Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Group/Submonoid/Basic.lean

Statistics

MetricCount
DefinitionsofClosureMEqTopLeft, ofClosureMEqTopRight, closure, gi, instCompleteLattice, instInfSet, addSubmonoid, submonoid, ofClosureMEqTopLeft, ofClosureMEqTopRight, closure, gi, instCompleteLattice, instInfSet
14
Theoremscoe_ofClosureMEqTopLeft, coe_ofClosureMEqTopRight, eqOn_closureM, eq_of_eqOn_denseM, closure_empty, closure_eq, closure_eq_of_le, closure_iUnion, closure_induction, closure_inductionβ‚‚, closure_insert_zero, closure_le, closure_mono, closure_sdiff_eq_closure, closure_sdiff_singleton_zero, closure_singleton_le_iff_mem, closure_union, closure_univ, coe_iInf, coe_sInf, dense_induction, disjoint_def, disjoint_def', iSup_eq_closure, mem_closure, mem_closure_of_mem, mem_iInf, mem_iSup, mem_sInf, notMem_of_notMem_closure, subset_closure, sup_eq_closure, mem_addSubmonoid_iff, mem_submonoid_iff, coe_ofClosureMEqTopLeft, coe_ofClosureMEqTopRight, eqOn_closureM, eq_of_eqOn_denseM, closure_empty, closure_eq, closure_eq_of_le, closure_eq_one_union, closure_iUnion, closure_induction, closure_inductionβ‚‚, closure_insert_one, closure_le, closure_mono, closure_sdiff_eq_closure, closure_sdiff_singleton_one, closure_singleton_le_iff_mem, closure_union, closure_univ, coe_iInf, coe_sInf, dense_induction, disjoint_def, disjoint_def', iSup_eq_closure, mem_closure, mem_closure_of_mem, mem_iInf, mem_iSup, mem_sInf, notMem_of_notMem_closure, subset_closure, sup_eq_closure
67
Total81

AddMonoidHom

Definitions

NameCategoryTheorems
ofClosureMEqTopLeft πŸ“–CompOp
1 mathmath: coe_ofClosureMEqTopLeft
ofClosureMEqTopRight πŸ“–CompOp
1 mathmath: coe_ofClosureMEqTopRight

Theorems

NameKindAssumesProvesValidatesDepends On
coe_ofClosureMEqTopLeft πŸ“–mathematicalAddSubmonoid.closure
AddMonoid.toAddZeroClass
Top.top
AddSubmonoid
AddSubmonoid.instTop
AddZero.toZero
AddZeroClass.toAddZero
AddZero.toAdd
DFunLike.coe
AddMonoidHom
instFunLike
ofClosureMEqTopLeft
β€”β€”
coe_ofClosureMEqTopRight πŸ“–mathematicalAddSubmonoid.closure
AddMonoid.toAddZeroClass
Top.top
AddSubmonoid
AddSubmonoid.instTop
AddZero.toZero
AddZeroClass.toAddZero
AddZero.toAdd
DFunLike.coe
AddMonoidHom
instFunLike
ofClosureMEqTopRight
β€”β€”
eqOn_closureM πŸ“–mathematicalSet.EqOn
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
instFunLike
SetLike.coe
AddSubmonoid
AddSubmonoid.instSetLike
AddSubmonoid.closure
β€”AddSubmonoid.closure_le
eq_of_eqOn_denseM πŸ“–β€”AddSubmonoid.closure
Top.top
AddSubmonoid
AddSubmonoid.instTop
Set.EqOn
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
instFunLike
β€”β€”eq_of_eqOn_topM
eqOn_closureM

