Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Group/UniqueProds/Basic.lean

Statistics

MetricCount
DefinitionsTwoUniqueProds, TwoUniqueSums, UniqueAdd, UniqueMul
4
TheoremstwoUniqueSums_iff, uniqueSums_iff, instTwoUniqueSumsOfTwoUniqueProds, instUniqueSumsOfUniqueProds, twoUniqueProds_iff, uniqueProds_iff, instTwoUniqueProdsOfTwoUniqueSums, instUniqueProdsOfUniqueSums, instTwoUniqueProds, instTwoUniqueSums, instUniqueProds, instUniqueSums, instForall, instMulOpposite, of_covariant_left, of_covariant_right, of_injective_mulHom, of_mulHom, of_mulOpposite, toUniqueProds, uniqueMul_of_one_lt_card, instAddOpposite, instForall, of_addHom, of_addOpposite, of_covariant_left, of_covariant_right, of_injective_addHom, toUniqueSums, uniqueAdd_of_one_lt_card, addHom_image_iff, addHom_map_iff, addHom_preimage, exists_iff_exists_existsUnique, iff_addOpposite, iff_card_le_one, iff_existsUnique, mono, mt, of_addHom_image, of_addOpposite, of_card_le_one, of_image_filter, of_subsingleton, set_subsingleton, subsingleton, to_addOpposite, exists_iff_exists_existsUnique, iff_card_le_one, iff_existsUnique, iff_mulOpposite, mono, mt, mulHom_image_iff, mulHom_map_iff, mulHom_preimage, of_card_le_one, of_image_filter, of_mulHom_image, of_mulOpposite, of_subsingleton, set_subsingleton, subsingleton, to_mulOpposite, instForall, instMulOpposite, of_injective_mulHom, of_mulHom, of_mulOpposite, of_same, toIsCancelMul, toTwoUniqueProds_of_group, uniqueMul_of_nonempty, instAddOpposite, instForall, of_addHom, of_addOpposite, of_injective_addHom, of_same, toIsCancelAdd, toTwoUniqueSums_of_addGroup, uniqueAdd_of_nonempty, instTwoUniqueSumsDFinsupp, instTwoUniqueSumsFinsupp, instUniqueSumsDFinsupp, instUniqueSumsFinsupp, uniqueAdd_of_twoUniqueAdd, uniqueMul_of_twoUniqueMul
88
Total92

AddEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
twoUniqueSums_iff πŸ“–mathematicalβ€”TwoUniqueSumsβ€”TwoUniqueSums.of_injective_addHom
AddEquivClass.instAddHomClass
instAddEquivClass
injective
uniqueSums_iff πŸ“–mathematicalβ€”UniqueSumsβ€”UniqueSums.of_injective_addHom
AddEquivClass.instAddHomClass
instAddEquivClass
injective

Additive

Theorems

NameKindAssumesProvesValidatesDepends On
instTwoUniqueSumsOfTwoUniqueProds πŸ“–mathematicalβ€”TwoUniqueSums
Additive
add
β€”TwoUniqueProds.uniqueMul_of_one_lt_card
instUniqueSumsOfUniqueProds πŸ“–mathematicalβ€”UniqueSums
Additive
add
β€”UniqueProds.uniqueMul_of_nonempty

MulEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
twoUniqueProds_iff πŸ“–mathematicalβ€”TwoUniqueProdsβ€”TwoUniqueProds.of_injective_mulHom
MulEquivClass.instMulHomClass
instMulEquivClass
injective
uniqueProds_iff πŸ“–mathematicalβ€”UniqueProdsβ€”UniqueProds.of_injective_mulHom
MulEquivClass.instMulHomClass
instMulEquivClass
injective

