Documentation Verification Report

Lattice

πŸ“ Source: Mathlib/Algebra/Group/Subgroup/Lattice.lean

Statistics

MetricCount
Definitionsclosure, gi, instBot, instCompleteLattice, instInfSet, instInhabited, instMin, instTop, instUniqueOfSubsingleton, instUniqueSubtypeMemBot, toSubgroup, toSubgroup', topEquiv, closure, gi, instBot, instCompleteLattice, instInfSet, instInhabited, instMin, instTop, instUniqueOfSubsingleton, instUniqueSubtypeMemBot, toAddSubgroup, toAddSubgroup', topEquiv
26
Theoremsadd_injective_of_disjoint, add_mem_sup, bot_or_exists_ne_zero, bot_or_nontrivial, bot_toAddSubmonoid, closure_closure_coe_preimage, closure_diff_zero, closure_empty, closure_eq, closure_eq_bot_iff, closure_eq_of_le, closure_eq_top_of_mclosure_eq_top, closure_iUnion, closure_induction, closure_inductionβ‚‚, closure_insert_zero, closure_le, closure_mono, closure_singleton_zero, closure_union, closure_union_zero, closure_univ, coe_bot, coe_eq_singleton, coe_eq_univ, coe_iInf, coe_iSup_of_directed, coe_inf, coe_sInf, coe_toSubgroup_apply, coe_toSubgroup_symm_apply, coe_top, disjoint_def, disjoint_def', disjoint_iff_add_eq_zero, eq_bot_iff_forall, eq_bot_of_subsingleton, eq_top_iff', exists_mem_sup, exists_ne_zero_of_nontrivial, forall_mem_sup, iSup_eq_closure, instNontrivial, instNontrivialSubtypeMemTop, le_closure_toAddSubmonoid, mem_biSup_of_directedOn, mem_bot, mem_closure, mem_closure_of_mem, mem_closure_pair, mem_closure_singleton, mem_closure_singleton_self, mem_iInf, mem_iSup_of_directed, mem_iSup_of_mem, mem_iSup_prop, mem_inf, mem_sInf, mem_sSup_of_directedOn, mem_sSup_of_mem, mem_sup, mem_sup', mem_sup_left, mem_sup_of_normal_left, mem_sup_of_normal_right, mem_sup_right, mem_toSubgroup', mem_top, ne_bot_iff_exists_ne_zero, nontrivial_iff, nontrivial_iff_exists_ne_zero, nontrivial_iff_ne_bot, notMem_of_notMem_closure, subset_closure, subsingleton_iff, sup_eq_closure, toSubgroup'_closure, toSubgroup_closure, topEquiv_apply, topEquiv_symm_apply_coe, top_toAddSubmonoid, mem_toAddSubgroup, mem_toSubgroup, bot_or_exists_ne_one, bot_or_nontrivial, bot_toSubmonoid, closure_closure_coe_preimage, closure_diff_one, closure_empty, closure_eq, closure_eq_bot_iff, closure_eq_of_le, closure_eq_top_of_mclosure_eq_top, closure_iUnion, closure_induction, closure_inductionβ‚‚, closure_insert_one, closure_le, closure_mono, closure_singleton_one, closure_union, closure_union_one, closure_univ, coe_bot, coe_eq_singleton, coe_eq_univ, coe_iInf, coe_iSup_of_directed, coe_inf, coe_sInf, coe_toAddSubgroup_apply, coe_toAddSubgroup_symm_apply, coe_top, disjoint_def, disjoint_def', disjoint_iff_mul_eq_one, eq_bot_iff_forall, eq_bot_of_subsingleton, eq_top_iff', exists_mem_sup, exists_ne_one_of_nontrivial, forall_mem_sup, iSup_eq_closure, instNontrivial, instNontrivialSubtypeMemTop, le_closure_toSubmonoid, mem_biSup_of_directedOn, mem_bot, mem_closure, mem_closure_of_mem, mem_closure_pair, mem_closure_singleton, mem_closure_singleton_self, mem_iInf, mem_iSup_of_directed, mem_iSup_of_mem, mem_iSup_prop, mem_inf, mem_sInf, mem_sSup_of_directedOn, mem_sSup_of_mem, mem_sup, mem_sup', mem_sup_left, mem_sup_of_normal_left, mem_sup_of_normal_right, mem_sup_right, mem_toAddSubgroup', mem_top, mul_injective_of_disjoint, mul_mem_sup, ne_bot_iff_exists_ne_one, nontrivial_iff, nontrivial_iff_exists_ne_one, nontrivial_iff_ne_bot, notMem_of_notMem_closure, subset_closure, subsingleton_iff, sup_eq_closure, toAddSubgroup'_closure, toAddSubgroup_closure, topEquiv_apply, topEquiv_symm_apply_coe, top_toSubmonoid
164
Total190