AddSubmonoid

Definitions

NameCategoryTheorems
closure πŸ“–CompOp
134 mathmath: AddCommute.exists_addOrderOf_eq_lcm, Ideal.Filtration.submodule_closure_single, Submodule.span_nat_eq_addSubmonoid_closure, Submonoid.subsemiringClosure_toAddSubmonoid, add_subset_closure, Subsemiring.closure_addSubmonoid_closure, sup_eq_closure, IsLinearSet.closure_finset, multiples_eq_closure, mem_closure_finset, AddMonoid.closure_finite_fg, AddMonoid.fg_iff, frobeniusNumber_iff, closure_addIrreducible, closure_nsmul, IsSemilinearSet.closure_finset, Set.IsPWO.addSubmonoid_closure, Nat.exists_mem_closure_of_ge, closure_sdiff_singleton_zero, mem_closure_range_iff, Submonoid.subsemiringClosure_coe, Submodule.closure_le_toAddSubmonoid_span, StarOrderedRing.lt_iff, isLinearSet_iff, closure_le_centralizer_centralizer, closure_prod, closure_pi, closure_image_isAddIndecomposable_baseOf, StarOrderedRing.pos_iff, closure_univ, Nat.addSubmonoidClosure_one, Submonoid.toAddSubmonoid_closure, toNatSubmodule_closure, NonUnitalSubsemiring.closure_addSubmonoid_closure, IsLinearSet.closure_of_finite, closure_union, closure_isSquare, mem_closure_iff_exists_finset_subset, AddMonoidHom.mclosure_preimage_le, subset_closure, AddMonoidHom.map_mclosure, closure_singleton_eq, closure_zero_prod, toSubmonoid_closure, AddMonoid.closure_finset_fg, HahnSeries.SummableFamily.support_pow_subset_closure, exists_minimal_closure_eq_top, dense_addSubmonoidClosure_iff_addSubgroupClosure, IsSemilinearSet.closure_of_finite, Subsemigroup.nonUnitalSubsemiringClosure_coe, AddSubgroup.closure_toAddSubmonoid, fg_iff, Rat.addSubmonoid_closure_range_pow, closure_nsmul_le, isProperLinearSet_iff, closure_addSubmonoidClosure_eq_closure_addSubgroupClosure, closure_insert_zero, IsLinearSet.closure, mem_closure_of_mem, unop_closure, smul_closure, pow_eq_closure_pow_set, Submodule.span_eq_closure, Submodule.closure_subset_span, closure_eq, Rat.addSubmonoid_closure_range_mul_self, topologicalClosure_addSubgroupClosure_toAddSubmonoid, DFinsupp.add_closure_iUnion_range_single, closure_closure_coe_preimage, NNRat.addSubmonoid_closure_range_pow, mem_closure_image_pos_iff, AddSubgroup.closure_toAddSubmonoid_of_finite, FreeAddMonoid.closure_range_of, FreeAddMonoid.mrange_lift, AddMonoidHom.mclosure_range, one_eq_closure, closure_add_le, AddSubgroup.closure_toAddSubmonoid_of_isOfFinAddOrder, one_eq_closure_one_set, Submodule.span_nat_eq_addSubmonoidClosure, Int.addSubmonoid_closure_range_pow, IsAddIndecomposable.apply_ne_zero_iff_mem_closure, mem_closure, closure_neg, closure_prod_zero, closure_pow, StarOrderedRing.le_iff, Finsupp.add_closure_setOf_eq_single, mem_closure_iff_of_fintype, sup_eq_closure_add, RootPairing.Base.root_mem_or_neg_mem, closure_eq_image_sum, AddMonoid.Coprod.mclosure_range_inl_union_inr, RootPairing.eq_baseOf_iff, Subsemiring.coe_closure_eq, closure_singleton_zero, StarOrderedRing.nonneg_iff, closure_le, addIrreducible_mem_addSubmonoidClosure_subset, mem_closure_range_iff_of_fintype, FG.exists_minimal_closure_eq, PresentedAddMonoid.closure_range_of, RootPairing.Base.coroot_mem_or_neg_mem, op_closure, AddMonoidHom.eqOn_closureM, Polynomial.addSubmonoid_closure_setOf_eq_monomial, mem_closure_pair, AddSubgroup.le_closure_toAddSubmonoid, Submodule.span_closure, closure_iUnion, Submonoid.toAddSubmonoid'_closure, mem_closure_neg, HomogeneousIdeal.irrelevant_eq_closure, NNRat.addSubmonoid_closure_range_mul_self, IsSemilinearSet.closure, Submonoid.subsemiringClosure_mem, Int.addSubmonoid_closure_range_mul_self, mem_closure_singleton, mem_closure_finset', NonUnitalSubsemiring.mem_closure_iff, Nat.one_mem_closure_iff, closure_eq_mrange, Subsemigroup.nonUnitalSubsemiringClosure_toAddSubmonoid, NonUnitalSubsemiring.coe_closure_eq, closure_empty, AddMonoidAlgebra.mem_closure_of_mem_span_closure, IsAddIndecomposable.mem_or_neg_mem_closure_baseOf, Subsemiring.mem_closure_iff, toSubmonoid'_closure, closure_singleton_le_iff_mem, closure_mul_closure, closure_mono, iSup_eq_closure, mul_eq_closure_mul_set
gi πŸ“–CompOpβ€”
instCompleteLattice πŸ“–CompOp
80 mathmath: smul_iSup, sup_eq_closure, op_sup, AddCommMonoid.primaryComponent.disjoint, iSup_map_single, fixedPoints_addSubmonoid_iSup, sup_mul, smul_sup, AddMonoid.Coprod.mrange_lift, closure_union, neg_sup, FG.iSup, mul_iSup, disjoint_def', iSup_map_single_le, sup_eq_range, mem_bsupr_iff_exists_dfinsupp, unop_iSup, Submodule.toAddSubmonoid_sSup, mem_iSup, AddSubgroup.ofAddUnits_sSup, mul_sup, AddMonoid.Coprod.codisjoint_mrange_inl_mrange_inr, exists_mem_sup, fixedPoints_addSubmonoid_sup, iSup_eq_mrange_dfinsuppSumAddHom, AddSubgroup.ofAddUnits_inf, coe_iSup_of_directed, coe_sSup_of_directedOn, add_mem_sup, unop_sSup, AddMonoidHom.noncommPiCoprod_mrange, mrange_inl_sup_mrange_inr, bsupr_eq_mrange_dfinsuppSumAddHom, FG.biSup, coe_sup, AddSubgroup.ofAddUnits_iSupβ‚‚, op_sSup, op_iSup, mem_iSup_of_directed, closure_add_le, DirectSum.IsInternal.addSubmonoid_iSup_eq_top, sup_eq_closure_add, AddMonoid.Coprod.mrange_inl_sup_mrange_inr, FG.biSup_finset, map_iSup, mem_sup, map_sup_comap_of_surjective, mem_iSup_iff_exists_dfinsupp', AddSubgroup.ofAddUnits_sup_addUnits, AddSubgroup.toAddSubmonoid_zmultiples, mem_iSup_iff_exists_dfinsupp, HomogeneousIdeal.irrelevant_eq_iSup, AddMonoid.Coprod.mrange_eq, disjoint_def, closure_iUnion, mem_sSup_of_mem, Submodule.sup_toAddSubmonoid, map_sup, addSubmonoid_smul_sup, mem_iSup_of_mem, map_iSup_comap_of_surjective, FG.finset_sup, neg_iSup, comap_iSup_map_of_injective, mem_biSup_of_directedOn, prod_bot_sup_bot_prod, iSup_mul, AddSubgroup.ofAddUnits_iSup, FG.sup, unop_sup, Submodule.iSup_toAddSubmonoid, mem_sup_left, DirectSum.IsInternal.addSubmonoid_iSupIndep, mem_sSup_of_directedOn, comap_sup_map_of_injective, iSupIndep_of_dfinsuppSumAddHom_injective, mem_sup_right, iSup_eq_closure, mem_iSup_prop
instInfSet πŸ“–CompOp
19 mathmath: neg_iInf, addUnits_iInfβ‚‚, addUnits_sInf, comap_iInf, unop_iInf, addUnits_iInf, mem_sInf, coe_iInf, Subsemiring.sInf_toAddSubmonoid, coe_sInf, unop_sInf, mem_iInf, NonUnitalSubsemiring.sInf_toAddSubmonoid, op_sInf, map_iInf_comap_of_surjective, comap_iInf_map_of_injective, map_iInf, op_iInf, fixingAddSubmonoid_iUnion

