Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Group/Subsemigroup/Basic.lean

Statistics

MetricCount
DefinitionsofDense, closure, gi, instCompleteLattice, instInfSet, ofDense, closure, gi, instCompleteLattice, instInfSet
10
Theoremscoe_ofDense, eqOn_closure, eq_of_eqOn_dense, closure_empty, closure_eq, closure_eq_of_le, closure_iUnion, closure_induction, closure_inductionβ‚‚, closure_le, closure_mono, closure_singleton_le_iff_mem, closure_union, closure_univ, coe_iInf, coe_sInf, dense_induction, iSup_eq_closure, mem_closure, mem_closure_of_mem, mem_iInf, mem_iSup, mem_sInf, notMem_of_notMem_closure, subset_closure, coe_ofDense, eqOn_closure, eq_of_eqOn_dense, closure_empty, closure_eq, closure_eq_of_le, closure_iUnion, closure_induction, closure_inductionβ‚‚, closure_le, closure_mono, closure_singleton_le_iff_mem, closure_union, closure_univ, coe_iInf, coe_sInf, dense_induction, iSup_eq_closure, mem_closure, mem_closure_of_mem, mem_iInf, mem_iSup, mem_sInf, notMem_of_notMem_closure, subset_closure
50
Total60

AddHom

Definitions

NameCategoryTheorems
ofDense πŸ“–CompOp
1 mathmath: coe_ofDense

Theorems

NameKindAssumesProvesValidatesDepends On
coe_ofDense πŸ“–mathematicalAddSubsemigroup.closure
AddSemigroup.toAdd
Top.top
AddSubsemigroup
AddSubsemigroup.instTop
DFunLike.coe
AddHom
funLike
ofDense
β€”β€”
eqOn_closure πŸ“–mathematicalSet.EqOn
DFunLike.coe
AddHom
funLike
SetLike.coe
AddSubsemigroup
AddSubsemigroup.instSetLike
AddSubsemigroup.closure
β€”AddSubsemigroup.closure_le
eq_of_eqOn_dense πŸ“–β€”AddSubsemigroup.closure
Top.top
AddSubsemigroup
AddSubsemigroup.instTop
Set.EqOn
DFunLike.coe
AddHom
funLike
β€”β€”eq_of_eqOn_top
eqOn_closure

AddSubsemigroup

Definitions

NameCategoryTheorems
closure πŸ“–CompOp
23 mathmath: closure_iUnion, closure_le_centralizer_centralizer, mem_closure, closure_univ, toSubsemigroup'_closure, mem_closure_of_mem, AddHom.eqOn_closure, subset_closure, Subsemigroup.toAddSubsemigroup_closure, closure_closure_coe_preimage, closure_eq, closure_singleton_le_iff_mem, iSup_eq_closure, closure_le, closure_union, op_closure, toSubsemigroup_closure, AddHom.mclosure_preimage_le, closure_mono, closure_empty, Subsemigroup.toAddSubsemigroup'_closure, unop_closure, AddHom.map_mclosure
gi πŸ“–CompOpβ€”
instCompleteLattice πŸ“–CompOp
27 mathmath: closure_iUnion, op_iSup, coe_iSup_of_directed, map_sup, unop_sSup, unop_iSup, map_iSup, mem_iSup, mem_biSup_of_directedOn, comap_sup_map_of_injective, mem_sup_left, unop_sup, mem_iSup_of_mem, op_sup, op_sSup, comap_iSup_map_of_injective, iSup_eq_closure, mem_sup_right, map_iSup_comap_of_surjective, mem_sSup_of_mem, map_sup_comap_of_surjective, mem_iSup_prop, mem_sSup_of_directed_on, coe_sSup_of_directed_on, closure_union, add_mem_sup, mem_iSup_of_directed
instInfSet πŸ“–CompOp
12 mathmath: unop_iInf, comap_iInf, op_iInf, op_sInf, mem_iInf, coe_sInf, unop_sInf, map_iInf_comap_of_surjective, mem_sInf, comap_iInf_map_of_injective, map_iInf, coe_iInf