AddSubgroup

Definitions

NameCategoryTheorems
closure πŸ“–CompOp
88 mathmath: TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure_absorbing, closure_empty, AddGroup.closure_finite_fg, closure_preimage_eq_top, closure_singleton_zero, TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure, closure_diff_zero, mem_closure_range_iff_of_fintype, iSup_eq_closure, closure_nsmul, closure_eq_bot_iff, closure_le_centralizer_centralizer, AddGroup.fg_iff', Int.subgroup_cyclic, mem_closure_of_mem, unop_closure, rank_closure_finset_le_card, AddGroup.fg_iff, closure_singleton_neg, cyclic_of_min, zmultiples_eq_closure, closure_univ, neg_subset_closure, AddMonoidHom.map_closure, centralizer_closure, cyclic_of_isolated_zero, toSubgroup_closure, closure_mono, rank_closure_finite_le_nat_card, AddGroup.rank_spec, Subring.mem_closure_iff, FreeAddGroup.closure_eq_range, fg_iff, op_closure, dense_addSubmonoidClosure_iff_addSubgroupClosure, closure_add_le, closure_toAddSubmonoid, mem_closure_range_iff, closure_addSubmonoidClosure_eq_closure_addSubgroupClosure, mem_closure_singleton_iff_existsUnique_zsmul, closure_image_isAddIndecomposable_baseOf, Submodule.span_int_eq_addSubgroup_closure, Set.nsmul_add_addSubgroupClosure, mem_closure, Submodule.span_int_eq_addSubgroupClosure, topologicalClosure_addSubgroupClosure_toAddSubmonoid, Subgroup.toAddSubgroup_closure, closure_nsmul_le, FreeAddGroup.closure_range_of, AddMonoidHom.eqOn_closure, closure_prod, mem_closure_singleton_self, closure_toAddSubmonoid_of_finite, TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure_nonunital, sup_eq_closure, closure_toAddSubmonoid_of_isOfFinAddOrder, Int.addSubgroupClosure_one, closure_iUnion, dense_addSubgroupClosure_pair_iff, closure_eq, Set.addSubgroupClosure_add, closure_closure_coe_preimage, closure_neg, dense_or_cyclic, AddMonoidHom.closure_preimage_le, AddGroup.closure_finset_fg, closure_insert_zero, NonUnitalSubring.mem_closure_iff, le_closure_toAddSubmonoid, toSubgroup'_closure, AddMonoid.Coprod.closure_range_inl_union_inr, closure_pi, mem_closure_iff_of_fintype, isLeast_of_closure_iff_eq_abs, closure_eq_top_of_mclosure_eq_top, Subgroup.toAddSubgroup'_closure, sup_eq_closure_add, Set.add_addSubgroupClosure, toIntSubmodule_closure, Set.addSubgroupClosure_add_nsmul, mem_closure_singleton, closure_union, mem_closure_pair, closure_le, FreeAddGroup.range_lift_eq_closure, subset_closure, closure_union_zero, Finset.nsmul_right_strictMonoOn
gi πŸ“–CompOpβ€”
instBot πŸ“–CompOp
92 mathmath: closure_empty, ofAddUnits_bot, zero_smul, closure_singleton_zero, ArchimedeanClass.closedBallAddSubgroup_top, bot_toAddSubmonoid, pi_bot, normal_bot, eq_bot_of_card_eq, bot_prod_bot, AddMonoidHom.ker_fst, closure_eq_bot_iff, AddMonoidHom.ker_eq_bot_iff, map_zero_eq_bot, Normal.eq_bot_or_eq_top, isComplement'_top_bot, AddMonoidHom.ker_id, Topology.IsQuotientMap.isCoveringMapOn_of_properlyDiscontinuousVAdd, isComplement'_top_left, ArchimedeanClass.ballAddSubgroup_top, AddMonoidHom.ker_eq_bot_of_cancel, op_bot, AddSubmonoid.addUnits_bot, coe_set_eq_zero, coe_topologicalClosure_bot, pi_eq_bot_iff, AddMonoidHom.ker_snd, AddMonoidHom.range_eq_bot_iff, zmultiples_zero_eq_bot, map_eq_bot_iff, map_eq_bot_iff_of_injective, ArchimedeanClass.addSubgroup_eq_bot, isSimpleAddGroup_iff, card_le_one_iff_eq_bot, isComplement'_top_right, IsSimpleAddGroup.eq_bot_or_eq_top_of_normal, ker_subtype, mem_bot, isSimpleAddGroup_iff, map_bot, unop_eq_bot, coe_bot, IsSubnormal.bot, coe_eq_singleton, unop_bot, eq_bot_or_eq_top_of_prime_card, isCancelVAdd_iff_stabilizer_eq_bot, addSubgroupOf_bot_eq_top, bot_addSubgroupOf, QuotientAddGroup.quotientBot_apply, card_bot, relIndex_bot_right, eq_bot_iff_forall, isComplement'_bot_left, bot_or_nontrivial, botCharacteristic, isCoveringMapOn_quotientMk_of_properlyDiscontinuousVAdd, QuotientAddGroup.quotientBot_symm_apply, addSubgroupOf_bot_eq_bot, Valuation.leAddSubgroup_zero, AddAction.stabilizer_image_coe_quotient, inf_eq_bot_of_coprime, AddMonoidHom.comap_bot, AddMonoidHom.range_zero, AddCommGroup.isAddTorsionFree_iff_torsion_eq_bot, FG.bot, QuotientAddGroup.map_mk'_self, card_eq_one, eq_bot_iff_card, op_eq_bot, bot_or_exists_ne_zero, AddGrpCat.ker_eq_bot_of_mono, addSubgroupOf_eq_bot, RingPreordering.supportAddSubgroup_eq_bot, eq_bot_of_card_le, Topology.IsQuotientMap.isCoveringMapOn_of_vadd_disjoint, prod_eq_bot_iff, isComplement'_bot_top, AddCommGrpCat.ker_eq_bot_of_mono, FiniteArchimedeanClass.addSubgroup_eq_bot, AddCommGrpCat.mono_iff_ker_eq_bot, isComplement'_bot_right, IsCancelVAdd.stabilizer_eq_bot, Submodule.bot_toAddSubgroup, eq_bot_of_subsingleton, zmultiples_eq_bot, index_bot, IsSubnormal.eq_bot_or_top_of_isSimpleAddGroup, relIndex_bot_left, AddGrpCat.mono_iff_ker_eq_bot, ker_inclusion, Bot.isAddCyclic
instCompleteLattice πŸ“–CompOp
87 mathmath: map_eq_map_iff, exists_mem_sup, AddMonoidHom.noncommPiCoprod_range, iSup_eq_closure, mem_sup_left, map_eq_range_iff, comap_map_eq, normal_add, add_normal, mem_sup_of_normal_left, noncommPiCoprod_range, relIndex_map_map, coe_iSup_of_directed, mem_iSup_of_directed, relIndex_sup_left, add_mem_sup, mem_sSup_of_directedOn, unop_iSup, mem_sup', disjoint_def, coe_add_of_left_le_normalizer_right, iSupIndep_of_dfinsuppSumAddHom_injective', map_le_map_iff, NumberField.Units.dirichletUnitTheorem.map_logEmbedding_sup_torsion, index_map, AddMonoid.Coprod.range_eq, op_sup, comap_sup_eq_of_le_range, closure_add_le, ofAddUnits_sSup, QuotientAddGroup.comap_map_mk', coe_add_of_right_le_normalizer_left, unop_sup, codisjoint_addSubgroupOf_sup, ofAddUnits_inf, IsSimpleAddGroup.instIsSimpleOrderAddSubgroup, AddMonoid.Coprod.codisjoint_range_inl_range_inr, op_sSup, quotientiInfEmbedding_apply, OpenAddSubgroup.toAddSubgroup_sup, FG.iSup, sup_normal, FG.finset_sup, ofAddUnits_iSupβ‚‚, mem_sup_right, sup_eq_closure, instIsModularLatticeAddSubgroup, mem_sup_of_normal_right, FG.biSup_finset, AddMonoid.Coprod.range_lift, closure_iUnion, mem_sup, mem_iSup_of_mem, disjoint_iff_add_eq_zero, mem_sSup_of_mem, quotientiInfAddSubgroupOfEmbedding_apply, mem_iSup_prop, FG.biSup, op_iSup, ofAddUnits_sup_addUnits, fixedPoints_addSubgroup_iSup, comap_sup_eq, disjoint_def', AddMonoidHom.independent_range_of_coprime_order, sup_eq_closure_add, iSup_comap_le, DirectSum.IsInternal.addSubgroup_iSupIndep, unop_sSup, AddMonoid.Coprod.range_inl_sup_range_inr, fixedPoints_addSubgroup_sup, addSubgroupOf_eq_bot, comap_sup_comap_le, map_iSup, FG.sup, ofAddUnits_iSup, closure_union, independent_of_coprime_order, addSubgroupOf_sup, relIndex_sup_right, Submodule.sup_toAddSubgroup, map_sup, iSupIndep_iff_dfinsuppSumAddHom_injective, AddAction.isCoatom_stabilizer_iff_preprimitive, AddAction.IsPreprimitive.isCoatom_stabilizer_of_isPreprimitive, map_le_map_iff', mem_biSup_of_directedOn, normal_addSubgroupOf_sup_of_le_normalizer
instInfSet πŸ“–CompOp
28 mathmath: quotientiInfAddSubgroupOfEmbedding_apply_mk, centralizer_eq_iInf, AddSubmonoid.addUnits_iInfβ‚‚, AddSubmonoid.addUnits_sInf, index_iInf_le, unop_sInf, op_sInf, fixingAddSubgroup_iUnion, AddSubmonoid.addUnits_iInf, quotientiInfEmbedding_apply_mk, center_eq_infi', quotientiInfEmbedding_apply, finiteIndex_iInf, Subring.sInf_toAddSubgroup, op_iInf, unop_iInf, comap_iInf, coe_iInf, map_iInf, quotientiInfAddSubgroupOfEmbedding_apply, center_eq_iInf, NonUnitalSubring.sInf_toAddSubgroup, mem_sInf, normal_iInf_normal, coe_sInf, finiteIndex_iInf', relIndex_iInf_le, mem_iInf
instInhabited πŸ“–CompOpβ€”
instMin πŸ“–CompOp
40 mathmath: inf_addSubgroupOf_inf_normal_of_left, map_inf_le, inf_addSubgroupOf_left, op_inf, inf_addSubgroupOf_right, AddAction.stabilizer_inf_stabilizer_le_stabilizer_applyβ‚‚, relIndex_inf_mul_relIndex, index_inf_le, exists_nsmul_mem_of_relIndex_ne_zero, AddMonoidHom.ker_prod, normal_inf_normal, unop_inf, fixingAddSubgroup_union, map_inf_eq, comap_inf, nsmul_mem_of_relIndex_ne_zero_of_dvd, relIndex_inf_le, addSubgroupOf_map_subtype, inf_add_assoc, map_comap_eq, coe_inf, RingSubgroupsBasis.inter, AddAction.stabilizer_inf_stabilizer_le_stabilizer_inter, AddSubmonoid.addUnits_inf, AddAction.stabilizer_inf_stabilizer_le_stabilizer_union, inf_relIndex_right, ofAddUnits_inf_addUnits, mem_inf, addSubgroupOf_inj, OpenAddSubgroup.toAddSubgroup_inf, add_inf_assoc, map_inf, inf_eq_bot_of_coprime, inf_relIndex_left, inf_addSubgroupOf_inf_normal_of_right, AddAction.stabilizer_inf_stabilizer_le_stabilizer_sdiff, instFiniteIndexMin, AddAction.orbitRel_addSubgroupOf, inf_normalizer_le_normalizer_inf, normal_addSubgroupOf_iff_le_normalizer_inf
instTop πŸ“–CompOp