Theorems

NameKindAssumesProvesValidatesDepends On
closure_empty πŸ“–mathematicalβ€”closure
Set
Set.instEmptyCollection
Bot.bot
AddSubmonoid
instBot
β€”GaloisConnection.l_bot
GaloisInsertion.gc
closure_eq πŸ“–mathematicalβ€”closure
SetLike.coe
AddSubmonoid
instSetLike
β€”GaloisInsertion.l_u_eq
closure_eq_of_le πŸ“–β€”Set
Set.instHasSubset
SetLike.coe
AddSubmonoid
instSetLike
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
β€”β€”le_antisymm
closure_le
closure_iUnion πŸ“–mathematicalβ€”closure
Set.iUnion
iSup
AddSubmonoid
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”GaloisConnection.l_iSup
GaloisInsertion.gc
closure_induction πŸ“–β€”subset_closure
AddZero.toZero
AddZeroClass.toAddZero
ZeroMemClass.zero_mem
AddSubmonoid
instSetLike
AddSubmonoidClass.toZeroMemClass
instAddSubmonoidClass
closure
AddZero.toAdd
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SetLike.instMembership
β€”β€”subset_closure
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
instAddSubmonoidClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
closure_le
closure_inductionβ‚‚ πŸ“–β€”subset_closure
AddZero.toZero
AddZeroClass.toAddZero
ZeroMemClass.zero_mem
AddSubmonoid
instSetLike
AddSubmonoidClass.toZeroMemClass
instAddSubmonoidClass
closure
AddZero.toAdd
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SetLike.instMembership
β€”β€”subset_closure
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
instAddSubmonoidClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
closure_induction
closure_insert_zero πŸ“–mathematicalβ€”closure
Set
Set.instInsert
AddZero.toZero
AddZeroClass.toAddZero
β€”Set.insert_eq
closure_union
sup_eq_right
closure_singleton_le_iff_mem
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
instAddSubmonoidClass
closure_le πŸ“–mathematicalβ€”AddSubmonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”Set.Subset.trans
subset_closure
sInf_le
closure_mono πŸ“–mathematicalSet
Set.instHasSubset
AddSubmonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
β€”closure_le
Set.Subset.trans
subset_closure
closure_sdiff_eq_closure πŸ“–β€”Set
Set.instHasSubset
SetLike.coe
AddSubmonoid
instSetLike
closure
Set.instSDiff
β€”β€”LE.le.antisymm
closure_mono
Set.diff_subset
closure_le
SetLike.mem_coe
mem_closure
Set.mem_diff_of_mem
closure_sdiff_singleton_zero πŸ“–mathematicalβ€”closure
Set
Set.instSDiff
Set.instSingletonSet
AddZero.toZero
AddZeroClass.toAddZero
β€”closure_sdiff_eq_closure
Set.singleton_subset_iff
SetLike.mem_coe
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
instAddSubmonoidClass
closure_singleton_le_iff_mem πŸ“–mathematicalβ€”AddSubmonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
Set
Set.instSingletonSet
SetLike.instMembership
instSetLike
β€”closure_le
Set.singleton_subset_iff
SetLike.mem_coe
closure_union πŸ“–mathematicalβ€”closure
Set
Set.instUnion
AddSubmonoid
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
β€”GaloisConnection.l_sup
GaloisInsertion.gc
closure_univ πŸ“–mathematicalβ€”closure
Set.univ
Top.top
AddSubmonoid
instTop
β€”closure_eq
coe_top
coe_iInf πŸ“–mathematicalβ€”SetLike.coe
AddSubmonoid
instSetLike
iInf
instInfSet
Set.iInter
β€”Set.biInter_range
coe_sInf πŸ“–mathematicalβ€”SetLike.coe
AddSubmonoid
instSetLike
InfSet.sInf
instInfSet
Set.iInter
Set
Set.instMembership
β€”β€”
dense_induction πŸ“–β€”closure
Top.top
AddSubmonoid
instTop
AddZero.toZero
AddZeroClass.toAddZero
AddZero.toAdd
β€”β€”closure_induction
mem_top
disjoint_def πŸ“–mathematicalβ€”Disjoint
AddSubmonoid
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLattice
AddZero.toZero
AddZeroClass.toAddZero
β€”disjoint_iff_inf_le
SetLike.le_def
instIsConcreteLE
mem_inf
mem_bot
disjoint_def' πŸ“–mathematicalβ€”Disjoint
AddSubmonoid
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLattice
AddZero.toZero
AddZeroClass.toAddZero
β€”disjoint_def
iSup_eq_closure πŸ“–mathematicalβ€”iSup
AddSubmonoid
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
closure
Set.iUnion
SetLike.coe
instSetLike
β€”closure_iUnion
closure_eq
mem_closure πŸ“–mathematicalβ€”AddSubmonoid
SetLike.instMembership
instSetLike
closure
β€”mem_sInf
mem_closure_of_mem πŸ“–mathematicalSet
Set.instMembership
AddSubmonoid
SetLike.instMembership
instSetLike
closure
β€”subset_closure
mem_iInf πŸ“–mathematicalβ€”AddSubmonoid
SetLike.instMembership
instSetLike
iInf
instInfSet
β€”mem_sInf
Set.forall_mem_range
mem_iSup πŸ“–mathematicalβ€”AddSubmonoid
SetLike.instMembership
instSetLike
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”closure_singleton_le_iff_mem
le_iSup_iff
mem_sInf πŸ“–mathematicalβ€”AddSubmonoid
SetLike.instMembership
instSetLike
InfSet.sInf
instInfSet
β€”Set.mem_iInterβ‚‚
notMem_of_notMem_closure πŸ“–mathematicalAddSubmonoid
SetLike.instMembership
instSetLike
closure
Set
Set.instMembership
β€”subset_closure
subset_closure πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
AddSubmonoid
instSetLike
closure
β€”mem_closure
sup_eq_closure πŸ“–mathematicalβ€”AddSubmonoid
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
closure
Set
Set.instUnion
SetLike.coe
instSetLike
β€”closure_union
closure_eq