Theorems

NameKindAssumesProvesValidatesDepends On
closure_empty πŸ“–mathematicalβ€”closure
Set
Set.instEmptyCollection
Bot.bot
AddSubsemigroup
instBot
β€”GaloisConnection.l_bot
GaloisInsertion.gc
closure_eq πŸ“–mathematicalβ€”closure
SetLike.coe
AddSubsemigroup
instSetLike
β€”GaloisInsertion.l_u_eq
closure_eq_of_le πŸ“–β€”Set
Set.instHasSubset
SetLike.coe
AddSubsemigroup
instSetLike
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
β€”β€”le_antisymm
closure_le
closure_iUnion πŸ“–mathematicalβ€”closure
Set.iUnion
iSup
AddSubsemigroup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”GaloisConnection.l_iSup
GaloisInsertion.gc
closure_induction πŸ“–β€”subset_closure
AddMemClass.add_mem
AddSubsemigroup
instSetLike
instAddMemClass
closure
SetLike.instMembership
β€”β€”subset_closure
AddMemClass.add_mem
instAddMemClass
closure_le
closure_inductionβ‚‚ πŸ“–β€”subset_closure
AddMemClass.add_mem
AddSubsemigroup
instSetLike
instAddMemClass
closure
SetLike.instMembership
β€”β€”subset_closure
AddMemClass.add_mem
instAddMemClass
closure_induction
closure_le πŸ“–mathematicalβ€”AddSubsemigroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”Set.Subset.trans
subset_closure
sInf_le
closure_mono πŸ“–mathematicalSet
Set.instHasSubset
AddSubsemigroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
β€”closure_le
Set.Subset.trans
subset_closure
closure_singleton_le_iff_mem πŸ“–mathematicalβ€”AddSubsemigroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
Set
Set.instSingletonSet
SetLike.instMembership
instSetLike
β€”closure_le
Set.singleton_subset_iff
SetLike.mem_coe
closure_union πŸ“–mathematicalβ€”closure
Set
Set.instUnion
AddSubsemigroup
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
β€”GaloisConnection.l_sup
GaloisInsertion.gc
closure_univ πŸ“–mathematicalβ€”closure
Set.univ
Top.top
AddSubsemigroup
instTop
β€”closure_eq
coe_top
coe_iInf πŸ“–mathematicalβ€”SetLike.coe
AddSubsemigroup
instSetLike
iInf
instInfSet
Set.iInter
β€”Set.biInter_range
coe_sInf πŸ“–mathematicalβ€”SetLike.coe
AddSubsemigroup
instSetLike
InfSet.sInf
instInfSet
Set.iInter
Set
Set.instMembership
β€”β€”
dense_induction πŸ“–β€”closure
Top.top
AddSubsemigroup
instTop
β€”β€”closure_induction
mem_top
iSup_eq_closure πŸ“–mathematicalβ€”iSup
AddSubsemigroup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
closure
Set.iUnion
SetLike.coe
instSetLike
β€”closure_iUnion
closure_eq
mem_closure πŸ“–mathematicalβ€”AddSubsemigroup
SetLike.instMembership
instSetLike
closure
β€”mem_sInf
mem_closure_of_mem πŸ“–mathematicalSet
Set.instMembership
AddSubsemigroup
SetLike.instMembership
instSetLike
closure
β€”subset_closure
mem_iInf πŸ“–mathematicalβ€”AddSubsemigroup
SetLike.instMembership
instSetLike
iInf
instInfSet
β€”mem_sInf
Set.forall_mem_range
mem_iSup πŸ“–mathematicalβ€”AddSubsemigroup
SetLike.instMembership
instSetLike
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”closure_singleton_le_iff_mem
le_iSup_iff
mem_sInf πŸ“–mathematicalβ€”AddSubsemigroup
SetLike.instMembership
instSetLike
InfSet.sInf
instInfSet
β€”Set.mem_iInterβ‚‚
notMem_of_notMem_closure πŸ“–mathematicalAddSubsemigroup
SetLike.instMembership
instSetLike
closure
Set
Set.instMembership
β€”subset_closure
subset_closure πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
AddSubsemigroup
instSetLike
closure
β€”mem_closure