110 mathmath: Int.zmultiples_one, addSubgroupOf_eq_top, closure_preimage_eq_top, pi_top, coe_top, top_addSubgroupOf, instNontrivialSubtypeMemTop, QuotientAddGroup.leftRel_eq_top, addSubgroupOf_self, QuotientAddGroup.subsingleton_quotient_top, card_eq_iff_eq_top, AddMonoidHom.ker_fst, eq_top_of_card_eq, AddAction.aestabilizer_empty, IsSubnormal.lt_normal, AddGroup.fg_iff', AddMonoidHom.range_eq_map, AddAction.aestabilizer_univ, LinearOrderedAddCommGroup.negGen_eq_of_top, Normal.eq_bot_or_eq_top, AddAction.stabilizer_finset_univ, topCharacteristic, AddAction.stabilizer_univ, fixingAddSubgroup_empty, AddGroup.fg_iff, AddAction.stabilizer_empty, map_top_of_surjective, pi_empty, isComplement'_top_bot, MeasureTheory.Lp.boundedContinuousFunction_topologicalClosure, normalizer_eq_top_iff, closure_univ, isComplement'_top_left, map_equiv_top, op_top, Submodule.top_toAddSubgroup, AddGroup.rank_spec, QuotientAddGroup.subsingleton_iff, QuotientAddGroup.rightRel_eq_top, NonUnitalSubring.toAddSubgroup_eq_top, AddCommGrpCat.range_eq_top_of_epi, AddMonoidHom.range_eq_top, AddGroup.FG.out, prod_top, AddMonoidHom.ker_snd, isAddCyclic_iff_exists_zmultiples_eq_top, NormedAddGroupHom.range_comp_incl_top, AddMonoidHom.range_eq_top_of_surjective, IsSubnormal.exists_normal_and_le_and_lt_top_of_ne, AddGroup.fg_def, topEquiv_symm_apply_coe, isComplement'_top_right, IsSimpleAddGroup.eq_bot_or_eq_top_of_normal, top_prod_top, card_top, isSimpleAddGroup_iff, relIndex_top_right, unop_eq_top, QuotientAddGroup.addSubgroup_eq_top_of_subsingleton, FreeAddGroup.closure_range_of, top_toAddSubmonoid, AddCommGrpCat.epi_iff_range_eq_top, eq_top_of_le_card, AddAction.isBlock_top, top_prod, eq_bot_or_eq_top_of_prime_card, addSubgroupOf_bot_eq_top, normalizer_eq_top, AddMonoid.Coprod.range_swap, centralizer_eq_top_iff_subset, Int.addSubgroupClosure_one, eq_top_iff', isComplement'_bot_left, zmultiples_eq_top_of_prime_card, normal_top, closure_closure_coe_preimage, instFiniteIndexTop, topEquiv_apply, OpenAddSubgroup.toAddSubgroup_top, QuotientAddGroup.range_mk', AddGrpCat.epi_iff_range_eq_top, Submodule.toAddSubgroup_eq_top, AddMonoidHom.eqLocus_same, exponent_top, comap_top, AddMonoidHom.ker_eq_top_iff, AddMonoid.Coprod.closure_range_inl_union_inr, Subring.toAddSubgroup_eq_top, unop_top, closure_eq_top_of_mclosure_eq_top, IsSubnormal.iff_eq_top_or_exists, AddAction.stabilizer_finset_empty, AddMonoid.Coprod.range_inl_sup_range_inr, index_top, AddCommGroup.smul_top_eq_top_of_divisibleBy_int, relIndex_top_left, NormedAddGroupHom.ker_zero, AddMonoidHom.range_eq_top_of_cancel, isComplement'_bot_top, coe_eq_univ, AddMonoidHom.ker_zero, isComplement'_bot_right, op_eq_top, AddSubmonoid.addUnits_top, NonUnitalSubring.toAddSubgroup_top, Subring.toAddSubgroup_top, mem_top, index_eq_one, IsSubnormal.eq_bot_or_top_of_isSimpleAddGroup, IsSubnormal.isSubnormal_iff
instUniqueOfSubsingleton πŸ“–CompOpβ€”
instUniqueSubtypeMemBot πŸ“–CompOpβ€”
toSubgroup πŸ“–CompOp
11 mathmath: MonoidHom.coe_toMultiplicative_range, toSubgroup_closure, Multiplicative.mem_toSubgroup, AddMonoidHom.coe_toMultiplicative_map, coe_toSubgroup_apply, fg_iff_mul_fg, index_toSubgroup, toSubgroup_comap, coe_toSubgroup_symm_apply, MonoidHom.coe_toMultiplicative_ker, relIndex_toSubgroup
toSubgroup' πŸ“–CompOp
2 mathmath: mem_toSubgroup', toSubgroup'_closure
topEquiv πŸ“–CompOp
2 mathmath: topEquiv_symm_apply_coe, topEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
add_injective_of_disjoint πŸ“–mathematicalDisjoint
AddSubgroup
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLattice
SetLike.instMembership
instSetLike
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”disjoint_iff_add_eq_zero
Subtype.prop
add_assoc
add_neg_eq_zero
neg_add_eq_iff_eq_add
neg_add_eq_zero
coe_neg
coe_add
add_mem_sup πŸ“–mathematicalAddSubgroup
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”add_mem
mem_sup_left
mem_sup_right
bot_or_exists_ne_zero πŸ“–mathematicalβ€”Bot.bot
AddSubgroup
instBot
SetLike.instMembership
instSetLike
β€”nontrivial_iff_exists_ne_zero
bot_or_nontrivial
bot_or_nontrivial πŸ“–mathematicalβ€”Bot.bot
AddSubgroup
instBot
Nontrivial
SetLike.instMembership
instSetLike
β€”nontrivial_iff_ne_bot
bot_toAddSubmonoid πŸ“–mathematicalβ€”toAddSubmonoid
Bot.bot
AddSubgroup
instBot
AddSubmonoid
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubmonoid.instBot
β€”β€”
closure_closure_coe_preimage πŸ“–mathematicalβ€”closure
AddSubgroup
SetLike.instMembership
instSetLike
toAddGroup
Set.preimage
Top.top
instTop
β€”eq_top_iff
closure_induction
subset_closure
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
NegMemClass.neg_mem
AddSubgroupClass.toNegMemClass
closure_diff_zero πŸ“–mathematicalβ€”closure
Set
Set.instSDiff
Set.instSingletonSet
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”closure_union_zero
Set.diff_union_self
closure_empty πŸ“–mathematicalβ€”closure
Set
Set.instEmptyCollection
Bot.bot
AddSubgroup
instBot
β€”GaloisConnection.l_bot
GaloisInsertion.gc
closure_eq πŸ“–mathematicalβ€”closure
SetLike.coe
AddSubgroup
instSetLike
β€”GaloisInsertion.l_u_eq
closure_eq_bot_iff πŸ“–mathematicalβ€”closure
Bot.bot
AddSubgroup
instBot
Set
Set.instHasSubset
Set.instSingletonSet
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”le_bot_iff
closure_le
closure_eq_of_le πŸ“–β€”Set
Set.instHasSubset
SetLike.coe
AddSubgroup
instSetLike
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
β€”β€”le_antisymm
closure_le
closure_eq_top_of_mclosure_eq_top πŸ“–mathematicalAddSubmonoid.closure
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Top.top
AddSubmonoid
AddSubmonoid.instTop
closure
AddSubgroup
instTop
β€”eq_top_iff'
le_closure_toAddSubmonoid
closure_iUnion πŸ“–mathematicalβ€”closure
Set.iUnion
iSup
AddSubgroup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”GaloisConnection.l_iSup
GaloisInsertion.gc
closure_induction πŸ“–β€”subset_closure
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
ZeroMemClass.zero_mem
AddSubgroup
instSetLike
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
closure
AddZero.toAdd
AddZeroClass.toAddZero
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
NegZeroClass.toNeg
NegMemClass.neg_mem
AddSubgroupClass.toNegMemClass
SetLike.instMembership
β€”β€”subset_closure
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
NegMemClass.neg_mem
AddSubgroupClass.toNegMemClass
closure_le
closure_inductionβ‚‚ πŸ“–β€”subset_closure
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
ZeroMemClass.zero_mem
AddSubgroup
instSetLike
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
closure
AddZero.toAdd
AddZeroClass.toAddZero
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
NegZeroClass.toNeg
NegMemClass.neg_mem
AddSubgroupClass.toNegMemClass
SetLike.instMembership
β€”β€”subset_closure
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
NegMemClass.neg_mem
AddSubgroupClass.toNegMemClass
closure_induction
closure_insert_zero πŸ“–mathematicalβ€”closure
Set
Set.instInsert
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”Set.insert_eq
closure_union
sup_of_le_right
closure_le
Set.singleton_subset_iff
SetLike.mem_coe
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
closure_le πŸ“–mathematicalβ€”AddSubgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”Set.Subset.trans
subset_closure
sInf_le
closure_mono πŸ“–mathematicalSet
Set.instHasSubset
AddSubgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
β€”GaloisConnection.monotone_l
GaloisInsertion.gc
closure_singleton_zero πŸ“–mathematicalβ€”closure
Set
Set.instSingletonSet
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Bot.bot
AddSubgroup
instBot
β€”eq_bot_iff_forall
mem_closure_singleton
zsmul_zero
closure_union πŸ“–mathematicalβ€”closure
Set
Set.instUnion
AddSubgroup
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
β€”GaloisConnection.l_sup
GaloisInsertion.gc
closure_union_zero πŸ“–mathematicalβ€”closure
Set
Set.instUnion
Set.instSingletonSet
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”Set.union_singleton
closure_insert_zero
closure_univ πŸ“–mathematicalβ€”closure
Set.univ
Top.top
AddSubgroup
instTop
β€”closure_eq
coe_top
coe_bot πŸ“–mathematicalβ€”SetLike.coe
AddSubgroup
instSetLike
Bot.bot
instBot
Set
Set.instSingletonSet
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”β€”
coe_eq_singleton πŸ“–mathematicalβ€”SetLike.coe
AddSubgroup
instSetLike
Set
Set.instSingletonSet
Bot.bot
instBot
β€”eq_bot_of_subsingleton
Unique.instSubsingleton
SetLike.ext'_iff
coe_eq_univ πŸ“–mathematicalβ€”SetLike.coe
AddSubgroup
instSetLike
Set.univ
Top.top
instTop
β€”SetLike.ext'_iff
coe_iInf πŸ“–mathematicalβ€”SetLike.coe
AddSubgroup
instSetLike
iInf
instInfSet
Set.iInter
β€”Set.biInter_range
coe_iSup_of_directed πŸ“–mathematicalDirected
AddSubgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.coe
instSetLike
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
Set.iUnion
β€”Set.ext
SetLike.mem_coe
mem_iSup_of_directed
Set.mem_iUnion
coe_inf πŸ“–mathematicalβ€”SetLike.coe
AddSubgroup
instSetLike
instMin
Set
Set.instInter
β€”β€”
coe_sInf πŸ“–mathematicalβ€”SetLike.coe
AddSubgroup
instSetLike
InfSet.sInf
instInfSet
Set.iInter
Set
Set.instMembership
β€”β€”
coe_toSubgroup_apply πŸ“–mathematicalβ€”SetLike.coe
Subgroup
Multiplicative
Multiplicative.group
Subgroup.instSetLike
DFunLike.coe
RelIso
AddSubgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Subgroup.instPartialOrder
RelIso.instFunLike
toSubgroup
Set.preimage
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.toAdd
instSetLike
β€”β€”
coe_toSubgroup_symm_apply πŸ“–mathematicalβ€”SetLike.coe
AddSubgroup
instSetLike
DFunLike.coe
RelIso
Subgroup
Multiplicative
Multiplicative.group
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
instPartialOrder
RelIso.instFunLike
RelIso.symm
toSubgroup
Set.preimage
Additive
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.toMul
Subgroup.instSetLike
β€”β€”
coe_top πŸ“–mathematicalβ€”SetLike.coe
AddSubgroup
instSetLike
Top.top
instTop
Set.univ
β€”β€”
disjoint_def πŸ“–mathematicalβ€”Disjoint
