv.prodAssoc_apply, QuadraticMap.nonneg_prod_iff, Submodule.fstEquiv_symm_apply_coe, ContinuousLinearMap.range_prod_eq, jacobiThetaโ‚‚_fderiv_undef, Submodule.prod_map_fst, ContinuousLinearMap.coe_prodMap, NumberField.mixedEmbedding.measurableSet_negAt_plusPart, ContinuousLinearMap.coprod_comp_inl, Module.Basis.prod_repr_inr, ContinuousLinearMap.norm_snd_le, Algebra.Generators.cotangentCompLocalizationAwayEquiv_symm_inl, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed_symm, Algebra.Generators.cotangentCompLocalizationAwayEquiv_symm_inr, NumberField.mixedEmbedding.convexBodySum_convex, LinearMap.trace_prodMap', Module.instProjectiveProd, LinearEquiv.coe_prodCongr, Module.finrank_prod, LinearMap.prod_apply, counit_apply, LinearPMap.graph_map_fst_eq_domain, comul_comp_inr, MeasureTheory.ComplexMeasure.equivSignedMeasureโ‚—_apply, ContinuousLinearMap.prodโ‚—_apply, ContinuousLinearMap.coprodEquiv_symm_apply, ProbabilityTheory.instIsGaussianProdProdOfSecondCountableTopologyEither, Submodule.ker_inr, LinearPMap.closure_inverse_graph, ContMDiffOn.clm_prodMap, LinearMap.coprodEquiv_symm_apply, Bundle.Prod.contMDiffVectorBundle, Polynomial.degreeLT.basisProd_natAdd, Algebra.Generators.CotangentSpace.fst_compEquiv_apply, ContinuousLinearMap.prod_apply, ContinuousLinearMap.ker_coprod_of_disjoint_range, NumberField.mixedEmbedding.normAtAllPlaces_mixedSpaceOfRealSpace, NumberField.mixedEmbedding.det_fderivPolarCoordRealSymm, Submodule.le_prod_iff, ContinuousLinearMap.norm_snd, concaveOn_iff_convex_hypograph, LinearMap.comp_coprod, LinearEquiv.coe_uniqueProd, MultilinearMap.prod_apply, NumberField.mixedEmbedding.disjoint_span_commMap_ker, Real.hasStrictFDerivAt_rpow_of_neg, intervalIntegral.integral_hasFDerivAt, intervalIntegral.fderiv_integral, ContinuousMultilinearMap.sub_prod_sub, LinearMap.coprod_comp_inl_inr, ContinuousLinearEquiv.prodCongr_apply, HasStrictFDerivAt.inner, ContinuousMultilinearMap.zero_prod_zero, ContinuousMultilinearMap.opNorm_prod, Polynomial.sylveserMap_comp_adjSylvester, ContinuousLinearMap.comp_fst_add_comp_snd, ContinuousAlternatingMap.prodLIE_symm_apply, ContinuousLinearMap.HasRightInverse.fst, counit_comp_inl, Function.Exact.inl_snd, QuadraticMap.IsOrtho.inl_inr, instIsOrderedAddMonoid, Polynomial.degreeLT.basisProd_castAdd, ContinuousAlternatingMap.opNNNorm_prod, ContinuousLinearMap.range_coprod, Submodule.prod_sup_prod, ContinuousLinearEquiv.prodAssoc_symm_apply, LinearMap.prodMap_mul, rank_prod, NumberField.mixedEmbedding.commMap_canonical_eq_mixed, ContinuousLinearEquiv.fst_equivOfRightInverse, NumberField.mixedEmbedding.norm_negAt, MDifferentiableWithinAt.clm_prodMap, Submodule.sndEquiv_apply, CliffordAlgebra.contractLeftAux_apply_apply, Submodule.sndEquiv_symm_apply_coe, Module.Basis.prod_apply_inr_snd, fderivInnerCLM_apply, ContinuousLinearMap.coe_prod, quotient_prod_linearEquiv, Algebra.Generators.CotangentSpace.fst_compEquiv, ContinuousMultilinearMap.hasStrictFDerivAt_uncurry, LinearMap.graph_eq_ker_coprod, Submodule.mem_graph_toLinearPMap, LinearMap.inr_map_mul, MeasureTheory.charFunDual_eq_prod_iff', ContinuousAffineEquiv.prodAssoc_symm_apply, ContinuousLinearEquiv.equivOfRightInverse_symm_apply, Fin.consEquivL_symm_apply, LinearPMap.graph_map_snd_eq_range, LinearEquiv.symm_prodComm, NumberField.mixedEmbedding.normAtPlace_mixedSpaceOfRealSpace, ContinuousOn.continuousLinearMapCoprod, VectorBundle.prod, convexOn_iff_convex_epigraph, LinearPMap.IsClosable.graph_closure_eq_closure_graph, ContinuousLinearMap.coprodEquivL_symm_apply, isBoundedLinearMap_prod_multilinear, ContinuousMultilinearMap.prod_apply, ContinuousOn.prod_map_equivL, ContinuousLinearEquiv.prodComm_toLinearEquiv, CliffordAlgebra.contractLeftAux_contractLeftAux, QuadraticMap.IsometryEquiv.prod_toLinearEquiv, Submodule.coe_prodEquivOfClosedCompl, CliffordAlgebraQuaternion.Q_apply, LinearMap.snd_apply, LinearPMap.mem_range_iff, ContinuousLinearMap.fpowerSeriesBilinear_apply_one, NumberField.mixedEmbedding.disjoint_negAt_plusPart, DirectSum.lequivProdDirectSum_symm_apply, Module.Basis.finTwoProd_one, ContinuousLinearEquiv.piFinTwo_symm_apply, Module.dualProdDualEquivDual_symm_apply, ContinuousMultilinearMap.add_prod_add, Fin.consLinearEquiv_symm_apply, LinearMap.dualProd.toQuadraticForm, Complex.equivRealProdCLM_apply, ContinuousLinearMap.coe_derivโ‚‚, Submodule.range_fst, NumberField.mixedEmbedding.convexBodyLT'_convex, Submodule.coe_prodEquivOfClosedCompl_symm, LinearIsometryEquiv.coe_prodAssoc, Continuous.prod_mapL, LinearMap.prodMapRingHom_apply, NumberField.mixedEmbedding.mem_rat_span_latticeBasis, LinearMap.prod_eq_sup_map, QuadraticForm.dualProdProdIsometry_invFun, Submodule.fstEquiv_apply, ContinuousLinearMap.coprod_inl_inr, Module.annihilator_prod, NumberField.mixedEmbedding.fundamentalCone.logMap_normAtAllPlaces, NumberField.mixedEmbedding.fundamentalCone.normAtAllPlaces_normLeOne, StarModule.decomposeProdAdjoint_apply, LinearPMap.IsClosable.existsUnique, LinearEquiv.skewProd_apply, NumberField.mixedEmbedding.normAtAllPlaces_normAtAllPlaces, Submodule.prod_map_snd, ProbabilityTheory.IsGaussian.map_rotation_eq_self_of_forall_strongDual_eq_zero, LinearEquiv.prodUnique_apply, norm_jacobiThetaโ‚‚_term_fderiv_le, QuadraticMap.PosDef.prod, ContinuousLinearEquiv.piFinTwo_apply, DirectSum.lequivProdDirectSum_apply, Fin.consLinearEquiv_apply, LinearMap.separatingLeft_dualProd, LinearMap.fst_prodOfFinsuppNat, QuadraticMap.Isometry.snd_comp_inr, HasStrictFDerivAt.snd, LinearPMap.image_iff, Lex.isOrderedAddCancelMonoid, NumberField.mixedEmbedding.mixedSpaceOfRealSpace_apply, WithLp.prodContinuousLinearEquiv_apply, LinearEquiv.prodProdProdComm_toAddEquiv, Trivialization.coordChangeL_prod, Matrix.GeneralLinearGroup.fin_two_smul_prod
instAddCommSemigroup ๐Ÿ“–CompOpโ€”
instAddGroup ๐Ÿ“–CompOp
63 mathmath: AddSubgroup.coe_prod, NumberField.mixedEmbedding.fundamentalDomain_integerLattice, instIsTopologicalAddTorsorProd, instIsUniformAddGroup, AddSubgroup.le_prod_iff, OpenAddSubgroup.toAddSubgroup_prod, ContinuousAffineEquiv.prodAssoc_toAffineEquiv, AddSubgroup.prod_mono_left, AddSubgroup.bot_prod_bot, AddSubgroup.mem_prod, NumberField.mixedEmbedding.instIsAddHaarMeasureMixedSpaceVolume, AddSubgroup.index_prod, AddMonoidHom.ker_fst, instIsTopologicalAddGroup, mk_vsub_mk, AddGrpCat.tensorObj_eq, AddMonoidHom.exists_range_eq_graph, AffineEquiv.prodAssoc_symm_apply, AddSubgroup.prod_addSubgroupOf_prod_normal, instAddGroupFG, AddSubgroup.FG.prod, NumberField.mixedEmbedding.fundamentalDomain_idealLattice, AddMonoidHom.mem_graph, AddMonoidHom.coe_graph, AffineEquiv.prodAssoc_apply, fst_vsub, AddMonoidHom.graph_toAddSubmonoid, AffineEquiv.linear_prodAssoc, AddMonoidHom.graph_eq_range_prod, AddGrpCat.binaryProductLimitCone_isLimit_lift, AddSubgroup.prod_top, QuotientAddGroup.leftRel_prod, AddMonoidHom.ker_snd, AddMonoidHom.prodMap_comap_prod, AddSubgroup.top_prod_top, AddSubgroup.mem_goursatFst, AddSubgroup.closure_prod, MeasureTheory.Measure.prod.instIsAddHaarMeasure, AddSubgroup.top_prod, AddSubgroup.prod_le_iff, mk_vadd_mk, AddSubgroup.prod_mono, AddSubgroup.prod_mono_right, instIsAddHaarMeasureProdRealVolume, instLieAddGroup, ContinuousAffineEquiv.prodAssoc_apply, NumberField.mixedEmbedding.instIsAddHaarMeasureRealMixedSpaceVolume, AddMonoidHom.ker_prodMap, AddSubgroup.goursatFst_prod_goursatSnd_le, snd_vadd, snd_vsub, AddMonoidHom.exists_addEquiv_range_eq_graph, AddSubgroup.goursat, AddGrpCat.binaryProductLimitCone_cone_pt, AddSubgroup.mem_goursatSnd, AddSubgroup.prod_eq_bot_iff, AddSubgroup.prod_normal, QuotientAddGroup.rightRel_prod, fst_vadd, ContinuousAffineEquiv.prodAssoc_symm_apply, OpenAddSubgroup.coe_prod, instIsAddKleinFourProdZModOfNatNat, NonarchimedeanAddGroup.Prod.instNonarchimedeanAddGroup
instAddLeftCancelMonoid ๐Ÿ“–CompOpโ€”
instAddLeftCancelSemigroup ๐Ÿ“–CompOpโ€”
instAddMonoid ๐Ÿ“–CompOp
43 mathmath: NumberField.mixedEmbedding.fundamentalDomain_integerLattice, ContinuousAddMonoidHom.snd_toFun, isAddUnit_iff, ContinuousAddMonoidHom.prodMap_toFun, le_addRothNumber_product, addOrderOf, instSMulCommClassMatrixFinOfNatNatProd, AddMonoidHom.noncommCoprod_inl_inr, addOrderOf_fst_dvd_addOrderOf, ContinuousAddMonoidHom.inl_toFun, NumberField.mixedEmbedding.fundamentalDomain_idealLattice, Set.vadd_graphOn_univ, Matrix.fin_two_smul_prod, AddMonoid.exponent_prod, IsOfFinAddOrder.prod_mk, ThreeAPFree.prod, ContinuousAddMonoidHom.prod_toFun, ContinuousAddMonoidHom.coprod_toFun, AddSubmonoid.FG.sum, Set.vadd_graphOn, instSubsingletonAddUnits, ContinuousAddMonoidHom.fst_toFun, AddMonoidAlgebra.curryAlgEquiv_symm_single, mk_vadd_mk, LieAlgebra.of_symm_nsmul, ContinuousAddMonoidHom.diag_toFun, ContinuousAddMonoidHom.add_toFun, instIsAddTorsionFree, AddSubmonoid.FG.prod, addOrderOf_snd_dvd_addOrderOf, ContinuousAddMonoidHom.inr_toFun, addOrderOf_mk, snd_vadd, CategoryTheory.CommShiftโ‚‚Setup.z_zeroโ‚‚, fst_vadd, AddMonoidAlgebra.curryAlgEquiv_single, CategoryTheory.CommShiftโ‚‚Setup.z_zeroโ‚, instAddMonoidFG, CategoryTheory.CommShiftโ‚‚Setup.hฮต, ContinuousAddMonoidHom.swap_toFun, CategoryTheory.CommShiftโ‚‚Setup.int_z, LieAlgebra.of_nsmul, Matrix.GeneralLinearGroup.fin_two_smul_prod
instAddRightCancelMonoid ๐Ÿ“–CompOpโ€”
instAddRightCancelSemigroup ๐Ÿ“–CompOpโ€”
instAddSemigroup ๐Ÿ“–CompOpโ€”
instAddZeroClass ๐Ÿ“–CompOp
125 mathmath: AddSubmonoid.prod_eq_bot_iff, AddMonoidHom.mgraph_eq_mrange_prod, AddMonoid.Coprod.toProd_apply_inr, AddSubmonoid.bot_prod_bot, AddMonoidHom.comp_coprod, AddSubmonoid.prod_le_iff, AddMonoid.Coprod.snd_comp_toProd, AddUnits.embedProduct_injective, AddMonoid.Coprod.toProd_comp_inr, AddMonoidHom.coe_prodMap, OrderAddMonoidHom.inl_apply, AddMonoidHom.prod_comp_prodMap, AddMonoidHom.coe_prod, AddSubmonoid.prod_top, AddMonoidHom.prod_map_comap_prod', AddMonoidHom.inl_strictMono, AddMonoidHom.fst_comp_inr, OrderAddMonoidHom.fst_comp_inl, OrderAddMonoidHom.addCommute_inlโ‚—_inrโ‚—, AddSubmonoid.prod_mono, instSMulCommClassMatrixFinOfNatNatProd, AddMonoidHom.coprod_unique, AddMonoidHom.comp_noncommCoprod, AddSubmonoid.closure_prod, DoubleCentralizer.norm_def, AddMonoidHom.ker_prod, AddMonoid.Coprod.fst_comp_toProd, AddMonoid.Coprod.prod_mk_fst_snd, AddMonoidHom.noncommCoprod_inl_inr, AddMonoidHom.prod_unique, DoubleCentralizer.nnnorm_def, OrderAddMonoidHom.addCommute_inl_inr, AddMonoidHom.noncommCoprod_comp_inl, AddCon.le_iff, AddMonoid.Coprod.snd_toProd, AddMonoidHom.noncommCoprod_unique, AddSubmonoid.le_prod_iff, AddSubmonoid.closure_zero_prod, AddSubmonoid.mem_prod, AddSubgroup.goursat_surjective, AddMonoidHom.inl_apply, AddSubmonoid.map_inl, AddMonoidHom.noncommCoprod_apply', AddSubmonoid.sup_eq_range, Matrix.fin_two_smul_prod, AddMonoid.Coprod.fst_toProd, AddMonoidHom.snd_mono, AddMonoid.Coprod.toProd_apply_inl, OrderAddMonoidHom.fstโ‚—_comp_inlโ‚—, AddMonoidHom.mker_fst, AddMonoidHom.coe_snd, AddMonoidHom.inr_mono, AddMonoidHom.coe_mgraph, AddSubmonoid.coe_prod, AddSubmonoid.mem_subPairs, AddSubmonoid.mrange_inr', AddMonoidHom.fst_comp_prod, AddMonoidHom.coprod_comp_inl, AddSubmonoid.mrange_inl_sup_mrange_inr, AddMonoidHom.inl_mono, AddMonoidHom.snd_comp_inl, Isometry.inl, AddMonoid.Coprod.toProd_surjective, AddMonoidHom.mker_prod_map, AddUnits.embedProduct_apply, OrderAddMonoidHom.inlโ‚—_apply, AddSubmonoid.mrange_inr, OrderAddMonoidHom.snd_comp_inr, AddSubmonoid.prod_eq_top_iff, AddMonoidHom.coprod_inl_inr, AddMonoidHom.noncommCoprod_comp_inr, AddSubmonoid.top_prod, AddSubmonoid.mrange_fst, AddLocalization.mkHom_apply, AddSubmonoid.mrange_snd, AddLocalization.mkHom_surjective, OrderAddMonoidHom.inlโ‚—_add_inrโ‚—_eq_toLex, AddMonoidHom.snd_comp_prod, AddSubmonoid.closure_prod_zero, AddSubmonoid.mrange_inl, AddUnits.range_embedProduct, AddMonoidHom.fst_mono, AddMonoidHom.mem_mgraph, AddSubmonoid.top_prod_top, OrderAddMonoidHom.inr_apply, AddMonoidHom.coprod_apply, AddMonoidHom.addCommute_inl_inr, OrderAddMonoidHom.fst_comp_inr, AddMonoidHom.snd_comp_inr, OrderAddMonoidHom.fstโ‚—_apply, AddSubmonoid.map_inr, Isometry.inr, AddSubmonoid.mrange_inl', OrderAddMonoidHom.inl_add_inr_eq_mk, AddMonoid.Coprod.toProd_comp_inl, OrderAddMonoidHom.snd_apply, addAddMonoidHom_apply, AddMonoidHom.ker_prodMap, OrderAddMonoidHom.snd_comp_inl, AddMonoidHom.mker_inr, AddMonoidHom.coprod_comp_inr, OrderAddMonoidHom.fst_apply, AddMonoidHom.inr_strictMono, AddUnits.continuous_embedProduct, CategoryTheory.CommShiftโ‚‚Setup.z_zeroโ‚‚, AddMonoidHom.noncommCoprod_apply, AddSubmonoid.prod_bot_sup_bot_prod, OrderAddMonoidHom.inrโ‚—_apply, AddUnits.isClosedEmbedding_embedProduct, AddMonoidHom.inr_apply, AddMonoidHom.mker_inl, DoubleCentralizer.toProdHom_apply, CategoryTheory.CommShiftโ‚‚Setup.z_zeroโ‚, AddMonoidHom.fst_comp_inl, CategoryTheory.CommShiftโ‚‚Setup.hฮต, AddMonoidHom.prod_apply, AddUnits.isEmbedding_embedProduct, AddUnits.isInducing_embedProduct, AddCon.mem_coe, AddMonoidHom.coe_fst, AddMonoidHom.mker_snd, CategoryTheory.CommShiftโ‚‚Setup.int_z, AddMonoidHom.prodMap_def, subAddMonoidHom_apply, Matrix.GeneralLinearGroup.fin_two_smul_prod
instCancelCommMonoid ๐Ÿ“–CompOpโ€”
instCancelMonoid ๐Ÿ“–CompOpโ€”
instCommGroup ๐Ÿ“–CompOp
3 mathmath: CommGrpCat.tensorObj_eq, CommGrpCat.binaryProductLimitCone_cone_pt, CommGrpCat.binaryProductLimitCone_isLimit_lift
instCommMonoid ๐Ÿ“–CompOp
13 mathmath: instIsOrderedMonoid, fst_prod, instIsOrderedCancelMonoid, prod_mk_prod, MonoidHom.coprod_inl_inr, HasProd.prodMk, Lex.isOrderedCancelMonoid, IsMulFreimanHom.prodMap, IsMulFreimanIso.prodMap, Multiset.snd_prod, Lex.isOrderedMonoid, snd_prod, Multiset.fst_prod
instCommSemigroup ๐Ÿ“–CompOpโ€”
instDivInvMonoid ๐Ÿ“–CompOpโ€”
instDivisionCommMonoid ๐Ÿ“–CompOpโ€”
instDivisionMonoid ๐Ÿ“–CompOpโ€”
instGroup ๐Ÿ“–CompOp
61 mathmath: instLieGroup, AlternatingMap.domCoprod.summand_mk'', Subgroup.prod_subgroupOf_prod_normal, QuotientGroup.rightRel_prod, Subgroup.closure_prod, NonarchimedeanGroup.Prod.instNonarchimedeanGroup, AlternatingMap.domCoprod_coe, Equiv.Perm.OnCycleFactors.kerParam_range_card, Subgroup.commutator_prod_prod, solvable_prod, QuotientGroup.leftRel_prod, instIsUniformGroup, GrpCat.binaryProductLimitCone_cone_pt, MonoidHom.noncommCoprod_range, MonoidHom.graph_eq_range_prod, Subgroup.top_prod, Equiv.Perm.sumCongrHom.card_range, MonoidHom.ker_prodMap, OpenSubgroup.coe_prod, Subgroup.mem_goursatFst, GrpCat.binaryProductLimitCone_isLimit_lift, Subgroup.prod_eq_bot_iff, GrpCat.tensorObj_eq, Equiv.Perm.subtypeCongrHom.card_range, Subgroup.prod_mono, isNilpotent_prod, Subgroup.top_prod_top, Subgroup.le_prod_iff, MonoidHom.graph_toSubmonoid, Equiv.Perm.mem_sumCongrHom_range_of_perm_mapsTo_inl, Subgroup.mem_goursatSnd, MonoidHom.coe_graph, Subgroup.prod_top, MonoidHom.ker_fst, Subgroup.prod_le_iff, Subgroup.prod_mono_left, MonoidHom.exists_range_eq_graph, Subgroup.goursatFst_prod_goursatSnd_le, Equiv.Perm.OnCycleFactors.kerParam_range_eq_centralizer_of_count_le_one, instGroupFG, MeasureTheory.Measure.prod.instIsHaarMeasure, Subgroup.index_prod, instIsTopologicalGroup, MonoidHom.prodMap_comap_prod, Equiv.Perm.OnCycleFactors.kerParam_range_le_centralizer, Subgroup.prod_mono_right, Subgroup.FG.prod, Subgroup.mem_prod, MonoidHom.mem_graph, nilpotencyClass_prod, Subgroup.bot_prod_bot, AlternatingMap.domCoprod_apply, Equiv.Perm.OnCycleFactors.kerParam_range_eq, MonoidHom.exists_mulEquiv_range_eq_graph, MonoidHom.ker_snd, lowerCentralSeries_prod, OpenSubgroup.toSubgroup_prod, Subgroup.goursat, Subgroup.coe_prod, Subgroup.prod_normal, AlternatingMap.domCoprod.summand_add_swap_smul_eq_zero
instInvolutiveInv ๐Ÿ“–CompOpโ€”
instInvolutiveNeg ๐Ÿ“–CompOp
1 mathmath: Int.map_neg_divisorsAntidiag
instLeftCancelMonoid ๐Ÿ“–CompOpโ€”
instLeftCancelSemigroup ๐Ÿ“–CompOpโ€”
instMonoid ๐Ÿ“–CompOp
29 mathmath: Set.smul_graphOn_univ, ContinuousMonoidHom.swap_toFun, isUnit_iff, ContinuousMonoidHom.snd_toFun, ContinuousMonoidHom.mul_toFun, Submonoid.FG.prod, orderOf_snd_dvd_orderOf, le_mulRothNumber_product, instIsMulTorsionFree, orderOf_fst_dvd_orderOf, orderOf_mk, MonoidHom.noncommCoprod_inl_inr, Monoid.exponent_prod, ContinuousMonoidHom.diag_toFun, IsOfFinOrder.prod_mk, ContinuousMonoidHom.inl_toFun, MonoidAlgebra.curryAlgEquiv_symm_single, ContinuousMonoidHom.inr_toFun, instSubsingletonUnits, ContinuousMonoidHom.coprod_toFun, instMonoidFG, ContinuousMonoidHom.prod_toFun, ThreeGPFree.prod, ContinuousMonoidHom.fst_toFun, Set.smul_graphOn, orderOf, ContinuousMonoidHom.prodMap_toFun, MonoidAlgebra.curryAlgEquiv_single, associated_iff
instMulOneClass ๐Ÿ“–CompOp
162 mathmath: AddMonoidAlgebra.singleHom_apply, Submonoid.mrange_inr', Submonoid.map_inr, MonoidHom.mker_snd, MonoidHom.coprod_apply, OrderMonoidHom.inl_mul_inr_eq_mk, instNatPowAssoc, MonoidWithZeroHom.snd_comp_inl, Submonoid.mrange_inl', Submonoid.prod_top, Con.le_iff, smulMonoidWithZeroHom_apply, Equiv.Perm.subtypeCongrHom_injective, Monoid.Coprod.fst_toProd, LinearOrderedCommGroupWithZero.inl_mul_inr_eq_coe_toLex, MonoidHom.coprod_comp_inr, MonoidHom.noncommCoprod_comp_inr, MonoidHom.noncommCoprod_apply, MonoidHom.prod_comp_prodMap, Monoid.Coprod.toProd_surjective, Equiv.Perm.OnCycleFactors.kerParam_injective, MonoidWithZeroHom.fst_mono, Submonoid.top_prod, Submonoid.mrange_inl_sup_mrange_inr, Submonoid.prod_bot_sup_bot_prod, MonoidHom.inr_apply, MonoidHom.inr_mono, MonoidHom.coe_snd, MonoidHom.ker_prodMap, Monoid.Coprod.prod_mk_fst_snd, MonoidHom.mker_inl, MonoidWithZeroHom.inl_strictMono, Submonoid.mrange_inr, OrderMonoidHom.commute_inl_inr, Localization.mkHom_surjective, Con.mem_coe, Submonoid.coe_prod, MonoidHom.fst_comp_inr, Monoid.Coprod.toProd_apply_inr, mulMonoidWithZeroHom_apply, MonoidHom.coe_prodMap, MonoidHom.prod_map_comap_prod', OrderMonoidHom.inrโ‚—_apply, MonoidWithZeroHom.fst_comp_inl, MonoidHom.noncommCoprod_unique, OrderMonoidHom.inlโ‚—_mul_inrโ‚—_eq_toLex, Submonoid.prod_mono, Submonoid.mem_prod, LinearOrderedCommGroupWithZero.inl_eq_coe_inlโ‚—, MonoidHom.snd_comp_inr, Monoid.Coprod.snd_comp_toProd, Submonoid.top_prod_top, Units.isEmbedding_embedProduct, MonoidWithZeroHom.inl_mul_inr_eq_mk_of_unit, Submonoid.closure_prod_one, MonoidHom.fst_comp_inl, MonoidHom.prodMap_def, Submonoid.prod_eq_bot_iff, MonoidHom.inl_mono, MonoidWithZeroHom.inr_mono, Submonoid.bot_prod_bot, divMonoidHom_apply, MonoidHom.mgraph_eq_mrange_prod, MonoidWithZeroHom.snd_inr, MonoidWithZeroHom.snd_inl_apply_of_ne_zero, MonoidHom.snd_comp_prod, Submonoid.le_prod_iff, MonoidHom.inl_apply, OrderMonoidHom.inlโ‚—_apply, MonoidWithZeroHom.inl_injective, MonoidAlgebra.singleHom_apply, mulMonoidHom_apply, Equiv.Perm.OnCycleFactors.cycleType_kerParam_apply_apply, MonoidHom.mker_inr, OrderMonoidHom.fstโ‚—_apply, Equiv.Perm.subtypeCongrHom_apply, MonoidHom.noncommCoprod_inl_inr, LinearOrderedCommGroupWithZero.inr_eq_coe_inrโ‚—, MonoidHom.commute_inl_inr, OrderMonoidHom.commute_inlโ‚—_inrโ‚—, LinearOrderedCommGroupWithZero.fst_comp_inl, MonoidHom.mker_fst, Equiv.Perm.sumCongrHom_injective, Submonoid.prod_eq_top_iff, MonoidHom.coprod_inl_inr, MonoidWithZeroHom.snd_mono, Monoid.Coprod.toProd_comp_inr, Submonoid.mem_divPairs, MonoidHom.fst_mono, MonoidHom.prod_apply, Subgroup.goursat_surjective, OrderMonoidHom.snd_comp_inl, MonoidWithZeroHom.fst_apply_coe, MonoidWithZeroHom.fst_inl, MonoidWithZeroHom.fst_surjective, OrderMonoidHom.snd_apply, OrderMonoidHom.inl_apply, MonoidWithZeroHom.snd_comp_inr, MonoidHom.ker_prod, smulMonoidHom_apply, MonoidWithZeroHom.inr_apply_unit, Submonoid.closure_prod, LinearOrderedCommGroupWithZero.fst_apply, Units.isClosedEmbedding_embedProduct, MonoidHom.inl_strictMono, Monoid.Coprod.snd_toProd, Submonoid.mrange_snd, OrderMonoidHom.fst_apply, OrderMonoidHom.snd_comp_inr, MonoidHom.coprod_unique, Monoid.Coprod.toProd_comp_inl, MonoidHom.fst_comp_prod, Localization.mkHom_apply, MonoidWithZeroHom.fst_inr_apply_of_ne_zero, MonoidHom.prod_unique, MonoidHom.inr_strictMono, MonoidHom.snd_comp_inl, Submonoid.mrange_inl, Units.continuous_embedProduct, MonoidHom.coe_mgraph, MonoidHom.coe_fst, Submonoid.mrange_fst, divMonoidWithZeroHom_apply, Monoid.Coprod.fst_comp_toProd, MonoidWithZeroHom.inr_strictMono, OrderMonoidHom.fstโ‚—_comp_inlโ‚—, Units.embed_product_star, Submonoid.prod_le_iff, MonoidWithZeroHom.inl_mono, Polynomial.Gal.restrictProd_injective, Equiv.Perm.sumCongrHom_apply, OrderMonoidHom.fst_comp_inr, Submonoid.map_inl, OrderMonoidHom.inr_apply, MonoidHom.noncommCoprod_comp_inl, MonoidWithZeroHom.snd_apply_coe, Submonoid.sup_eq_range, OrderMonoidHom.fst_comp_inl, LinearOrderedCommGroupWithZero.inl_apply, LinearOrderedCommGroupWithZero.inr_apply, MonoidHom.coprod_comp_inl, MonoidHom.mker_prod_map, Monoid.Coprod.toProd_apply_inl, MonoidHom.snd_mono, Units.range_embedProduct, MonoidWithZeroHom.inr_injective, MonoidHom.comp_coprod, MonoidWithZeroHom.commute_inl_inr, MonoidWithZeroHom.fst_comp_inr, Units.embedProduct_injective, Units.isInducing_embedProduct, Equiv.Perm.OnCycleFactors.kerParam_apply, MonoidHom.noncommCoprod_injective, MonoidHom.coe_prod, MonoidWithZeroHom.inl_apply_unit, MonoidWithZeroHom.snd_surjective, Units.embedProduct_apply, MonoidHom.mem_mgraph, Submonoid.closure_one_prod, Equiv.Perm.OnCycleFactors.sign_kerParam_apply_apply, MonoidHom.noncommCoprod_apply', MonoidHom.comp_noncommCoprod
instRightCancelMonoid ๐Ÿ“–CompOpโ€”
instRightCancelSemigroup ๐Ÿ“–CompOpโ€”
instSemigroup ๐Ÿ“–CompOp
3 mathmath: instDecompositionMonoidProd, mk_dvd_mk, prod_dvd_iff
instSubtractionMonoid ๐Ÿ“–CompOpโ€”
subNegMonoid ๐Ÿ“–CompOp
1 mathmath: not_isAddCyclic_prod_of_infinite_nontrivial