Multiplicative

Theorems

NameKindAssumesProvesValidatesDepends On
instTwoUniqueProdsOfTwoUniqueSums πŸ“–mathematicalβ€”TwoUniqueProds
Multiplicative
mul
β€”TwoUniqueSums.uniqueAdd_of_one_lt_card
instUniqueProdsOfUniqueSums πŸ“–mathematicalβ€”UniqueProds
Multiplicative
mul
β€”UniqueSums.uniqueAdd_of_nonempty

Prod

Theorems

NameKindAssumesProvesValidatesDepends On
instTwoUniqueProds πŸ“–mathematicalβ€”TwoUniqueProds
instMul
β€”TwoUniqueProds.of_injective_mulHom
ULift.down_injective
ULift.up_injective
TwoUniqueProds.instForall
instTwoUniqueSums πŸ“–mathematicalβ€”TwoUniqueSums
instAdd
β€”TwoUniqueSums.of_injective_addHom
ULift.down_injective
ULift.up_injective
TwoUniqueSums.instForall
instUniqueProds πŸ“–mathematicalβ€”UniqueProds
instMul
β€”UniqueProds.of_injective_mulHom
ULift.down_injective
ULift.up_injective
UniqueProds.instForall
instUniqueSums πŸ“–mathematicalβ€”UniqueSums
instAdd
β€”UniqueSums.of_injective_addHom
ULift.down_injective
ULift.up_injective
UniqueSums.instForall

TwoUniqueProds

Theorems

NameKindAssumesProvesValidatesDepends On
instForall πŸ“–mathematicalTwoUniqueProdsPi.instMulβ€”Finset.isWellFounded_ssubset
IsWellFounded.induction
Finset.exists_of_one_lt_card_pi
uniqueMul_of_one_lt_card
Finset.card_pos
Finset.Nonempty.image
uniqueMul_of_twoUniqueMul
HasSubset.Subset.ssubset_of_ne
Finset.instIsNonstrictStrictOrderSubsetSSubset
Finset.instAntisymmSubset
Finset.filter_subset
Finset.mem_filter
UniqueMul.of_image_filter
instMulOpposite πŸ“–mathematicalβ€”TwoUniqueProds
MulOpposite
MulOpposite.instMul
β€”of_mulOpposite
MulEquiv.twoUniqueProds_iff
of_covariant_left πŸ“–mathematicalβ€”TwoUniqueProdsβ€”MulOpposite.unop_injective
mul_lt_mul_left
of_mulOpposite
of_covariant_right
MulOpposite.instIsRightCancelMul
of_covariant_right πŸ“–mathematicalβ€”TwoUniqueProdsβ€”Finset.Nonempty.mul
Finset.card_pos
Finset.mem_mul
Finset.max'_mem
Finset.min'_mem
lt_trichotomy
LT.lt.not_ge
mul_lt_mul_right
Finset.le_max'
Finset.mul_mem_mul
mul_right_cancel
Finset.mk_mem_product
Finset.exists_mem_ne
Finset.card_product
LT.lt.ne
Finset.min'_lt_max'
Finset.mem_product
Finset.min'_le
of_injective_mulHom πŸ“–mathematicalDFunLike.coe
MulHom
MulHom.funLike
TwoUniqueProdsβ€”of_mulHom
of_mulHom πŸ“–mathematicalβ€”TwoUniqueProdsβ€”lt_or_ge
uniqueMul_of_one_lt_card
UniqueMul.of_mulHom_image
Finset.one_lt_card_iff_nontrivial
Finset.card_product
Finset.mem_product
UniqueMul.iff_card_le_one
Finset.mem_image_of_mem
LE.le.trans
Finset.card_filter_le
of_mulOpposite πŸ“–mathematicalβ€”TwoUniqueProdsβ€”MulOpposite.op_injective
uniqueMul_of_one_lt_card
mul_comm
Finset.card_map
Finset.mem_map'
Mathlib.Tactic.Contrapose.contraposeβ‚„
MulOpposite.unop_injective
UniqueMul.of_mulOpposite
toUniqueProds πŸ“–mathematicalβ€”UniqueProdsβ€”uniqueMul_of_twoUniqueMul
uniqueMul_of_one_lt_card
uniqueMul_of_one_lt_card πŸ“–mathematicalFinset.cardFinset
Finset.instMembership
SProd.sprod
Finset.instSProd
UniqueMul
β€”β€”