AddSubgroup
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLattice
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”disjoint_iff_inf_le
SetLike.le_def
instIsConcreteLE
mem_inf
mem_bot
disjoint_def' πŸ“–mathematicalβ€”Disjoint
AddSubgroup
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLattice
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”disjoint_def
disjoint_iff_add_eq_zero πŸ“–mathematicalβ€”Disjoint
AddSubgroup
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLattice
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”disjoint_def'
neg_mem
eq_neg_iff_add_eq_zero
zero_add
add_neg_eq_zero
eq_bot_iff_forall πŸ“–mathematicalβ€”Bot.bot
AddSubgroup
instBot
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”toAddSubmonoid_injective
AddSubmonoid.eq_bot_iff_forall
eq_bot_of_subsingleton πŸ“–mathematicalβ€”Bot.bot
AddSubgroup
instBot
β€”eq_bot_iff_forall
coe_zero
eq_top_iff' πŸ“–mathematicalβ€”Top.top
AddSubgroup
instTop
SetLike.instMembership
instSetLike
β€”eq_top_iff
mem_top
exists_mem_sup πŸ“–mathematicalβ€”AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”mem_sup
exists_exists_and_exists_and_eq_and
exists_ne_zero_of_nontrivial πŸ“–mathematicalβ€”AddSubgroup
SetLike.instMembership
instSetLike
β€”nontrivial_iff_exists_ne_zero
forall_mem_sup πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”
iSup_eq_closure πŸ“–mathematicalβ€”iSup
AddSubgroup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
closure
Set.iUnion
SetLike.coe
instSetLike
β€”closure_iUnion
closure_eq
instNontrivial πŸ“–mathematicalβ€”Nontrivial
AddSubgroup
β€”nontrivial_iff
instNontrivialSubtypeMemTop πŸ“–mathematicalβ€”Nontrivial
AddSubgroup
SetLike.instMembership
instSetLike
Top.top
instTop
β€”nontrivial_iff_ne_bot
top_ne_bot
instNontrivial
le_closure_toAddSubmonoid πŸ“–mathematicalβ€”AddSubmonoid
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Preorder.toLE
PartialOrder.toPreorder
AddSubmonoid.instPartialOrder
AddSubmonoid.closure
toAddSubmonoid
closure
β€”AddSubmonoid.closure_le
subset_closure
mem_biSup_of_directedOn πŸ“–mathematicalDirectedOn
Function.onFun
AddSubgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
setOf
SetLike.instMembership
instSetLike
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”closure_induction
Set.mem_iUnion
SetLike.mem_coe
zero_mem
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
NegMemClass.neg_mem
AddSubgroupClass.toNegMemClass
closure_iUnion
iSup_congr_Prop
closure_eq
le_iSup
iSup_pos
mem_bot πŸ“–mathematicalβ€”AddSubgroup
SetLike.instMembership
instSetLike
Bot.bot
instBot
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”β€”
mem_closure πŸ“–mathematicalβ€”AddSubgroup
SetLike.instMembership
instSetLike
closure
β€”mem_sInf
mem_closure_of_mem πŸ“–mathematicalSet
Set.instMembership
AddSubgroup
SetLike.instMembership
instSetLike
closure
β€”subset_closure
mem_closure_pair πŸ“–mathematicalβ€”AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
instSetLike
closure
Set
Set.instInsert
Set.instSingletonSet
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SubNegMonoid.toZSMul
β€”Set.singleton_union
closure_union
mem_sup
mem_closure_singleton
exists_exists_eq_and
mem_closure_singleton πŸ“–mathematicalβ€”AddSubgroup
SetLike.instMembership
instSetLike
closure
Set
Set.instSingletonSet
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
β€”closure_induction
Set.eq_of_mem_singleton
one_zsmul
zero_zsmul
add_zsmul
neg_zsmul
zsmul_mem
instAddSubgroupClass
subset_closure
Set.mem_singleton
mem_closure_singleton_self πŸ“–mathematicalβ€”AddSubgroup
SetLike.instMembership
instSetLike
closure
Set
Set.instSingletonSet
β€”Set.singleton_subset_iff
SetLike.mem_coe
subset_closure
mem_iInf πŸ“–mathematicalβ€”AddSubgroup
SetLike.instMembership
instSetLike
iInf
instInfSet
β€”mem_sInf
Set.forall_mem_range
mem_iSup_of_directed πŸ“–mathematicalDirected
AddSubgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”iSup_pos
iSup_plift_down
mem_biSup_of_directedOn
directedOn_onFun_iff
Set.image_univ
directedOn_range
PLift.exists
mem_iSup_of_mem πŸ“–mathematicalAddSubgroup
SetLike.instMembership
instSetLike
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”le_iSup
mem_iSup_prop πŸ“–mathematicalβ€”AddSubgroup
SetLike.instMembership
instSetLike
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”iSup_congr_Prop
iSup_pos
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
iSup_neg
mem_bot
IsEmpty.exists_iff
instIsEmptyFalse
mem_inf πŸ“–mathematicalβ€”AddSubgroup
SetLike.instMembership
instSetLike
instMin
β€”β€”
mem_sInf πŸ“–mathematicalβ€”AddSubgroup
SetLike.instMembership
instSetLike
InfSet.sInf
instInfSet
β€”Set.mem_iInterβ‚‚
mem_sSup_of_directedOn πŸ“–mathematicalSet.Nonempty
AddSubgroup
DirectedOn
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
Set
Set.instMembership
β€”sSup_eq_iSup'
mem_iSup_of_directed
Set.Nonempty.to_subtype
DirectedOn.directed_val
SetCoe.exists
mem_sSup_of_mem πŸ“–mathematicalAddSubgroup
Set
Set.instMembership
SetLike.instMembership
instSetLike
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”le_sSup
mem_sup πŸ“–mathematicalβ€”AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”closure_induction
zero_mem
add_zero
zero_add
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
add_left_comm
add_assoc
NegMemClass.neg_mem
AddSubgroupClass.toNegMemClass
neg_add_rev
add_comm
sup_eq_closure
add_mem_sup
mem_sup' πŸ“–mathematicalβ€”AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”mem_sup
SetLike.exists
mem_sup_left πŸ“–mathematicalAddSubgroup
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
β€”le_sup_left
mem_sup_of_normal_left πŸ“–mathematicalβ€”AddSubgroup
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”mem_sup_of_normal_right
sup_comm
Normal.conj_mem
neg_add_cancel_right
Normal.conj_mem'
add_assoc
add_neg_cancel_left
mem_sup_of_normal_right πŸ“–mathematicalβ€”AddSubgroup
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”closure_induction
zero_mem
add_zero
zero_add
add_mem
Normal.conj_mem'
add_assoc
add_neg_cancel_left
neg_mem
Normal.conj_mem
neg_add_cancel_left
neg_add_rev
sup_eq_closure
add_mem_sup
mem_sup_right πŸ“–mathematicalAddSubgroup
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
β€”le_sup_right
mem_toSubgroup' πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
Subgroup.instSetLike
DFunLike.coe
OrderIso
AddSubgroup
Additive
Additive.addGroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Subgroup.instPartialOrder
instFunLikeOrderIso
toSubgroup'
instSetLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.ofMul
β€”β€”
mem_top πŸ“–mathematicalβ€”AddSubgroup
SetLike.instMembership
instSetLike
Top.top
instTop
β€”Set.mem_univ
ne_bot_iff_exists_ne_zero πŸ“–β€”β€”β€”β€”nontrivial_iff_ne_bot
nontrivial_iff_exists_ne_zero
mk_eq_zero
nontrivial_iff πŸ“–mathematicalβ€”Nontrivial
AddSubgroup
β€”not_iff_not
not_nontrivial_iff_subsingleton
subsingleton_iff
nontrivial_iff_exists_ne_zero πŸ“–mathematicalβ€”Nontrivial
AddSubgroup
SetLike.instMembership
instSetLike
β€”Subtype.nontrivial_iff_exists_ne
nontrivial_iff_ne_bot πŸ“–mathematicalβ€”Nontrivial
AddSubgroup
SetLike.instMembership
instSetLike
β€”nontrivial_iff_exists_ne_zero
eq_bot_iff_forall
notMem_of_notMem_closure πŸ“–mathematicalAddSubgroup
SetLike.instMembership
instSetLike
closure
Set
Set.instMembership
β€”subset_closure
subset_closure πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
AddSubgroup
instSetLike
closure
β€”mem_closure
subsingleton_iff πŸ“–mathematicalβ€”AddSubgroupβ€”mem_bot
mem_top
ext
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
sup_eq_closure πŸ“–mathematicalβ€”AddSubgroup
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
closure
Set
Set.instUnion
SetLike.coe
instSetLike
β€”closure_union
closure_eq
toSubgroup'_closure πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
AddSubgroup
Additive
Additive.addGroup
Subgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Subgroup.instPartialOrder
instFunLikeOrderIso
toSubgroup'
closure
Subgroup.closure
Set.preimage
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.ofMul
β€”Subgroup.toAddSubgroup'_closure
toSubgroup_closure πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
AddSubgroup
Subgroup
Multiplicative
Multiplicative.group
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Subgroup.instPartialOrder
instFunLikeOrderIso
toSubgroup
closure
Subgroup.closure
Set.preimage
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.toAdd
β€”OrderIso.injective
Subgroup.toAddSubgroup_closure
topEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
AddSubgroup
SetLike.instMembership
instSetLike
Top.top
instTop
add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
EquivLike.toFunLike
AddEquiv.instEquivLike
topEquiv
AddSubmonoid
AddSubmonoid.instSetLike
AddSubmonoid.instTop
β€”β€”
topEquiv_symm_apply_coe πŸ“–mathematicalβ€”AddSubmonoid
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
Top.top
AddSubmonoid.instTop
DFunLike.coe
AddEquiv
AddSubgroup
instSetLike
instTop
AddZero.toAdd
AddZeroClass.toAddZero
add
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
topEquiv
β€”β€”
top_toAddSubmonoid πŸ“–mathematicalβ€”toAddSubmonoid
Top.top
AddSubgroup
instTop
AddSubmonoid
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubmonoid.instTop
β€”β€”

