| Name | Category | Theorems |
closure π | CompOp | 134 mathmath: AddCommute.exists_addOrderOf_eq_lcm, Ideal.Filtration.submodule_closure_single, Submodule.span_nat_eq_addSubmonoid_closure, Submonoid.subsemiringClosure_toAddSubmonoid, add_subset_closure, Subsemiring.closure_addSubmonoid_closure, sup_eq_closure, IsLinearSet.closure_finset, multiples_eq_closure, mem_closure_finset, AddMonoid.closure_finite_fg, AddMonoid.fg_iff, frobeniusNumber_iff, closure_addIrreducible, closure_nsmul, IsSemilinearSet.closure_finset, Set.IsPWO.addSubmonoid_closure, Nat.exists_mem_closure_of_ge, closure_sdiff_singleton_zero, mem_closure_range_iff, Submonoid.subsemiringClosure_coe, Submodule.closure_le_toAddSubmonoid_span, StarOrderedRing.lt_iff, isLinearSet_iff, closure_le_centralizer_centralizer, closure_prod, closure_pi, closure_image_isAddIndecomposable_baseOf, StarOrderedRing.pos_iff, closure_univ, Nat.addSubmonoidClosure_one, Submonoid.toAddSubmonoid_closure, toNatSubmodule_closure, NonUnitalSubsemiring.closure_addSubmonoid_closure, IsLinearSet.closure_of_finite, closure_union, closure_isSquare, mem_closure_iff_exists_finset_subset, AddMonoidHom.mclosure_preimage_le, subset_closure, AddMonoidHom.map_mclosure, closure_singleton_eq, closure_zero_prod, toSubmonoid_closure, AddMonoid.closure_finset_fg, HahnSeries.SummableFamily.support_pow_subset_closure, exists_minimal_closure_eq_top, dense_addSubmonoidClosure_iff_addSubgroupClosure, IsSemilinearSet.closure_of_finite, Subsemigroup.nonUnitalSubsemiringClosure_coe, AddSubgroup.closure_toAddSubmonoid, fg_iff, Rat.addSubmonoid_closure_range_pow, closure_nsmul_le, isProperLinearSet_iff, closure_addSubmonoidClosure_eq_closure_addSubgroupClosure, closure_insert_zero, IsLinearSet.closure, mem_closure_of_mem, unop_closure, smul_closure, pow_eq_closure_pow_set, Submodule.span_eq_closure, Submodule.closure_subset_span, closure_eq, Rat.addSubmonoid_closure_range_mul_self, topologicalClosure_addSubgroupClosure_toAddSubmonoid, DFinsupp.add_closure_iUnion_range_single, closure_closure_coe_preimage, NNRat.addSubmonoid_closure_range_pow, mem_closure_image_pos_iff, AddSubgroup.closure_toAddSubmonoid_of_finite, FreeAddMonoid.closure_range_of, FreeAddMonoid.mrange_lift, AddMonoidHom.mclosure_range, one_eq_closure, closure_add_le, AddSubgroup.closure_toAddSubmonoid_of_isOfFinAddOrder, one_eq_closure_one_set, Submodule.span_nat_eq_addSubmonoidClosure, Int.addSubmonoid_closure_range_pow, IsAddIndecomposable.apply_ne_zero_iff_mem_closure, mem_closure, closure_neg, closure_prod_zero, closure_pow, StarOrderedRing.le_iff, Finsupp.add_closure_setOf_eq_single, mem_closure_iff_of_fintype, sup_eq_closure_add, RootPairing.Base.root_mem_or_neg_mem, closure_eq_image_sum, AddMonoid.Coprod.mclosure_range_inl_union_inr, RootPairing.eq_baseOf_iff, Subsemiring.coe_closure_eq, closure_singleton_zero, StarOrderedRing.nonneg_iff, closure_le, addIrreducible_mem_addSubmonoidClosure_subset, mem_closure_range_iff_of_fintype, FG.exists_minimal_closure_eq, PresentedAddMonoid.closure_range_of, RootPairing.Base.coroot_mem_or_neg_mem, op_closure, AddMonoidHom.eqOn_closureM, Polynomial.addSubmonoid_closure_setOf_eq_monomial, mem_closure_pair, AddSubgroup.le_closure_toAddSubmonoid, Submodule.span_closure, closure_iUnion, Submonoid.toAddSubmonoid'_closure, mem_closure_neg, HomogeneousIdeal.irrelevant_eq_closure, NNRat.addSubmonoid_closure_range_mul_self, IsSemilinearSet.closure, Submonoid.subsemiringClosure_mem, Int.addSubmonoid_closure_range_mul_self, mem_closure_singleton, mem_closure_finset', NonUnitalSubsemiring.mem_closure_iff, Nat.one_mem_closure_iff, closure_eq_mrange, Subsemigroup.nonUnitalSubsemiringClosure_toAddSubmonoid, NonUnitalSubsemiring.coe_closure_eq, closure_empty, AddMonoidAlgebra.mem_closure_of_mem_span_closure, IsAddIndecomposable.mem_or_neg_mem_closure_baseOf, Subsemiring.mem_closure_iff, toSubmonoid'_closure, closure_singleton_le_iff_mem, closure_mul_closure, closure_mono, iSup_eq_closure, mul_eq_closure_mul_set
|
gi π | CompOp | β |
instCompleteLattice π | CompOp | 80 mathmath: smul_iSup, sup_eq_closure, op_sup, AddCommMonoid.primaryComponent.disjoint, iSup_map_single, fixedPoints_addSubmonoid_iSup, sup_mul, smul_sup, AddMonoid.Coprod.mrange_lift, closure_union, neg_sup, FG.iSup, mul_iSup, disjoint_def', iSup_map_single_le, sup_eq_range, mem_bsupr_iff_exists_dfinsupp, unop_iSup, Submodule.toAddSubmonoid_sSup, mem_iSup, AddSubgroup.ofAddUnits_sSup, mul_sup, AddMonoid.Coprod.codisjoint_mrange_inl_mrange_inr, exists_mem_sup, fixedPoints_addSubmonoid_sup, iSup_eq_mrange_dfinsuppSumAddHom, AddSubgroup.ofAddUnits_inf, coe_iSup_of_directed, coe_sSup_of_directedOn, add_mem_sup, unop_sSup, AddMonoidHom.noncommPiCoprod_mrange, mrange_inl_sup_mrange_inr, bsupr_eq_mrange_dfinsuppSumAddHom, FG.biSup, coe_sup, AddSubgroup.ofAddUnits_iSupβ, op_sSup, op_iSup, mem_iSup_of_directed, closure_add_le, DirectSum.IsInternal.addSubmonoid_iSup_eq_top, sup_eq_closure_add, AddMonoid.Coprod.mrange_inl_sup_mrange_inr, FG.biSup_finset, map_iSup, mem_sup, map_sup_comap_of_surjective, mem_iSup_iff_exists_dfinsupp', AddSubgroup.ofAddUnits_sup_addUnits, AddSubgroup.toAddSubmonoid_zmultiples, mem_iSup_iff_exists_dfinsupp, HomogeneousIdeal.irrelevant_eq_iSup, AddMonoid.Coprod.mrange_eq, disjoint_def, closure_iUnion, mem_sSup_of_mem, Submodule.sup_toAddSubmonoid, map_sup, addSubmonoid_smul_sup, mem_iSup_of_mem, map_iSup_comap_of_surjective, FG.finset_sup, neg_iSup, comap_iSup_map_of_injective, mem_biSup_of_directedOn, prod_bot_sup_bot_prod, iSup_mul, AddSubgroup.ofAddUnits_iSup, FG.sup, unop_sup, Submodule.iSup_toAddSubmonoid, mem_sup_left, DirectSum.IsInternal.addSubmonoid_iSupIndep, mem_sSup_of_directedOn, comap_sup_map_of_injective, iSupIndep_of_dfinsuppSumAddHom_injective, mem_sup_right, iSup_eq_closure, mem_iSup_prop
|
instInfSet π | CompOp | 19 mathmath: neg_iInf, addUnits_iInfβ, addUnits_sInf, comap_iInf, unop_iInf, addUnits_iInf, mem_sInf, coe_iInf, Subsemiring.sInf_toAddSubmonoid, coe_sInf, unop_sInf, mem_iInf, NonUnitalSubsemiring.sInf_toAddSubmonoid, op_sInf, map_iInf_comap_of_surjective, comap_iInf_map_of_injective, map_iInf, op_iInf, fixingAddSubmonoid_iUnion
|