Theorems

NameKindAssumesProvesValidatesDepends On
addCommute_iff ๐Ÿ“–mathematicalโ€”AddCommute
instAdd
โ€”addSemiconjBy_iff
addSemiconjBy_iff ๐Ÿ“–mathematicalโ€”AddSemiconjBy
instAdd
โ€”โ€”
commute_iff ๐Ÿ“–mathematicalโ€”Commute
instMul
โ€”semiconjBy_iff
fst_add_snd ๐Ÿ“–mathematicalโ€”instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddZero.toZero
โ€”add_zero
zero_add
fst_mul_snd ๐Ÿ“–mathematicalโ€”instMul
MulOne.toMul
MulOneClass.toMulOne
MulOne.toOne
โ€”mul_one
one_mul
instIsAddTorsionFree ๐Ÿ“–mathematicalโ€”IsAddTorsionFree
instAddMonoid
โ€”nsmul_right_injective
instIsCancelAdd ๐Ÿ“–mathematicalโ€”IsCancelAdd
instAdd
โ€”instIsLeftCancelAdd
IsCancelAdd.toIsLeftCancelAdd
instIsRightCancelAdd
IsCancelAdd.toIsRightCancelAdd
instIsCancelMul ๐Ÿ“–mathematicalโ€”IsCancelMul
instMul
โ€”instIsLeftCancelMul
IsCancelMul.toIsLeftCancelMul
instIsRightCancelMul
IsCancelMul.toIsRightCancelMul
instIsLeftCancelAdd ๐Ÿ“–mathematicalโ€”IsLeftCancelAdd
instAdd
โ€”add_left_cancel
instIsLeftCancelMul ๐Ÿ“–mathematicalโ€”IsLeftCancelMul
instMul
โ€”mul_left_cancel
instIsMulTorsionFree ๐Ÿ“–mathematicalโ€”IsMulTorsionFree
instMonoid
โ€”pow_left_injective
instIsRightCancelAdd ๐Ÿ“–mathematicalโ€”IsRightCancelAdd
instAdd
โ€”add_right_cancel
instIsRightCancelMul ๐Ÿ“–mathematicalโ€”IsRightCancelMul
instMul
โ€”mul_right_cancel
instSubsingletonAddUnits ๐Ÿ“–mathematicalโ€”AddUnits
instAddMonoid
โ€”Subsingleton.addUnits_of_isAddUnit
isAddUnit_iff
isAddUnit_iff_eq_zero
instSubsingletonUnits ๐Ÿ“–mathematicalโ€”Units
instMonoid
โ€”Subsingleton.units_of_isUnit
isAddUnit_iff ๐Ÿ“–mathematicalโ€”IsAddUnit
instAddMonoid
โ€”AddUnits.isAddUnit
isUnit_iff ๐Ÿ“–mathematicalโ€”IsUnit
instMonoid
โ€”Units.isUnit
mk_one_mul_mk_one ๐Ÿ“–mathematicalโ€”instMul
MulOne.toMul
MulOneClass.toMulOne
MulOne.toOne
โ€”mul_one
mk_zero_add_mk_zero ๐Ÿ“–mathematicalโ€”instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddZero.toZero
โ€”add_zero
one_mk_mul_one_mk ๐Ÿ“–mathematicalโ€”instMul
MulOne.toMul
MulOneClass.toMulOne
MulOne.toOne
โ€”mul_one
semiconjBy_iff ๐Ÿ“–mathematicalโ€”SemiconjBy
instMul
โ€”โ€”
zero_mk_add_zero_mk ๐Ÿ“–mathematicalโ€”instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddZero.toZero
โ€”add_zero