Additive

Theorems

NameKindAssumesProvesValidatesDepends On
mem_toAddSubgroup πŸ“–mathematicalβ€”Additive
AddSubgroup
addGroup
SetLike.instMembership
AddSubgroup.instSetLike
DFunLike.coe
OrderIso
Subgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
AddSubgroup.instPartialOrder
instFunLikeOrderIso
Subgroup.toAddSubgroup
Subgroup.instSetLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toMul
β€”β€”

Multiplicative

Theorems

NameKindAssumesProvesValidatesDepends On
mem_toSubgroup πŸ“–mathematicalβ€”Multiplicative
Subgroup
group
SetLike.instMembership
Subgroup.instSetLike
DFunLike.coe
OrderIso
AddSubgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
Subgroup.instPartialOrder
instFunLikeOrderIso
AddSubgroup.toSubgroup
AddSubgroup.instSetLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toAdd
β€”β€”

Subgroup

Definitions

NameCategoryTheorems
closure πŸ“–CompOp
111 mathmath: sup_eq_closure_mul, closure_eq, closure_image_isMulIndecomposable_baseOf, closure_prod, Equiv.Perm.closure_isSwap, RootPairing.range_weylGroup_coweightHom, unop_closure, FreeGroup.closure_range_of, closure_toSubmonoid, Equiv.Perm.disjoint_closure_of_disjoint_support, rank_closure_finite_le_nat_card, Finset.pow_right_strictMonoOn, Monoid.Coprod.closure_range_inl_union_inr, MonoidHom.closure_preimage_le, commutator_eq_closure, NumberField.Units.span_basisOfIsMaxRank, closure_le, mem_closure_isSwap, closure_insert_one, Equiv.Perm.closure_isCycle, closure_closure_coe_preimage, Set.subgroupClosure_mul_pow, fg_iff, LinearIsometryEquiv.reflections_generate, AddSubgroup.toSubgroup_closure, centralizer_closure, CoxeterSystem.subgroup_closure_range_simple, closure_empty, Equiv.Perm.closure_cycle_coprime_swap, Group.rank_spec, mem_closure_range_iff_of_fintype, Group.fg_iff, mem_closure_singleton, closure_singleton_one, closure_singleton_inv, mem_closure_range_iff, mem_lowerCentralSeries_succ_iff, NumberField.Units.regOfFamily_div_regulator, FreeGroup.range_lift_eq_closure, closure_mono, rank_closure_finset_le_card, NumberField.IsCMField.closure_realFundSystem_sup_torsion, SpecialLinearGroup.SL2Z_generators, swap_mem_closure_isSwap, NumberField.Units.closure_fundSystem_sup_torsion_eq_top, dense_or_cyclic, FreeGroup.closure_eq_range, MonoidHom.map_closure, Set.pow_mul_subgroupClosure, topologicalClosure_subgroupClosure_toSubmonoid, le_closure_toSubmonoid, closure_le_centralizer_centralizer, closure_eq_top_of_mclosure_eq_top, commutator_def, toAddSubgroup_closure, subset_closure, RootPairing.range_weylGroupToPerm, smul_closure, closure_pi, mem_closure_of_mem, closure_univ, lowerCentralSeries_succ, dense_submonoidClosure_iff_subgroupClosure, closure_submonoidClosure_eq_closure_subgroupClosure, mem_closure_singleton_iff_existsUnique_zpow, Equiv.Perm.swap_mul_swap_same_mem_closure_three_cycles, mem_closure_pair, closure_of_isSwap_of_isPretransitive, Equiv.Perm.IsSwap.mul_mem_closure_three_cycles, MonoidWithZeroHom.valueGroup_def, closure_mul_le, mem_closure_isSwap', inv_subset_closure, Group.fg_iff', PresentedGroup.closure_range_of, mem_closure, Group.closure_finset_fg, normalClosure_closure_eq_normalClosure, Equiv.Perm.closure_cycle_adjacent_swap, closure_inv, cyclic_of_isolated_one, closure_le_normalClosure, op_closure, Set.mul_subgroupClosure, AddSubgroup.toSubgroup'_closure, closure_preimage_eq_top, NumberField.Units.isMaxRank_iff_closure_finiteIndex, toAddSubgroup'_closure, closure_union, Equiv.Perm.closure_prime_cycle_swap, closure_iUnion, closure_pow_le, closure_pow, mem_closure_singleton_self, RootPairing.range_weylGroup_weightHom, closure_eq_bot_iff, Equiv.Perm.closure_cycleType_eq_2_2_eq_alternatingGroup, cyclic_of_min, isLeast_of_closure_iff_eq_mabs, MonoidHom.eqOn_closure, closure_diff_one, iSup_eq_closure, closure_union_one, closure_toSubmonoid_of_isOfFinOrder, zpowers_eq_closure, Equiv.Perm.closure_three_cycles_eq_alternating, closure_toSubmonoid_of_finite, Set.subgroupClosure_mul, mem_closure_iff_of_fintype, sup_eq_closure, Group.closure_finite_fg
gi πŸ“–CompOpβ€”
instBot πŸ“–CompOp
127 mathmath: CongruenceSubgroup.Gamma_zero_bot, MonoidHom.comap_bot, ofUnits_bot, isComplement'_top_left, alternatingGroup.eq_bot_of_card_le_two, IsGaloisGroup.fixingSubgroup_top, op_bot, map_one_eq_bot, Submonoid.units_bot, pi_bot, unop_eq_bot, NumberField.InfinitePlace.IsUnramified.stabilizer_eq_bot, Bot.isCyclic, Matrix.SpecialLinearGroup.center_eq_bot_of_subsingleton, card_eq_one, card_bot, bot_or_nontrivial, DoubleCoset.left_bot_eq_left_quot, GrpCat.mono_iff_ker_eq_bot, IntermediateField.fixingSubgroup_top, normal_bot, rootsOfUnity_one, upperCentralSeries_zero, DoubleCoset.right_bot_eq_right_quot, eq_bot_iff_card, MonoidHom.range_one, isComplement'_bot_right, MonoidHom.range_eq_bot_iff, alternatingGroup.center_eq_bot, isCancelSMul_iff_stabilizer_eq_bot, GrpCat.ker_eq_bot_of_mono, least_descending_central_series_length_eq_nilpotencyClass, CommGroup.isMulTorsionFree_iff_torsion_eq_bot, ker_subtype, closure_empty, prod_eq_bot_iff, NumberField.mixedEmbedding.fundamentalCone.integerSetTorsionSMul_stabilizer, subgroupOf_eq_bot, nilpotent_iff_lowerCentralSeries, pi_eq_bot_iff, isComplement'_top_right, ker_inclusion, bot_or_exists_ne_one, closure_singleton_one, IsGaloisGroup.fixedPoints_bot, relIndex_bot_left, map_eq_bot_iff, DoubleCoset.rel_bot_eq_right_group_rel, DihedralGroup.center_eq_bot_of_odd_ne_one, commutator_eq_bot_iff_le_centralizer, map_bot, Sylow.commutator_eq_bot_or_commutator_eq_self, IsPGroup.bot_lt_center, IsSubnormal.eq_bot_or_top_of_isSimpleGroup, index_bot, commutator_bot_right, IsPGroup.commutator_eq_bot_or_commutator_eq_self, Module.stabilizer_units_eq_bot_of_ne_zero, map_eq_bot_iff_of_injective, isComplement'_bot_left, bot_toSubmonoid, CommGrpCat.mono_iff_ker_eq_bot, lowerCentralSeries_eq_bot_iff_nilpotencyClass_le, Topology.IsQuotientMap.isCoveringMapOn_of_smul_disjoint, isSolvable_def, eq_bot_or_eq_top_of_prime_card, Topology.IsQuotientMap.isCoveringMapOn_of_properlyDiscontinuousSMul, SpecialLinearGroup.center_eq_bot_of_finrank_le_one, MonoidHom.ker_eq_bot_of_cancel, eq_bot_iff_forall, MonoidHom.ker_fst, nilpotent_iff_finite_descending_central_series, bot_subgroupOf, coe_topologicalClosure_bot, MulAction.stabilizer_image_coe_quotient, coe_set_eq_one, isComplement'_top_bot, zpowers_eq_bot, IsSimpleGroup.eq_bot_or_eq_top_of_normal, MonoidHom.ker_eq_bot_iff, isSimpleGroup_iff, NumberField.InfinitePlace.isUnramified_iff_stabilizer_eq_bot, lowerCentralSeries_nilpotencyClass, MulArchimedeanClass.ballSubgroup_top, CommGrpCat.ker_eq_bot_of_mono, IsPGroup.of_bot, isComplement'_bot_top, botCharacteristic, isCoveringMapOn_quotientMk_of_properlyDiscontinuousSMul, FiniteMulArchimedeanClass.subgroup_eq_bot, eq_bot_of_card_eq, MulArchimedeanClass.closedBallSubgroup_top, eq_bot_of_card_le, unop_bot, eq_bot_of_subsingleton, QuotientGroup.quotientBot_apply, IntermediateField.fixedField_bot, card_le_one_iff_eq_bot, QuotientGroup.map_mk'_self, DoubleCoset.bot_rel_eq_leftRel, FiniteField.sum_subgroup_units, subgroupOf_bot_eq_top, op_eq_bot, relIndex_bot_right, zpowers_one_eq_bot, MonoidHom.ker_id, bot_prod_bot, isSimpleGroup_iff, closure_eq_bot_iff, smul_bot, MulArchimedeanClass.subgroup_eq_bot, Normal.eq_bot_or_eq_top, MonoidHom.ker_snd, lowerCentralSeries_length_eq_nilpotencyClass, inf_eq_bot_of_coprime, IsSubnormal.bot, QuotientGroup.quotientBot_symm_apply, lowerCentralSeries_succ_eq_bot, FG.bot, commutator_bot_left, mem_bot, coe_eq_singleton, IsCancelSMul.stabilizer_eq_bot, commutator_eq_bot_iff_center_eq_top, coe_bot, IsSolvable.solvable, subgroupOf_bot_eq_bot
instCompleteLattice πŸ“–CompOp