MulHom

Definitions

NameCategoryTheorems
ofDense πŸ“–CompOp
1 mathmath: coe_ofDense

Theorems

NameKindAssumesProvesValidatesDepends On
coe_ofDense πŸ“–mathematicalSubsemigroup.closure
Semigroup.toMul
Top.top
Subsemigroup
Subsemigroup.instTop
DFunLike.coe
MulHom
funLike
ofDense
β€”β€”
eqOn_closure πŸ“–mathematicalSet.EqOn
DFunLike.coe
MulHom
funLike
SetLike.coe
Subsemigroup
Subsemigroup.instSetLike
Subsemigroup.closure
β€”Subsemigroup.closure_le
eq_of_eqOn_dense πŸ“–β€”Subsemigroup.closure
Top.top
Subsemigroup
Subsemigroup.instTop
Set.EqOn
DFunLike.coe
MulHom
funLike
β€”β€”eq_of_eqOn_top
eqOn_closure

Subsemigroup

Definitions

NameCategoryTheorems
closure πŸ“–CompOp
30 mathmath: AddSubsemigroup.toSubsemigroup'_closure, MulHom.mclosure_preimage_le, closure_empty, Submonoid.closure_eq_one_union, closure_le_centralizer_centralizer, MulHom.eqOn_closure, NonUnitalStarAlgebra.adjoin_eq_span, toAddSubsemigroup_closure, closure_le, closure_union, NonUnitalSubsemiring.closure_subsemigroup_closure, MulHom.map_mclosure, mem_closure, closure_closure_coe_preimage, mem_closure_of_mem, closure_singleton_le_iff_mem, closure_iUnion, op_closure, subset_closure, closure_eq, NonUnitalSubring.mem_closure_iff, unop_closure, AddSubsemigroup.toSubsemigroup_closure, iSup_eq_closure, closure_mono, NonUnitalSubsemiring.mem_closure_iff, NonUnitalSubsemiring.coe_closure_eq, toAddSubsemigroup'_closure, closure_univ, NonUnitalAlgebra.adjoin_eq_span
gi πŸ“–CompOpβ€”
instCompleteLattice πŸ“–CompOp
27 mathmath: unop_iSup, mem_sSup_of_mem, mem_iSup_prop, mul_mem_sup, mem_iSup_of_directed, mem_sSup_of_directed_on, map_sup, mem_biSup_of_directedOn, closure_union, unop_sup, comap_sup_map_of_injective, comap_iSup_map_of_injective, mem_sup_left, op_sup, op_iSup, closure_iUnion, mem_iSup_of_mem, mem_iSup, mem_sup_right, map_iSup, map_iSup_comap_of_surjective, coe_iSup_of_directed, iSup_eq_closure, map_sup_comap_of_surjective, coe_sSup_of_directed_on, unop_sSup, op_sSup
instInfSet πŸ“–CompOp
14 mathmath: map_iInf_comap_of_surjective, op_iInf, coe_sInf, NonUnitalSubring.sInf_toSubsemigroup, comap_iInf_map_of_injective, mem_iInf, map_iInf, mem_sInf, op_sInf, unop_sInf, NonUnitalSubsemiring.sInf_toSubsemigroup, unop_iInf, coe_iInf, comap_iInf