IsAddUnit

Definitions

NameCategoryTheorems
addSubmonoid πŸ“–CompOp
6 mathmath: AddSubmonoid.addUnitsTypeEquivIsAddUnitAddSubmonoid_apply_coe, AddSubmonoid.val_neg_addUnitsTypeEquivIsAddUnitAddSubmonoid_symm_apply, AddSubmonoid.val_addUnitsTypeEquivIsAddUnitAddSubmonoid_symm_apply, AddSubmonoid.leftNeg_le_isAddUnit, AddSubmonoid.IsUnit.Submonoid.coe_neg, mem_addSubmonoid_iff

Theorems

NameKindAssumesProvesValidatesDepends On
mem_addSubmonoid_iff πŸ“–mathematicalβ€”AddSubmonoid
AddMonoid.toAddZeroClass
SetLike.instMembership
AddSubmonoid.instSetLike
addSubmonoid
IsAddUnit
β€”Set.mem_setOf_eq

IsUnit

Definitions

NameCategoryTheorems
submonoid πŸ“–CompOp
21 mathmath: IsFractionRing.nonZeroDivisors_eq_isUnit, isUnit_le_nonZeroDivisors, Algebra.essFiniteType_cond_iff, Submonoid.val_inv_unitsTypeEquivIsUnitSubmonoid_symm_apply, IsArtinianRing.isUnitSubmonoid_eq_of_mulOpposite, Submonoid.unitsTypeEquivIsUnitSubmonoid_apply_coe, mem_submonoid_iff, IsArtinianRing.nonZeroDivisorsLeft_eq_isUnitSubmonoid, Submodule.mker_spanSingleton, IsArtinianRing.isUnit_submonoid_eq, le_isUnit_iff_zero_notMem, IsLocalization.submonoid_map_le_is_unit, Submonoid.leftInv_le_isUnit, IsArtinianRing.isUnit_submonoid_eq_of_isIntegral, IsArtinianRing.isUnitSubmonoid_eq, IsFractionRing.self_iff_nonZeroDivisors_le_isUnit, Algebra.EssFiniteType.cond, Submonoid.val_unitsTypeEquivIsUnitSubmonoid_symm_apply, Submonoid.IsUnit.Submonoid.coe_inv, IsFractionRing.self_iff_nonZeroDivisors_eq_isUnit, IsArtinianRing.isUnitSubmonoid_eq_nonZeroDivisorsRight

Theorems

NameKindAssumesProvesValidatesDepends On
mem_submonoid_iff πŸ“–mathematicalβ€”Submonoid
Monoid.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
submonoid
IsUnit
β€”Set.mem_setOf_eq

MonoidHom

Definitions

NameCategoryTheorems
ofClosureMEqTopLeft πŸ“–CompOp
1 mathmath: coe_ofClosureMEqTopLeft
ofClosureMEqTopRight πŸ“–CompOp
1 mathmath: coe_ofClosureMEqTopRight