118 mathmath: sup_eq_closure_mul, exists_mem_sup, MulAction.IwasawaStructure.is_generator, MonoidHom.ker_transferSylow_disjoint, Monoid.Coprod.range_inl_sup_range_inr, fixedPoints_subgroup_iSup, map_sup, normalCore_eq_iSup, op_iSup, Equiv.Perm.disjoint_of_disjoint_support, mem_biSup_of_directedOn, map_eq_map_iff, isCoatom_map, mem_iSup_of_mem, mul_normal, coe_mul_of_left_le_normalizer_right, Sylow.normalizer_sup_eq_top', FG.biSup, map_iSup, Equiv.Perm.disjoint_closure_of_disjoint_support, disjoint_rootsOfUnity_of_coprime, normal_subgroupOf_sup_of_le_normalizer, alternatingGroup.isCoatom_stabilizer_singleton, MonoidHom.noncommCoprod_range, IsComplement'.isCompl, mem_iSup_prop, FG.finset_sup, mem_sSup_of_directedOn, FG.biSup_finset, comap_sup_eq, MulAction.isCoatom_stabilizer_iff_preprimitive, Monoid.CoprodI.range_eq_iSup, IsSimpleGroup.instIsSimpleOrderSubgroup, relIndex_map_map, subgroupOf_eq_bot, MulAction.IsPreprimitive.isCoatom_stabilizer_of_isPreprimitive, mem_sup_of_normal_right, relIndex_sup_right, IsPGroup.to_sup_of_normal_left', mem_sup_left, instIsModularLatticeSubgroup, NumberField.Units.regOfFamily_div_regulator, disjoint_def', iSup_comap_le, NumberField.IsCMField.closure_realFundSystem_sup_torsion, FG.sup, disjoint_def, subgroupOf_sup, comap_sup_comap_le, ofUnits_inf, mem_sSup_of_mem, NumberField.Units.closure_fundSystem_sup_torsion_eq_top, IsPGroup.to_sup_of_normal_right, map_le_map_iff, normal_mul, coe_iSup_of_directed, comap_map_eq, mem_sup, Monoid.Coprod.range_lift, IsPGroup.disjoint_of_ne, map_le_map_iff', independent_of_coprime_order, sup_subgroupOf_eq, IsPGroup.le_or_disjoint_of_coprime, quotientiInfEmbedding_apply, mul_mem_sup, smul_sup, map_eq_range_iff, MonoidHom.noncommPiCoprod_range, comap_sup_eq_of_le_range, relIndex_sup_left, FG.iSup, unop_iSup, closure_mul_le, mem_iSup_of_directed, isComplement'_iff_card_mul_and_disjoint, QuotientGroup.comap_map_mk', alternatingGroup.isCoatom_stabilizer, IsPGroup.to_sup_of_normal_right', fixedPoints_subgroup_sup, sup_normal, Equiv.Perm.isCoatom_stabilizer, Sylow.normalizer_sup_eq_top, quotientiInfSubgroupOfEmbedding_apply, op_sup, unop_sSup, ofUnits_iSupβ‚‚, codisjoint_subgroupOf_sup, coe_mul_of_right_le_normalizer_left, SemidirectProduct.mulEquivSubgroup_apply, mem_sup_of_normal_left, SemidirectProduct.mulEquivSubgroup_symm_apply, Equiv.Perm.isCoatom_stabilizer_of_ncard_lt_ncard_compl, ofUnits_sSup, Monoid.Coprod.range_eq, closure_union, NumberField.Units.finiteIndex_iff_sup_torsion_finiteIndex, MonoidHom.independent_range_of_coprime_order, IsPGroup.to_sup_of_normal_left, closure_iUnion, index_map, Monoid.Coprod.codisjoint_range_inl_range_inr, mem_sup_right, mem_sup', op_sSup, ofUnits_iSup, disjoint_iff_mul_eq_one, IsComplement'.sup_eq_top, unop_sup, iSup_eq_closure, noncommPiCoprod_range, OpenSubgroup.toSubgroup_sup, MonoidHom.noncommCoprod_injective, ofUnits_sup_units, IsComplement'.disjoint, alternatingGroup.isCoatom_stabilizer_of_ncard_lt_ncard_compl, sup_eq_closure, isCoatom_comap
instInfSet πŸ“–CompOp
30 mathmath: Submonoid.units_iInf, Set.unit_eq, op_iInf, finiteIndex_iInf, mem_iInf, ProfiniteGrp.closedSubgroup_eq_sInf_open, normalCore_eq_iInf_conjAct, normal_iInf_normal, index_iInf_le, Submonoid.units_sInf, normalClosure_eq_iInf, quotientiInfSubgroupOfEmbedding_apply_mk, unop_sInf, coe_iInf, finiteIndex_iInf', op_sInf, relIndex_iInf_le, quotientiInfEmbedding_apply_mk, mem_sInf, quotientiInfEmbedding_apply, fixingSubgroup_iUnion, quotientiInfSubgroupOfEmbedding_apply, Submonoid.units_iInfβ‚‚, map_iInf, center_eq_infi', center_eq_iInf, comap_iInf, unop_iInf, centralizer_eq_iInf, coe_sInf
instInhabited πŸ“–CompOpβ€”
instMin πŸ“–CompOp
51 mathmath: fixingSubgroup_union, unop_inf, inf_relIndex_left, subgroupOf_inj, map_inf_eq, IsArithmetic.inter, map_comap_eq, MulAction.stabilizer_inf_stabilizer_le_stabilizer_sdiff, instHasDetOneMinGeneralLinearGroup_1, map_inf_le, exists_pow_mem_of_relIndex_ne_zero, instFiniteIndexMin, op_inf, normal_subgroupOf_iff_le_normalizer_inf, index_inf_le, inf_subgroupOf_inf_normal_of_left, normal_inf_normal, OpenSubgroup.toSubgroup_inf, IsPGroup.to_inf_left, inf_relIndex_right, inf_subgroupOf_right, comap_inf, relIndex_inf_mul_relIndex, instHasDetOneMinGeneralLinearGroup, Submonoid.units_inf, subgroupOf_map_subtype, ofUnits_inf_units, Monoid.PushoutI.inf_of_range_eq_base_range, commutator_le_inf, rootsOfUnity_inf_rootsOfUnity, MulAction.orbitRel_subgroupOf, coe_inf, relIndex_inf_le, smul_inf, MonoidHom.ker_prod, mul_inf_assoc, IsPGroup.to_inf_right, inf_mul_assoc, pow_mem_of_relIndex_ne_zero_of_dvd, MulAction.stabilizer_inf_stabilizer_le_stabilizer_inter, MulAction.stabilizer_inf_stabilizer_le_stabilizer_applyβ‚‚, IsPGroup.inf_normalizer_sylow, MulAction.stabilizer_inf_stabilizer_le_stabilizer_union, inf_subgroupOf_left, mem_inf, inf_normalizer_le_normalizer_inf, inf_eq_bot_of_coprime, AddSubgroup.inertia_map_subtype, IntermediateField.fixingSubgroup_sup, map_inf, inf_subgroupOf_inf_normal_of_right
instTop πŸ“–CompOp
164 mathmath: isComplement'_top_left, MulAction.IwasawaStructure.is_generator, zpowers_eq_top_of_prime_card, NumberField.IsCMField.zpowers_complexConj_eq_top, ZMod.rootsOfUnity_eq_top, Monoid.Coprod.range_inl_sup_range_inr, eq_top_of_card_eq, isCyclic_iff_exists_zpowers_eq_top, normalClosure_of_stabilizer_eq_top, card_top, Group.isNilpotent_iff, Equiv.Perm.closure_isSwap, IsGaloisGroup.fixedPoints_top, fixingSubgroup_empty, subgroupOf_eq_top, Group.fg_def, FreeGroup.closure_range_of, derivedSeries_zero, IsSubnormal.iff_eq_top_or_exists, CommGroup.center_eq_top, subgroupOf_self, OpenSubgroup.toSubgroup_top, Sylow.normalizer_sup_eq_top', MonoidHom.ker_eq_top_iff, alternatingGroup.normalClosure_swap_mul_swap_five, pi_top, MulAction.isBlock_top, op_top, Monoid.Coprod.closure_range_inl_union_inr, Group.IsNilpotent.nilpotent', least_ascending_central_series_length_eq_nilpotencyClass, IsSolvable.commutator_lt_top_of_nontrivial, top_prod, map_top_of_surjective, IsSubnormal.exists_normal_and_le_and_lt_top_of_ne, map_equiv_top, MonoidHom.range_eq_map, CommRing.relPic_eq_top, Equiv.Perm.closure_isCycle, closure_closure_coe_preimage, alternatingGroup.normalClosure_finRotate_five, CongruenceSubgroup.Gamma_one_top, top_toSubmonoid, isComplement'_bot_right, top_fixedByFinite, pi_empty, centralizer_eq_top_iff_subset, normal_top, LinearIsometryEquiv.reflections_generate, upperCentralSeries_nilpotencyClass, CoxeterSystem.subgroup_closure_range_simple, QuotientGroup.subgroup_eq_top_of_subsingleton, stabilizer_empty_eq_top, normalizer_eq_top, MulAction.stabilizer_finset_univ, coe_top, Equiv.Perm.closure_cycle_coprime_swap, Group.rank_spec, Monoid.Coprod.range_swap, Group.fg_iff, isComplement'_top_right, instFiniteIndexTop, MulAction.stabilizer_finset_empty, Submonoid.units_top, mem_lowerCentralSeries_succ_iff, Equiv.Perm.eq_top_of_isPreprimitive_of_isSwap_mem, topEquiv_symm_apply_coe, SpecialLinearGroup.SL2Z_generators, MulAction.stabilizer_univ, MulAction.stabilizer_empty, IsSubnormal.eq_bot_or_top_of_isSimpleGroup, NumberField.Units.closure_fundSystem_sup_torsion_eq_top, top_prod_top, CommGrpCat.range_eq_top_of_epi, Equiv.Perm.subgroup_eq_top_of_isPreprimitive_of_isSwap_mem, exponent_top, eq_top_iff', closure_eq_top_of_mclosure_eq_top, alternatingGroup.subgroup_eq_top_of_isPreprimitive, CongruenceSubgroup.finiteIndex_conjGL, QuotientGroup.range_mk', MonoidHom.range_eq_top, op_eq_top, isComplement'_bot_left, MulAction.aestabilizer_empty, closure_univ, eq_bot_or_eq_top_of_prime_card, IsZGroup.commutator_lt, IsGalois.fixedField_top, lowerCentralSeries_succ, QuotientGroup.subsingleton_quotient_top, normalizerCondition_iff_only_full_group_self_normalizing, prod_top, ClassGroup.equivPic_symm_apply, Equiv.Perm.eq_top_of_isMultiplyPretransitive, commutator_alternatingGroup_eq_top, Equiv.Perm.subgroup_eq_top_of_swap_mem, MonoidHom.range_eq_top_of_surjective, MonoidHom.ker_fst, closure_of_isSwap_of_isPretransitive, isComplement'_top_bot, MonoidHom.range_eq_top_of_cancel, unop_eq_top, Equiv.Perm.IsThreeCycle.alternating_normalClosure, normalizer_eq_top_iff, IsSimpleGroup.eq_bot_or_eq_top_of_normal, Equiv.Perm.subgroup_eq_top_of_nontrivial, Group.isNilpotent_top, LinearOrderedCommGroup.genLTOne_eq_of_top, QuotientGroup.rightRel_eq_top, Group.fg_iff', coe_eq_univ, PresentedGroup.closure_range_of, IsGaloisGroup.fixingSubgroup_bot, mem_top, Sylow.normalizer_sup_eq_top, Equiv.Perm.closure_cycle_adjacent_swap, upperCentralSeries_eq_top_iff_nilpotencyClass_le, isComplement'_bot_top, index_eq_one, lowerCentralSeries_zero, MonoidHom.eqLocus_same, index_top, NumberField.IsCMField.indexRealUnits_eq_two_iff, comap_top, InfiniteGalois.fixedField_bot, SemidirectProduct.mulEquivSubgroup_apply, closure_preimage_eq_top, SemidirectProduct.mulEquivSubgroup_symm_apply, commutator_def, top_subgroupOf, Equiv.Perm.eq_top_if_isMultiplyPretransitive, Equiv.Perm.closure_prime_cycle_swap, topCharacteristic, Group.FG.out, IsGalois.tfae, MulAction.aestabilizer_of_aeconst, subgroupOf_bot_eq_top, GrpCat.epi_iff_range_eq_top, MonoidHom.ker_one, IsSubnormal.lt_normal, QuotientGroup.leftRel_eq_top, isSimpleGroup_iff, CommGrpCat.epi_iff_range_eq_top, Normal.eq_bot_or_eq_top, MonoidHom.ker_snd, IsComplement'.sup_eq_top, instNontrivialSubtypeMemTop, IntermediateField.fixingSubgroup_bot, topEquiv_apply, relIndex_top_right, Group.IsNilpotent.nilpotent, QuotientGroup.subsingleton_iff, nilpotent_iff_finite_ascending_central_series, IsSubnormal.isSubnormal_iff, MulAction.aestabilizer_univ, commutator_eq_bot_iff_center_eq_top, rootsOfUnity_zero, card_eq_iff_eq_top, eq_top_of_le_card, IsSubnormal.exists_chain, stabilizer_univ_eq_top, relIndex_top_left, unop_top