Theorems

NameKindAssumesProvesValidatesDepends On
closure_empty πŸ“–mathematicalβ€”closure
Set
Set.instEmptyCollection
Bot.bot
Subsemigroup
instBot
β€”GaloisConnection.l_bot
GaloisInsertion.gc
closure_eq πŸ“–mathematicalβ€”closure
SetLike.coe
Subsemigroup
instSetLike
β€”GaloisInsertion.l_u_eq
closure_eq_of_le πŸ“–β€”Set
Set.instHasSubset
SetLike.coe
Subsemigroup
instSetLike
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
β€”β€”le_antisymm
closure_le
closure_iUnion πŸ“–mathematicalβ€”closure
Set.iUnion
iSup
Subsemigroup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”GaloisConnection.l_iSup
GaloisInsertion.gc
closure_induction πŸ“–β€”subset_closure
MulMemClass.mul_mem
Subsemigroup
instSetLike
instMulMemClass
closure
SetLike.instMembership
β€”β€”subset_closure
MulMemClass.mul_mem
instMulMemClass
closure_le
closure_inductionβ‚‚ πŸ“–β€”subset_closure
MulMemClass.mul_mem
Subsemigroup
instSetLike
instMulMemClass
closure
SetLike.instMembership
β€”β€”subset_closure
MulMemClass.mul_mem
instMulMemClass
closure_induction
closure_le πŸ“–mathematicalβ€”Subsemigroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”Set.Subset.trans
subset_closure
sInf_le
closure_mono πŸ“–mathematicalSet
Set.instHasSubset
Subsemigroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
β€”closure_le
Set.Subset.trans
subset_closure
closure_singleton_le_iff_mem πŸ“–mathematicalβ€”Subsemigroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
Set
Set.instSingletonSet
SetLike.instMembership
instSetLike
β€”closure_le
Set.singleton_subset_iff
SetLike.mem_coe
closure_union πŸ“–mathematicalβ€”closure
Set
Set.instUnion
Subsemigroup
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
β€”GaloisConnection.l_sup
GaloisInsertion.gc
closure_univ πŸ“–mathematicalβ€”closure
Set.univ
Top.top
Subsemigroup
instTop
β€”closure_eq
coe_top
coe_iInf πŸ“–mathematicalβ€”SetLike.coe
Subsemigroup
instSetLike
iInf
instInfSet
Set.iInter
β€”Set.biInter_range
coe_sInf πŸ“–mathematicalβ€”SetLike.coe
Subsemigroup
instSetLike
InfSet.sInf
instInfSet
Set.iInter
Set
Set.instMembership
β€”β€”
dense_induction πŸ“–β€”closure
Top.top
Subsemigroup
instTop
β€”β€”closure_induction
mem_top
iSup_eq_closure πŸ“–mathematicalβ€”iSup
Subsemigroup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
closure
Set.iUnion
SetLike.coe
instSetLike
β€”closure_iUnion
closure_eq
mem_closure πŸ“–mathematicalβ€”Subsemigroup
SetLike.instMembership
instSetLike
closure
β€”mem_sInf
mem_closure_of_mem πŸ“–mathematicalSet
Set.instMembership
Subsemigroup
SetLike.instMembership
instSetLike
closure
β€”subset_closure
mem_iInf πŸ“–mathematicalβ€”Subsemigroup
SetLike.instMembership
instSetLike
iInf
instInfSet
β€”β€”
mem_iSup πŸ“–mathematicalβ€”Subsemigroup
SetLike.instMembership
instSetLike
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”closure_singleton_le_iff_mem
le_iSup_iff
mem_sInf πŸ“–mathematicalβ€”Subsemigroup
SetLike.instMembership
instSetLike
InfSet.sInf
instInfSet
β€”Set.mem_iInterβ‚‚
notMem_of_notMem_closure πŸ“–mathematicalSubsemigroup
SetLike.instMembership
instSetLike
closure
Set
Set.instMembership
β€”subset_closure
subset_closure πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
Subsemigroup
instSetLike
closure
β€”mem_closure

---

← Back to Index