SemiconjBy

Theorems

NameKindAssumesProvesValidatesDepends On
prod ๐Ÿ“–mathematicalSemiconjByProd.instMulโ€”โ€”

Units

Definitions

NameCategoryTheorems
embedProduct ๐Ÿ“–CompOp
8 mathmath: isEmbedding_embedProduct, isClosedEmbedding_embedProduct, continuous_embedProduct, embed_product_star, range_embedProduct, embedProduct_injective, isInducing_embedProduct, embedProduct_apply

Theorems

NameKindAssumesProvesValidatesDepends On
embedProduct_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
MonoidHom
Units
MulOpposite
MulOneClass.toMulOne
instMulOneClass
Prod.instMulOneClass
Monoid.toMulOneClass
MulOpposite.instMulOneClass
MonoidHom.instFunLike
embedProduct
val
MulOpposite.op
instInv
โ€”โ€”
embedProduct_injective ๐Ÿ“–mathematicalโ€”Units
MulOpposite
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
instMulOneClass
Prod.instMulOneClass
Monoid.toMulOneClass
MulOpposite.instMulOneClass
MonoidHom.instFunLike
embedProduct
โ€”ext

(root)

Definitions

NameCategoryTheorems
addAddHom ๐Ÿ“–CompOp
2 mathmath: addAddHom_apply, addAddMonoidHom_apply
addAddMonoidHom ๐Ÿ“–CompOp
1 mathmath: addAddMonoidHom_apply
divMonoidHom ๐Ÿ“–CompOp
2 mathmath: divMonoidHom_apply, divMonoidWithZeroHom_apply
mulMonoidHom ๐Ÿ“–CompOp
2 mathmath: mulMonoidWithZeroHom_apply, mulMonoidHom_apply
mulMulHom ๐Ÿ“–CompOp
2 mathmath: mulMonoidHom_apply, mulMulHom_apply
subAddMonoidHom ๐Ÿ“–CompOp
1 mathmath: subAddMonoidHom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
addAddHom_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddHom
Prod.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddHom.funLike
addAddHom
โ€”โ€”
addAddMonoidHom_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Prod.instAddZeroClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
addAddMonoidHom
AddHom.toFun
Prod.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
addAddHom
โ€”โ€”
divMonoidHom_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Prod.instMulOneClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
DivisionCommMonoid.toDivisionMonoid
MonoidHom.instFunLike
divMonoidHom
DivInvMonoid.toDiv
โ€”โ€”
mulMonoidHom_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Prod.instMulOneClass
Monoid.toMulOneClass
CommMonoid.toMonoid
MonoidHom.instFunLike
mulMonoidHom
MulHom.toFun
Prod.instMul
CommMagma.toMul
CommSemigroup.toCommMagma
CommMonoid.toCommSemigroup
mulMulHom
โ€”โ€”
mulMulHom_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
MulHom
Prod.instMul
CommMagma.toMul
CommSemigroup.toCommMagma
MulHom.funLike
mulMulHom
โ€”โ€”
subAddMonoidHom_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Prod.instAddZeroClass
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddMonoidHom.instFunLike
subAddMonoidHom
SubNegMonoid.toSub
โ€”โ€”

---

โ† Back to Index