instUniqueOfSubsingleton πŸ“–CompOpβ€”
instUniqueSubtypeMemBot πŸ“–CompOpβ€”
toAddSubgroup πŸ“–CompOp
14 mathmath: NumberField.Units.span_basisOfIsMaxRank, fg_iff_add_fg, NumberField.Units.dirichletUnitTheorem.map_logEmbedding_sup_torsion, MonoidHom.coe_toAdditive_map, coe_toAddSubgroup_symm_apply, toAddSubgroup_closure, coe_toAddSubgroup_apply, index_toAddSubgroup, MonoidHom.coe_toAdditive_range, toAddSubgroup_comap, NumberField.Units.dirichletUnitTheorem.logEmbedding_ker, MonoidHom.coe_toAdditive_ker, Additive.mem_toAddSubgroup, relIndex_toAddSubgroup
toAddSubgroup' πŸ“–CompOp
2 mathmath: mem_toAddSubgroup', toAddSubgroup'_closure
topEquiv πŸ“–CompOp
3 mathmath: topEquiv_symm_apply_coe, ClassGroup.equivPic_symm_apply, topEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
bot_or_exists_ne_one πŸ“–mathematicalβ€”Bot.bot
Subgroup
instBot
SetLike.instMembership
instSetLike
β€”nontrivial_iff_exists_ne_one
bot_or_nontrivial
bot_or_nontrivial πŸ“–mathematicalβ€”Bot.bot
Subgroup
instBot
Nontrivial
SetLike.instMembership
instSetLike
β€”nontrivial_iff_ne_bot
bot_toSubmonoid πŸ“–mathematicalβ€”toSubmonoid
Bot.bot
Subgroup
instBot
Submonoid
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Submonoid.instBot
β€”β€”
closure_closure_coe_preimage πŸ“–mathematicalβ€”closure
Subgroup
SetLike.instMembership
instSetLike
toGroup
Set.preimage
Top.top
instTop
β€”eq_top_iff
closure_induction
subset_closure
OneMemClass.one_mem
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
instSubgroupClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
InvMemClass.inv_mem
SubgroupClass.toInvMemClass
closure_diff_one πŸ“–mathematicalβ€”closure
Set
Set.instSDiff
Set.instSingletonSet
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”closure_union_one
Set.diff_union_self
closure_empty πŸ“–mathematicalβ€”closure
Set
Set.instEmptyCollection
Bot.bot
Subgroup
instBot
β€”GaloisConnection.l_bot
GaloisInsertion.gc
closure_eq πŸ“–mathematicalβ€”closure
SetLike.coe
Subgroup
instSetLike
β€”GaloisInsertion.l_u_eq
closure_eq_bot_iff πŸ“–mathematicalβ€”closure
Bot.bot
Subgroup
instBot
Set
Set.instHasSubset
Set.instSingletonSet
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”le_bot_iff
closure_le
closure_eq_of_le πŸ“–β€”Set
Set.instHasSubset
SetLike.coe
Subgroup
instSetLike
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
β€”β€”le_antisymm
closure_le
closure_eq_top_of_mclosure_eq_top πŸ“–mathematicalSubmonoid.closure
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Top.top
Submonoid
Submonoid.instTop
closure
Subgroup
instTop
β€”eq_top_iff'
le_closure_toSubmonoid
closure_iUnion πŸ“–mathematicalβ€”closure
Set.iUnion
iSup
Subgroup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”GaloisConnection.l_iSup
GaloisInsertion.gc
closure_induction πŸ“–β€”subset_closure
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
OneMemClass.one_mem
Subgroup
instSetLike
SubmonoidClass.toOneMemClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SubgroupClass.toSubmonoidClass
instSubgroupClass
closure
MulOne.toMul
MulOneClass.toMulOne
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
InvOneClass.toInv
InvMemClass.inv_mem
SubgroupClass.toInvMemClass
SetLike.instMembership
β€”β€”subset_closure
OneMemClass.one_mem
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
instSubgroupClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
InvMemClass.inv_mem
SubgroupClass.toInvMemClass
closure_le
closure_inductionβ‚‚ πŸ“–β€”subset_closure
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
OneMemClass.one_mem
Subgroup
instSetLike
SubmonoidClass.toOneMemClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SubgroupClass.toSubmonoidClass
instSubgroupClass
closure
MulOne.toMul
MulOneClass.toMulOne
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
InvOneClass.toInv
InvMemClass.inv_mem
SubgroupClass.toInvMemClass
SetLike.instMembership
β€”β€”subset_closure
OneMemClass.one_mem
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
instSubgroupClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
InvMemClass.inv_mem
SubgroupClass.toInvMemClass
closure_induction
closure_insert_one πŸ“–mathematicalβ€”closure
Set
Set.instInsert
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”Set.insert_eq
closure_union
sup_of_le_right
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
instSubgroupClass
closure_le πŸ“–mathematicalβ€”Subgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”Set.Subset.trans
subset_closure
sInf_le
closure_mono πŸ“–mathematicalSet
Set.instHasSubset
Subgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
β€”GaloisConnection.monotone_l
GaloisInsertion.gc
closure_singleton_one πŸ“–mathematicalβ€”closure
Set
Set.instSingletonSet
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Bot.bot
Subgroup
instBot
β€”one_zpow
closure_union πŸ“–mathematicalβ€”closure
Set
Set.instUnion
Subgroup
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
β€”GaloisConnection.l_sup
GaloisInsertion.gc
closure_union_one πŸ“–mathematicalβ€”closure
Set
Set.instUnion
Set.instSingletonSet
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”Set.union_singleton
closure_insert_one
closure_univ πŸ“–mathematicalβ€”closure
Set.univ
Top.top
Subgroup
instTop
β€”closure_eq
coe_top
coe_bot πŸ“–mathematicalβ€”SetLike.coe
Subgroup
instSetLike
Bot.bot
instBot
Set
Set.instSingletonSet
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”β€”
coe_eq_singleton πŸ“–mathematicalβ€”SetLike.coe
Subgroup
instSetLike
Set
Set.instSingletonSet
Bot.bot
instBot
β€”eq_bot_of_subsingleton
Unique.instSubsingleton
SetLike.ext'_iff
coe_eq_univ πŸ“–mathematicalβ€”SetLike.coe
Subgroup
instSetLike
Set.univ
Top.top
instTop
β€”SetLike.ext'_iff
coe_iInf πŸ“–mathematicalβ€”SetLike.coe
Subgroup
instSetLike
iInf
instInfSet
Set.iInter
β€”Set.biInter_range
coe_iSup_of_directed πŸ“–mathematicalDirected
Subgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.coe
instSetLike
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
Set.iUnion
β€”Set.ext
mem_iSup_of_directed
coe_inf πŸ“–mathematicalβ€”SetLike.coe
Subgroup
instSetLike
instMin
Set
Set.instInter
β€”β€”
coe_sInf πŸ“–mathematicalβ€”SetLike.coe
Subgroup
instSetLike
InfSet.sInf
instInfSet
Set.iInter
Set
Set.instMembership
β€”β€”
coe_toAddSubgroup_apply πŸ“–mathematicalβ€”SetLike.coe
AddSubgroup
Additive
Additive.addGroup
AddSubgroup.instSetLike
DFunLike.coe
RelIso
Subgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
AddSubgroup.instPartialOrder
RelIso.instFunLike
toAddSubgroup
Set.preimage
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.toMul
instSetLike
β€”β€”
coe_toAddSubgroup_symm_apply πŸ“–mathematicalβ€”SetLike.coe
Subgroup
instSetLike
DFunLike.coe
RelIso
AddSubgroup
Additive
Additive.addGroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
instPartialOrder
RelIso.instFunLike
RelIso.symm
toAddSubgroup
Set.preimage
Multiplicative
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.toAdd
AddSubgroup.instSetLike
β€”β€”
coe_top πŸ“–mathematicalβ€”SetLike.coe
Subgroup
instSetLike
Top.top
instTop
Set.univ
β€”β€”
disjoint_def πŸ“–mathematicalβ€”Disjoint
Subgroup
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLattice
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”disjoint_iff_inf_le
instIsConcreteLE
disjoint_def' πŸ“–mathematicalβ€”Disjoint
Subgroup
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLattice
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”disjoint_def
disjoint_iff_mul_eq_one πŸ“–mathematicalβ€”Disjoint
Subgroup
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLattice
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”disjoint_def'
inv_mem
eq_inv_iff_mul_eq_one
one_mul
mul_inv_eq_one
eq_bot_iff_forall πŸ“–mathematicalβ€”Bot.bot
Subgroup
instBot
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”toSubmonoid_injective
Submonoid.eq_bot_iff_forall
eq_bot_of_subsingleton πŸ“–mathematicalβ€”Bot.bot
Subgroup
instBot
β€”eq_bot_iff_forall
coe_one
eq_top_iff' πŸ“–mathematicalβ€”Top.top
Subgroup
instTop
SetLike.instMembership
instSetLike
β€”eq_top_iff
mem_top
exists_mem_sup πŸ“–mathematicalβ€”Subgroup
CommGroup.toGroup
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”β€”