TwoUniqueSums

Theorems

NameKindAssumesProvesValidatesDepends On
instAddOpposite πŸ“–mathematicalβ€”TwoUniqueSums
AddOpposite
AddOpposite.instAdd
β€”of_addOpposite
AddEquiv.twoUniqueSums_iff
instForall πŸ“–mathematicalTwoUniqueSumsPi.instAddβ€”Finset.isWellFounded_ssubset
IsWellFounded.induction
Finset.exists_of_one_lt_card_pi
uniqueAdd_of_one_lt_card
Finset.card_pos
Finset.Nonempty.image
uniqueAdd_of_twoUniqueAdd
HasSubset.Subset.ssubset_of_ne
Finset.instIsNonstrictStrictOrderSubsetSSubset
Finset.instAntisymmSubset
Finset.filter_subset
Finset.filter_nonempty_iff
Finset.mem_image
Finset.mem_product
Finset.mem_filter
UniqueAdd.of_image_filter
of_addHom πŸ“–mathematicalβ€”TwoUniqueSumsβ€”lt_or_ge
uniqueAdd_of_one_lt_card
Finset.mem_product
Finset.mem_image
UniqueAdd.of_addHom_image
Finset.one_lt_card_iff_nontrivial
Finset.card_product
UniqueAdd.iff_card_le_one
Finset.mem_image_of_mem
LE.le.trans
Finset.card_filter_le
of_addOpposite πŸ“–mathematicalβ€”TwoUniqueSumsβ€”AddOpposite.op_injective
uniqueAdd_of_one_lt_card
mul_comm
Finset.card_map
Finset.mem_product
Finset.mem_map'
Mathlib.Tactic.Contrapose.contraposeβ‚„
AddOpposite.unop_injective
UniqueAdd.of_addOpposite
of_covariant_left πŸ“–mathematicalβ€”TwoUniqueSumsβ€”AddOpposite.unop_injective
add_lt_add_left
of_addOpposite
of_covariant_right
AddOpposite.instIsRightCancelAdd
of_covariant_right πŸ“–mathematicalβ€”TwoUniqueSumsβ€”Finset.Nonempty.add
Finset.card_pos
Finset.mem_add
Finset.max'_mem
Finset.min'_mem
lt_trichotomy
LT.lt.not_ge
add_lt_add_right
Finset.le_max'
Finset.add_mem_add
add_right_cancel
Finset.mk_mem_product
Finset.exists_mem_ne
Finset.card_product
LT.lt.ne
Finset.min'_lt_max'
Finset.mem_product
Finset.min'_le
of_injective_addHom πŸ“–mathematicalDFunLike.coe
AddHom
AddHom.funLike
TwoUniqueSumsβ€”of_addHom
toUniqueSums πŸ“–mathematicalβ€”UniqueSumsβ€”uniqueAdd_of_twoUniqueAdd
uniqueAdd_of_one_lt_card
uniqueAdd_of_one_lt_card πŸ“–mathematicalFinset.cardFinset
Finset.instMembership
SProd.sprod
Finset.instSProd
UniqueAdd
β€”β€”