Theorems

NameKindAssumesProvesValidatesDepends On
coe_ofClosureMEqTopLeft πŸ“–mathematicalSubmonoid.closure
Monoid.toMulOneClass
Top.top
Submonoid
Submonoid.instTop
MulOne.toOne
MulOneClass.toMulOne
MulOne.toMul
DFunLike.coe
MonoidHom
instFunLike
ofClosureMEqTopLeft
β€”β€”
coe_ofClosureMEqTopRight πŸ“–mathematicalSubmonoid.closure
Monoid.toMulOneClass
Top.top
Submonoid
Submonoid.instTop
MulOne.toOne
MulOneClass.toMulOne
MulOne.toMul
DFunLike.coe
MonoidHom
instFunLike
ofClosureMEqTopRight
β€”β€”
eqOn_closureM πŸ“–mathematicalSet.EqOn
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
instFunLike
SetLike.coe
Submonoid
Submonoid.instSetLike
Submonoid.closure
β€”Submonoid.closure_le
eq_of_eqOn_denseM πŸ“–β€”Submonoid.closure
Top.top
Submonoid
Submonoid.instTop
Set.EqOn
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
instFunLike
β€”β€”eq_of_eqOn_topM
eqOn_closureM

Submonoid

Definitions

NameCategoryTheorems
closure πŸ“–CompOp
93 mathmath: mem_closure_iff_of_fintype, MonoidHom.eqOn_closureM, closure_pow, IsMulIndecomposable.mem_or_inv_mem_closure_baseOf, closure_singleton_le_iff_mem, mem_closure, RootPairing.weylGroup_toSubmonoid, closure_pow_le, mem_closure_singleton_self, closure_pi, Subgroup.closure_toSubmonoid, Equiv.Perm.mclosure_swap_castSucc_succ, Set.IsPWO.submonoid_closure, iSup_eq_closure, Commute.exists_orderOf_eq_lcm, toAddSubmonoid_closure, sup_eq_closure_mul, Monoid.CoprodI.mclosure_iUnion_range_of, PresentedMonoid.closure_range_of, closure_eq_one_union, closure_singleton_eq, closure_univ, exists_minimal_closure_eq_top, FreeMonoid.closure_range_of, AddSubmonoid.toSubmonoid_closure, Subring.mem_closure_iff, powers_eq_closure, mem_closure_singleton, closure_mono, mul_subset_closure, Algebra.adjoin_toSubmodule_le, closure_prod_one, closure_eq, topologicalClosure_subgroupClosure_toSubmonoid, Subgroup.le_closure_toSubmonoid, Monoid.closure_finset_fg, closure_le_centralizer_centralizer, Monoid.fg_iff, MonoidHom.mclosure_preimage_le, FreeMonoid.mrange_lift, closure_mul_le, dense_submonoidClosure_iff_subgroupClosure, closure_submonoidClosure_eq_closure_subgroupClosure, Algebra.adjoin_eq_span, fg_iff, Subsemiring.coe_closure_eq, MonoidWithZeroHom.valueMonoid_eq_closure, closure_empty, closure_prod, closure_sdiff_singleton_one, mem_closure_finset, closure_image_isMulIndecomposable_baseOf, op_closure, mem_closure_range_iff, smul_closure, closure_insert_one, mem_closure_range_iff_of_fintype, closure_union, mem_closure_inv, Monoid.Coprod.mclosure_range_inl_union_inr, StarAlgebra.adjoin_eq_span, toAddSubmonoid'_closure, Subsemiring.closure_submonoid_closure, mem_closure_finset', Monoid.closure_finite_fg, irreducible_mem_submonoidClosure_subset, closure_singleton_one, MonoidHom.map_mclosure, closure_iUnion, mem_closure_of_mem, closure_image_one_lt_and_isMulIndecomposable, CoxeterSystem.submonoid_closure_range_simple, closure_closure_coe_preimage, Equiv.Perm.mclosure_isSwap, closure_inv, MonoidHom.mclosure_range, unop_closure, closure_irreducible, subset_closure, FG.exists_minimal_closure_eq, IsMulIndecomposable.apply_ne_one_iff_mem_closure, Subgroup.closure_toSubmonoid_of_isOfFinOrder, Subsemiring.mem_closure_iff, sup_eq_closure, closure_le, mem_closure_pair, mem_closure_iff_exists_finset_subset, mem_closure_image_one_lt_iff, Subgroup.closure_toSubmonoid_of_finite, AddSubmonoid.toSubmonoid'_closure, closure_eq_mrange, closure_eq_image_prod, closure_one_prod
gi πŸ“–CompOpβ€”
instCompleteLattice πŸ“–CompOp
64 mathmath: comap_sup_map_of_injective, unop_iSup, coe_iSup_of_directed, map_sup_comap_of_surjective, mem_sup, iSup_eq_closure, coe_sSup_of_directedOn, mrange_inl_sup_mrange_inr, prod_bot_sup_bot_prod, mem_iSup, Monoid.CoprodI.mrange_eq_iSup, iSup_map_mulSingle_le, Monoid.Coprod.mrange_eq, sup_eq_closure_mul, mem_sup_left, mem_sSup_of_directedOn, op_sSup, fixedPoints_submonoid_sup, smul_sup, FG.finset_sup, map_iSup, iSup_map_mulSingle, map_sup, op_iSup, inv_sup, Subgroup.toSubmonoid_zpowers, mem_iSup_prop, Subgroup.ofUnits_inf, Monoid.Coprod.mrange_lift, map_iSup_comap_of_surjective, comap_iSup_map_of_injective, op_sup, CommMonoid.primaryComponent.disjoint, inv_iSup, fixedPoints_submonoid_iSup, mem_iSup_of_directed, unop_sup, MonoidHom.noncommPiCoprod_mrange, FG.iSup, closure_mul_le, mul_mem_sup, coe_sup, Monoid.CoprodI.iSup_mrange_of, unop_sSup, mem_sup_right, FG.sup, mem_biSup_of_directedOn, Subgroup.ofUnits_iSupβ‚‚, closure_union, mem_sSup_of_mem, Subgroup.ofUnits_sSup, mem_iSup_of_mem, closure_iUnion, disjoint_def', FG.biSup_finset, sup_eq_range, disjoint_def, Subgroup.ofUnits_iSup, Monoid.Coprod.mrange_inl_sup_mrange_inr, Monoid.Coprod.codisjoint_mrange_inl_mrange_inr, sup_eq_closure, exists_mem_sup, Subgroup.ofUnits_sup_units, FG.biSup
instInfSet πŸ“–CompOp
20 mathmath: units_iInf, comap_iInf, op_iInf, unop_iInf, comap_iInf_map_of_injective, op_sInf, mem_sInf, units_sInf, unop_sInf, fixingSubmonoid_iUnion, mem_iInf, units_iInfβ‚‚, map_iInf, Subring.sInf_toSubmonoid, inv_iInf, coe_iInf, Subsemiring.sInf_toSubmonoid, coe_sInf, map_iInf_comap_of_surjective, TopCat.Presheaf.submonoidPresheafOfStalk_obj

