Documentation Verification Report

Defs

📁 Source: Mathlib/Algebra/Group/Semiconj/Defs.lean

Statistics

MetricCount
DefinitionsAddSemiconjBy, SemiconjBy
2
Theoremsadd_left, add_right, conj_iff, conj_mk, eq, nsmul_right, reflexive, transitive, zero_left, zero_right, conj_iff, conj_mk, eq, mul_left, mul_right, one_left, one_right, pow_right, reflexive, transitive, addSemiconjBy_iff_eq, semiconjBy_iff_eq
22
Total24

AddSemiconjBy

Theorems

NameKindAssumesProvesValidatesDepends On
add_left 📖AddSemiconjBy
AddSemigroup.toAdd
add_assoc
eq
add_right 📖AddSemiconjBy
AddSemigroup.toAdd
add_assoc
eq
conj_iff 📖mathematicalAddSemiconjBy
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SubNegMonoid.toNeg
add_assoc
neg_add_cancel_right
add_left_cancel_iff
AddLeftCancelSemigroup.toIsLeftCancelAdd
add_right_cancel_iff
AddRightCancelSemigroup.toIsRightCancelAdd
conj_mk 📖mathematicalAddSemiconjBy
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SubNegMonoid.toNeg
add_assoc
neg_add_cancel
add_zero
eq 📖AddSemiconjBy
nsmul_right 📖mathematicalAddSemiconjBy
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoid.toNatSMulzero_nsmul
zero_right
succ_nsmul
add_right
reflexive 📖mathematicalReflexive
AddSemiconjBy
AddZero.toAdd
AddZeroClass.toAddZero
zero_left
transitive 📖mathematicalTransitive
AddSemiconjBy
AddSemigroup.toAdd
add_left
zero_left 📖mathematicalAddSemiconjBy
AddZero.toAdd
AddZeroClass.toAddZero
AddZero.toZero
zero_right
zero_right 📖mathematicalAddSemiconjBy
AddZero.toAdd
AddZeroClass.toAddZero
AddZero.toZero
eq_1
add_zero
zero_add

SemiconjBy

Theorems

NameKindAssumesProvesValidatesDepends On
conj_iff 📖mathematicalSemiconjBy
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivInvMonoid.toInv
inv_mul_cancel_right
mul_assoc
mul_left_cancel_iff
LeftCancelSemigroup.toIsLeftCancelMul
mul_right_cancel_iff
RightCancelSemigroup.toIsRightCancelMul
conj_mk 📖mathematicalSemiconjBy
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivInvMonoid.toInv
mul_assoc
inv_mul_cancel
mul_one
eq 📖SemiconjBy
mul_left 📖SemiconjBy
Semigroup.toMul
mul_assoc
eq
mul_right 📖SemiconjBy
Semigroup.toMul
mul_assoc
eq
one_left 📖mathematicalSemiconjBy
MulOne.toMul
MulOneClass.toMulOne
MulOne.toOne
one_right
one_right 📖mathematicalSemiconjBy
MulOne.toMul
MulOneClass.toMulOne
MulOne.toOne
eq_1
mul_one
one_mul
pow_right 📖mathematicalSemiconjBy
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Monoid.toNatPowpow_zero
one_right
pow_succ
mul_right
reflexive 📖mathematicalReflexive
SemiconjBy
MulOne.toMul
MulOneClass.toMulOne
one_left
transitive 📖mathematicalTransitive
SemiconjBy
Semigroup.toMul
mul_left

(root)

Definitions

NameCategoryTheorems
AddSemiconjBy 📖MathDef
20 mathmath: AddSemiconjBy.addUnits_val_iff, AddSemiconjBy.zero_right, AddSemiconjBy.addUnits_neg_symm_left_iff, addSemiconjBy_map_iff, AddSemiconjBy.addUnits_neg_right_iff, Prod.addSemiconjBy_iff, AddSemiconjBy.neg_symm_left_iff, AddSemiconjBy.reflexive, AddOpposite.addSemiconjBy_unop, AddCommute.addSemiconjBy, AddOpposite.addSemiconjBy_op, AddSemiconjBy.conj_mk, AddSemiconjBy.neg_neg_symm_iff, AddSemiconjBy.neg_right_iff, addSemiconjBy_iff_eq, AddSemiconjBy.zero_left, AddUnits.mk_addSemiconjBy, AddSemiconjBy.conj_iff, AddSemiconjBy.transitive, Pi.addSemiconjBy_iff
SemiconjBy 📖MathDef
30 mathmath: Commute.semiconjBy, SemiconjBy.inv_inv_symm_iff, Prod.semiconjBy_iff, SemiconjBy.zero_right, semiconjBy_map_iff, SemiconjBy.reflexive, SemiconjBy.one_right, SemiconjBy.neg_one_left, SemiconjBy.conj_mk, SemiconjBy.units_inv_symm_left_iff, SemiconjBy.conj_iff, SemiconjBy.inv_symm_left_iff, SemiconjBy.inv_right_iff, SemiconjBy.zero_left, SemiconjBy.neg_left_iff, SemiconjBy.neg_right_iff, SemiconjBy.units_val_iff, SemiconjBy.one_left, SemiconjBy.neg_one_right, semiconjBy_iff_eq, Pi.semiconjBy_iff, SemiconjBy.units_inv_right_iff, SemiconjBy.inv_symm_left_iff₀, MulOpposite.semiconjBy_unop, semiconjBy_star_star_star, Units.mk_semiconjBy, CircleDeg1Lift.semiconjBy_iff_semiconj, SemiconjBy.inv_right_iff₀, MulOpposite.semiconjBy_op, SemiconjBy.transitive

Theorems

NameKindAssumesProvesValidatesDepends On
addSemiconjBy_iff_eq 📖mathematicalAddSemiconjBy
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCancelCommMonoid.toAddCommMonoid
add_left_cancel
AddLeftCancelSemigroup.toIsLeftCancelAdd
add_comm
AddSemiconjBy.eq_1
semiconjBy_iff_eq 📖mathematicalSemiconjBy
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
CancelCommMonoid.toCommMonoid
mul_left_cancel
LeftCancelSemigroup.toIsLeftCancelMul
mul_comm
SemiconjBy.eq_1

---

← Back to Index