UniqueAdd

Theorems

NameKindAssumesProvesValidatesDepends On
addHom_image_iff πŸ“–mathematicalDFunLike.coe
AddHom
AddHom.funLike
UniqueAdd
Finset.image
β€”of_addHom_image
Finset.mem_image
map_add
AddHom.addHomClass
addHom_map_iff πŸ“–mathematicalDFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
UniqueAdd
Finset.map
β€”addHom_image_iff
Function.Embedding.inj'
Finset.map_eq_image
addHom_preimage πŸ“–mathematicalDFunLike.coe
AddHom
AddHom.funLike
UniqueAdd
Finset.preimage
Function.Injective.injOn
Set.preimage
SetLike.coe
Finset
Finset.instSetLike
β€”Function.Injective.injOn
Finset.mem_preimage
map_add
AddHom.addHomClass
exists_iff_exists_existsUnique πŸ“–mathematicalβ€”Finset
Finset.instMembership
UniqueAdd
ExistsUnique
SProd.sprod
Finset.instSProd
β€”iff_existsUnique
Finset.mem_product
iff_addOpposite πŸ“–mathematicalβ€”UniqueAdd
AddOpposite
AddOpposite.instAdd
Finset.map
AddOpposite.op
AddOpposite.op_injective
β€”AddOpposite.op_injective
of_addOpposite
to_addOpposite
iff_card_le_one πŸ“–mathematicalFinset
Finset.instMembership
UniqueAdd
Finset.card
Finset.filter
SProd.sprod
Finset.instSProd
β€”Finset.card_le_one_iff
Finset.mem_filter
Finset.mem_product
iff_existsUnique πŸ“–mathematicalFinset
Finset.instMembership
UniqueAdd
ExistsUnique
SProd.sprod
Finset.instSProd
β€”Finset.mk_mem_product
Finset.mem_product
ExistsUnique.elim
mono πŸ“–β€”Finset
Finset.instHasSubset
UniqueAdd
β€”β€”β€”
mt πŸ“–β€”UniqueAdd
Finset
Finset.instMembership
β€”β€”Mathlib.Tactic.Contrapose.contrapose₃
of_addHom_image πŸ“–β€”UniqueAdd
Finset.image
DFunLike.coe
AddHom
AddHom.funLike
β€”β€”Finset.mem_image_of_mem
map_add
AddHom.addHomClass
of_addOpposite πŸ“–β€”UniqueAdd
AddOpposite
AddOpposite.instAdd
Finset.map
AddOpposite.op
AddOpposite.op_injective
β€”β€”AddOpposite.op_injective
Finset.mem_map_of_mem
of_card_le_one πŸ“–mathematicalFinset.Nonempty
Finset.card
Finset
Finset.instMembership
UniqueAdd
β€”Finset.card_le_one_iff
of_image_filter πŸ“–β€”DFunLike.coe
AddHom
AddHom.funLike
UniqueAdd
Finset.image
Finset.filter
β€”β€”Finset.mem_filter
map_add
AddHom.addHomClass
Finset.mem_image_of_mem
of_subsingleton πŸ“–mathematicalβ€”UniqueAddβ€”β€”
set_subsingleton πŸ“–mathematicalUniqueAddSet.Subsingleton
setOf
Finset
Finset.instMembership
β€”β€”
subsingleton πŸ“–mathematicalUniqueAddFinset
Finset.instMembership
β€”β€”
to_addOpposite πŸ“–mathematicalUniqueAddAddOpposite
AddOpposite.instAdd
Finset.map
AddOpposite.op
AddOpposite.op_injective
β€”of_addOpposite
AddOpposite.op_injective
Finset.map_map
addHom_map_iff