Theorems

NameKindAssumesProvesValidatesDepends On
closure_empty πŸ“–mathematicalβ€”closure
Set
Set.instEmptyCollection
Bot.bot
Submonoid
instBot
β€”GaloisConnection.l_bot
GaloisInsertion.gc
closure_eq πŸ“–mathematicalβ€”closure
SetLike.coe
Submonoid
instSetLike
β€”GaloisInsertion.l_u_eq
closure_eq_of_le πŸ“–β€”Set
Set.instHasSubset
SetLike.coe
Submonoid
instSetLike
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
β€”β€”le_antisymm
closure_le
closure_eq_one_union πŸ“–mathematicalβ€”SetLike.coe
Submonoid
instSetLike
closure
Set
Set.instUnion
Set.instSingletonSet
MulOne.toOne
MulOneClass.toMulOne
Subsemigroup
MulOne.toMul
Subsemigroup.instSetLike
Subsemigroup.closure
β€”le_antisymm
closure_induction
Subsemigroup.subset_closure
mul_one
one_mul
MulMemClass.mul_mem
Subsemigroup.instMulMemClass
OneMemClass.one_mem
SubmonoidClass.toOneMemClass
instSubmonoidClass
Subsemigroup.closure_le
subset_closure
closure_iUnion πŸ“–mathematicalβ€”closure
Set.iUnion
iSup
Submonoid
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”GaloisConnection.l_iSup
GaloisInsertion.gc
closure_induction πŸ“–β€”subset_closure
MulOne.toOne
MulOneClass.toMulOne
OneMemClass.one_mem
Submonoid
instSetLike
SubmonoidClass.toOneMemClass
instSubmonoidClass
closure
MulOne.toMul
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SetLike.instMembership
β€”β€”subset_closure
OneMemClass.one_mem
SubmonoidClass.toOneMemClass
instSubmonoidClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
closure_le
closure_inductionβ‚‚ πŸ“–β€”subset_closure
MulOne.toOne
MulOneClass.toMulOne
OneMemClass.one_mem
Submonoid
instSetLike
SubmonoidClass.toOneMemClass
instSubmonoidClass
closure
MulOne.toMul
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SetLike.instMembership
β€”β€”subset_closure
OneMemClass.one_mem
SubmonoidClass.toOneMemClass
instSubmonoidClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
closure_induction
closure_insert_one πŸ“–mathematicalβ€”closure
Set
Set.instInsert
MulOne.toOne
MulOneClass.toMulOne
β€”Set.insert_eq
closure_union
sup_eq_right
closure_singleton_le_iff_mem
OneMemClass.one_mem
SubmonoidClass.toOneMemClass
instSubmonoidClass
closure_le πŸ“–mathematicalβ€”Submonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”Set.Subset.trans
subset_closure
sInf_le
closure_mono πŸ“–mathematicalSet
Set.instHasSubset
Submonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
β€”closure_le
Set.Subset.trans
subset_closure
closure_sdiff_eq_closure πŸ“–β€”Set
Set.instHasSubset
SetLike.coe
Submonoid
instSetLike
closure
Set.instSDiff
β€”β€”LE.le.antisymm
closure_mono
Set.diff_subset
closure_le
SetLike.mem_coe
mem_closure
Set.mem_diff_of_mem
closure_sdiff_singleton_one πŸ“–mathematicalβ€”closure
Set
Set.instSDiff
Set.instSingletonSet
MulOne.toOne
MulOneClass.toMulOne
β€”closure_sdiff_eq_closure
SubmonoidClass.toOneMemClass
instSubmonoidClass
closure_singleton_le_iff_mem πŸ“–mathematicalβ€”Submonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
Set
Set.instSingletonSet
SetLike.instMembership
instSetLike
β€”closure_le
Set.singleton_subset_iff
SetLike.mem_coe
closure_union πŸ“–mathematicalβ€”closure
Set
Set.instUnion
Submonoid
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
β€”GaloisConnection.l_sup
GaloisInsertion.gc
closure_univ πŸ“–mathematicalβ€”closure
Set.univ
Top.top
Submonoid
instTop
β€”closure_eq
coe_top
coe_iInf πŸ“–mathematicalβ€”SetLike.coe
Submonoid
instSetLike
iInf
instInfSet
Set.iInter
β€”Set.biInter_range
coe_sInf πŸ“–mathematicalβ€”SetLike.coe
Submonoid
instSetLike
InfSet.sInf
instInfSet
Set.iInter
Set
Set.instMembership
β€”β€”
dense_induction πŸ“–β€”closure
Top.top
Submonoid
instTop
MulOne.toOne
MulOneClass.toMulOne
MulOne.toMul
β€”β€”closure_induction
mem_top
disjoint_def πŸ“–mathematicalβ€”Disjoint
Submonoid
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLattice
MulOne.toOne
MulOneClass.toMulOne
β€”instIsConcreteLE
disjoint_def' πŸ“–mathematicalβ€”Disjoint
Submonoid
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLattice
MulOne.toOne
MulOneClass.toMulOne
β€”disjoint_def
iSup_eq_closure πŸ“–mathematicalβ€”iSup
Submonoid
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
closure
Set.iUnion
SetLike.coe
instSetLike
β€”closure_iUnion
closure_eq
mem_closure πŸ“–mathematicalβ€”Submonoid
SetLike.instMembership
instSetLike
closure
β€”mem_sInf
mem_closure_of_mem πŸ“–mathematicalSet
Set.instMembership
Submonoid
SetLike.instMembership
instSetLike
closure
β€”subset_closure
mem_iInf πŸ“–mathematicalβ€”Submonoid
SetLike.instMembership
instSetLike
iInf
instInfSet
β€”β€”
mem_iSup πŸ“–mathematicalβ€”Submonoid
SetLike.instMembership
instSetLike
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”closure_singleton_le_iff_mem
le_iSup_iff
mem_sInf πŸ“–mathematicalβ€”Submonoid
SetLike.instMembership
instSetLike
InfSet.sInf
instInfSet
β€”Set.mem_iInterβ‚‚
notMem_of_notMem_closure πŸ“–mathematicalSubmonoid
SetLike.instMembership
instSetLike
closure
Set
Set.instMembership
β€”subset_closure
subset_closure πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
Submonoid
instSetLike
closure
β€”mem_closure
sup_eq_closure πŸ“–mathematicalβ€”Submonoid
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
closure
Set
Set.instUnion
SetLike.coe
instSetLike
β€”closure_union
closure_eq

---

← Back to Index