exists_ne_one_of_nontrivial πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
instSetLike
β€”nontrivial_iff_exists_ne_one
forall_mem_sup πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
β€”β€”
iSup_eq_closure πŸ“–mathematicalβ€”iSup
Subgroup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
closure
Set.iUnion
SetLike.coe
instSetLike
β€”closure_iUnion
closure_eq
instNontrivial πŸ“–mathematicalβ€”Nontrivial
Subgroup
β€”nontrivial_iff
instNontrivialSubtypeMemTop πŸ“–mathematicalβ€”Nontrivial
Subgroup
SetLike.instMembership
instSetLike
Top.top
instTop
β€”nontrivial_iff_ne_bot
top_ne_bot
instNontrivial
le_closure_toSubmonoid πŸ“–mathematicalβ€”Submonoid
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
Submonoid.closure
toSubmonoid
closure
β€”Submonoid.closure_le
subset_closure
mem_biSup_of_directedOn πŸ“–mathematicalDirectedOn
Function.onFun
Subgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
setOf
SetLike.instMembership
instSetLike
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”closure_induction
one_mem
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubgroupClass.toSubmonoidClass
instSubgroupClass
InvMemClass.inv_mem
SubgroupClass.toInvMemClass
closure_iUnion
iSup_congr_Prop
closure_eq
le_iSup
iSup_pos
mem_bot πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
instSetLike
Bot.bot
instBot
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”β€”
mem_closure πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
instSetLike
closure
β€”mem_sInf
mem_closure_of_mem πŸ“–mathematicalSet
Set.instMembership
Subgroup
SetLike.instMembership
instSetLike
closure
β€”subset_closure
mem_closure_pair πŸ“–mathematicalβ€”Subgroup
CommGroup.toGroup
SetLike.instMembership
instSetLike
closure
Set
Set.instInsert
Set.instSingletonSet
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivInvMonoid.toZPow
β€”Set.singleton_union
closure_union
mem_sup
mem_closure_singleton πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
instSetLike
closure
Set
Set.instSingletonSet
DivInvMonoid.toZPow
Group.toDivInvMonoid
β€”closure_induction
Set.eq_of_mem_singleton
zpow_one
zpow_zero
zpow_add
zpow_neg
zpow_mem
instSubgroupClass
subset_closure
Set.mem_singleton
mem_closure_singleton_self πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
instSetLike
closure
Set
Set.instSingletonSet
β€”subset_closure
mem_iInf πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
instSetLike
iInf
instInfSet
β€”β€”
mem_iSup_of_directed πŸ“–mathematicalDirected
Subgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”iSup_pos
iSup_plift_down
mem_biSup_of_directedOn
directedOn_onFun_iff
Set.image_univ
directedOn_range
mem_iSup_of_mem πŸ“–mathematicalSubgroup
SetLike.instMembership
instSetLike
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”le_iSup
mem_iSup_prop πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
instSetLike
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”iSup_congr_Prop
iSup_pos
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
instSubgroupClass
iSup_neg
instIsEmptyFalse
mem_inf πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
instSetLike
instMin
β€”β€”
mem_sInf πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
instSetLike
InfSet.sInf
instInfSet
β€”Set.mem_iInterβ‚‚
mem_sSup_of_directedOn πŸ“–mathematicalSet.Nonempty
Subgroup
DirectedOn
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
Set
Set.instMembership
β€”sSup_eq_iSup'
mem_iSup_of_directed
Set.Nonempty.to_subtype
DirectedOn.directed_val
mem_sSup_of_mem πŸ“–mathematicalSubgroup
Set
Set.instMembership
SetLike.instMembership
instSetLike
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”le_sSup
mem_sup πŸ“–mathematicalβ€”Subgroup
CommGroup.toGroup
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”closure_induction
one_mem
mul_one
one_mul
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubgroupClass.toSubmonoidClass
instSubgroupClass
mul_left_comm
mul_assoc
InvMemClass.inv_mem
SubgroupClass.toInvMemClass
mul_inv_rev
mul_comm
sup_eq_closure
mul_mem_sup
mem_sup' πŸ“–mathematicalβ€”Subgroup
CommGroup.toGroup
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”mem_sup
mem_sup_left πŸ“–mathematicalSubgroup
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
β€”le_sup_left
mem_sup_of_normal_left πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”mem_sup_of_normal_right
sup_comm
Normal.conj_mem
inv_mul_cancel_right
Normal.conj_mem'
mul_assoc
mul_inv_cancel_left
mem_sup_of_normal_right πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”closure_induction
one_mem
mul_one
one_mul
mul_mem
Normal.conj_mem'
mul_assoc
mul_inv_cancel_left
inv_mem
Normal.conj_mem
inv_mul_cancel_left
mul_inv_rev
sup_eq_closure
mul_mem_sup
mem_sup_right πŸ“–mathematicalSubgroup
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
β€”le_sup_right
mem_toAddSubgroup' πŸ“–mathematicalβ€”AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
DFunLike.coe
OrderIso
Subgroup
Multiplicative
Multiplicative.group
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
AddSubgroup.instPartialOrder
instFunLikeOrderIso
toAddSubgroup'
instSetLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
β€”β€”
mem_top πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
instSetLike
Top.top
instTop
β€”Set.mem_univ
mul_injective_of_disjoint πŸ“–mathematicalDisjoint
Subgroup
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLattice
SetLike.instMembership
instSetLike
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”disjoint_iff_mul_eq_one
Subtype.prop
mul_assoc
mul_inv_eq_one
inv_mul_eq_iff_eq_mul
inv_mul_eq_one
coe_inv
coe_mul
mul_mem_sup πŸ“–mathematicalSubgroup
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”mul_mem
mem_sup_left
mem_sup_right
ne_bot_iff_exists_ne_one πŸ“–β€”β€”β€”β€”nontrivial_iff_ne_bot
nontrivial_iff_exists_ne_one
nontrivial_iff πŸ“–mathematicalβ€”Nontrivial
Subgroup
β€”not_iff_not
not_nontrivial_iff_subsingleton
subsingleton_iff
nontrivial_iff_exists_ne_one πŸ“–mathematicalβ€”Nontrivial
Subgroup
SetLike.instMembership
instSetLike
β€”Subtype.nontrivial_iff_exists_ne
nontrivial_iff_ne_bot πŸ“–mathematicalβ€”Nontrivial
Subgroup
SetLike.instMembership
instSetLike
β€”nontrivial_iff_exists_ne_one
eq_bot_iff_forall
notMem_of_notMem_closure πŸ“–mathematicalSubgroup
SetLike.instMembership
instSetLike
closure
Set
Set.instMembership
β€”subset_closure
subset_closure πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
Subgroup
instSetLike
closure
β€”mem_closure
subsingleton_iff πŸ“–mathematicalβ€”Subgroupβ€”mem_bot
mem_top
ext
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
instSubgroupClass
sup_eq_closure πŸ“–mathematicalβ€”Subgroup
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
closure
Set
Set.instUnion
SetLike.coe
instSetLike
β€”closure_union
closure_eq
toAddSubgroup'_closure πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Subgroup
Multiplicative
Multiplicative.group
AddSubgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
AddSubgroup.instPartialOrder
instFunLikeOrderIso
toAddSubgroup'
closure
AddSubgroup.closure
Set.preimage
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
β€”le_antisymm
GaloisConnection.l_le
OrderIso.to_galoisConnection
closure_le
AddSubgroup.subset_closure
AddSubgroup.closure_le
subset_closure
toAddSubgroup_closure πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Subgroup
AddSubgroup
Additive
Additive.addGroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
AddSubgroup.instPartialOrder
instFunLikeOrderIso
toAddSubgroup
closure
AddSubgroup.closure
Set.preimage
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.toMul
β€”le_antisymm
OrderIso.le_symm_apply
closure_le
AddSubgroup.subset_closure
AddSubgroup.closure_le
subset_closure
topEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
Subgroup
SetLike.instMembership
instSetLike
Top.top
instTop
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
topEquiv
Submonoid
Submonoid.instSetLike
Submonoid.instTop
β€”β€”
topEquiv_symm_apply_coe πŸ“–mathematicalβ€”Submonoid
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.instMembership
Submonoid.instSetLike
Top.top
Submonoid.instTop
DFunLike.coe
MulEquiv
Subgroup
instSetLike
instTop
MulOne.toMul
MulOneClass.toMulOne
mul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
topEquiv
β€”β€”
top_toSubmonoid πŸ“–mathematicalβ€”toSubmonoid
Top.top
Subgroup
instTop
Submonoid
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Submonoid.instTop
β€”β€”

---

← Back to Index