UniqueMul

Theorems

NameKindAssumesProvesValidatesDepends On
exists_iff_exists_existsUnique πŸ“–mathematicalβ€”Finset
Finset.instMembership
UniqueMul
ExistsUnique
SProd.sprod
Finset.instSProd
β€”iff_existsUnique
Finset.mem_product
iff_card_le_one πŸ“–mathematicalFinset
Finset.instMembership
UniqueMul
Finset.card
Finset.filter
SProd.sprod
Finset.instSProd
β€”β€”
iff_existsUnique πŸ“–mathematicalFinset
Finset.instMembership
UniqueMul
ExistsUnique
SProd.sprod
Finset.instSProd
β€”Finset.mk_mem_product
ExistsUnique.elim
iff_mulOpposite πŸ“–mathematicalβ€”UniqueMul
MulOpposite
MulOpposite.instMul
Finset.map
MulOpposite.op
MulOpposite.op_injective
β€”MulOpposite.op_injective
of_mulOpposite
to_mulOpposite
mono πŸ“–β€”Finset
Finset.instHasSubset
UniqueMul
β€”β€”β€”
mt πŸ“–β€”UniqueMul
Finset
Finset.instMembership
β€”β€”Mathlib.Tactic.Contrapose.contrapose₃
mulHom_image_iff πŸ“–mathematicalDFunLike.coe
MulHom
MulHom.funLike
UniqueMul
Finset.image
β€”of_mulHom_image
MulHom.mulHomClass
mulHom_map_iff πŸ“–mathematicalDFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
UniqueMul
Finset.map
β€”mulHom_image_iff
Function.Embedding.inj'
Finset.map_eq_image
mulHom_preimage πŸ“–mathematicalDFunLike.coe
MulHom
MulHom.funLike
UniqueMul
Finset.preimage
Function.Injective.injOn
Set.preimage
SetLike.coe
Finset
Finset.instSetLike
β€”Function.Injective.injOn
Finset.mem_preimage
map_mul
MulHom.mulHomClass
of_card_le_one πŸ“–mathematicalFinset.Nonempty
Finset.card
Finset
Finset.instMembership
UniqueMul
β€”Finset.card_le_one_iff
of_image_filter πŸ“–β€”DFunLike.coe
MulHom
MulHom.funLike
UniqueMul
Finset.image
Finset.filter
β€”β€”Finset.mem_filter
map_mul
MulHom.mulHomClass
Finset.mem_image_of_mem
of_mulHom_image πŸ“–β€”UniqueMul
Finset.image
DFunLike.coe
MulHom
MulHom.funLike
β€”β€”Finset.mem_image_of_mem
MulHom.mulHomClass
of_mulOpposite πŸ“–β€”UniqueMul
MulOpposite
MulOpposite.instMul
Finset.map
MulOpposite.op
MulOpposite.op_injective
β€”β€”MulOpposite.op_injective
Finset.mem_map_of_mem
of_subsingleton πŸ“–mathematicalβ€”UniqueMulβ€”β€”
set_subsingleton πŸ“–mathematicalUniqueMulSet.Subsingleton
setOf
Finset
Finset.instMembership
β€”β€”
subsingleton πŸ“–mathematicalUniqueMulFinset
Finset.instMembership
β€”β€”
to_mulOpposite πŸ“–mathematicalUniqueMulMulOpposite
MulOpposite.instMul
Finset.map
MulOpposite.op
MulOpposite.op_injective
β€”of_mulOpposite
MulOpposite.op_injective
Finset.map_map
mulHom_map_iff

UniqueProds

Theorems

NameKindAssumesProvesValidatesDepends On
instForall πŸ“–mathematicalUniqueProdsPi.instMulβ€”Finset.isWellFounded_ssubset
IsWellFounded.induction
UniqueMul.of_card_le_one
Finset.exists_of_one_lt_card_pi
Mathlib.Tactic.Push.not_and_or_eq
uniqueMul_of_nonempty
Finset.Nonempty.image
Finset.filter_nonempty_iff
Finset.mem_image
HasSubset.Subset.ssubset_of_ne
Finset.instIsNonstrictStrictOrderSubsetSSubset
Finset.instAntisymmSubset
Finset.filter_subset
Finset.mem_filter
UniqueMul.of_image_filter
instMulOpposite πŸ“–mathematicalβ€”UniqueProds
MulOpposite
MulOpposite.instMul
β€”of_mulOpposite
MulEquiv.uniqueProds_iff
of_injective_mulHom πŸ“–mathematicalDFunLike.coe
MulHom
MulHom.funLike
UniqueProdsβ€”of_mulHom
of_mulHom πŸ“–mathematicalβ€”UniqueProdsβ€”uniqueMul_of_nonempty
Finset.Nonempty.image
Finset.mem_image
UniqueMul.of_mulHom_image
of_mulOpposite πŸ“–mathematicalβ€”UniqueProdsβ€”MulOpposite.op_injective
uniqueMul_of_nonempty
Finset.Nonempty.map
Finset.mem_map'
UniqueMul.of_mulOpposite
of_same πŸ“–mathematicalFinset
Finset.instMembership
UniqueMul
Semigroup.toMul
UniqueProdsβ€”Finset.Nonempty.mul
Finset.mem_mul
mul_left_cancel
IsCancelMul.toIsLeftCancelMul
Finset.mul_mem_mul
mul_assoc
mul_right_cancel
IsCancelMul.toIsRightCancelMul
toIsCancelMul πŸ“–mathematicalβ€”IsCancelMulβ€”MulOpposite.op_injective
IsLeftCancelMul.mul_left_cancel
instMulOpposite
MulOpposite.unop_injective
toTwoUniqueProds_of_group πŸ“–mathematicalβ€”TwoUniqueProds
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”uniqueMul_of_nonempty
mul_right_injective
LeftCancelSemigroup.toIsLeftCancelMul
mul_left_injective
RightCancelSemigroup.toIsRightCancelMul
Finset.card_map
Finset.mem_map
inv_mul_cancel
mul_inv_cancel
Finset.Nonempty.mul
Finset.Nonempty.image
Finset.Nonempty.map
mul_assoc
mul_right_cancel_iff
mul_left_cancel_iff
mul_one
one_mul
Finset.exists_mem_ne
inv_one
not_and_or
Finset.mem_map_of_mem
uniqueMul_of_nonempty πŸ“–mathematicalFinset.NonemptyFinset
Finset.instMembership
UniqueMul
β€”β€”

UniqueSums

Theorems

NameKindAssumesProvesValidatesDepends On
instAddOpposite πŸ“–mathematicalβ€”UniqueSums
AddOpposite
AddOpposite.instAdd
β€”of_addOpposite
AddEquiv.uniqueSums_iff
instForall πŸ“–mathematicalUniqueSumsPi.instAddβ€”Finset.isWellFounded_ssubset
IsWellFounded.induction
UniqueAdd.of_card_le_one
Finset.exists_of_one_lt_card_pi
Mathlib.Tactic.Push.not_and_or_eq
not_le
uniqueAdd_of_nonempty
Finset.Nonempty.image
Finset.filter_nonempty_iff
Finset.mem_image
HasSubset.Subset.ssubset_of_ne
Finset.instIsNonstrictStrictOrderSubsetSSubset
Finset.instAntisymmSubset
Finset.filter_subset
Finset.mem_filter
UniqueAdd.of_image_filter
of_addHom πŸ“–mathematicalβ€”UniqueSumsβ€”uniqueAdd_of_nonempty
Finset.Nonempty.image
Finset.mem_image
UniqueAdd.of_addHom_image
of_addOpposite πŸ“–mathematicalβ€”UniqueSumsβ€”AddOpposite.op_injective
uniqueAdd_of_nonempty
Finset.Nonempty.map
Finset.mem_map'
UniqueAdd.of_addOpposite
of_injective_addHom πŸ“–mathematicalDFunLike.coe
AddHom
AddHom.funLike
UniqueSumsβ€”of_addHom
of_same πŸ“–mathematicalFinset
Finset.instMembership
UniqueAdd
AddSemigroup.toAdd
UniqueSumsβ€”Finset.Nonempty.add
Finset.mem_add
add_left_cancel
IsCancelAdd.toIsLeftCancelAdd
Finset.add_mem_add
add_assoc
add_right_cancel
IsCancelAdd.toIsRightCancelAdd
toIsCancelAdd πŸ“–mathematicalβ€”IsCancelAddβ€”AddOpposite.op_injective
IsLeftCancelAdd.add_left_cancel
instAddOpposite
AddOpposite.unop_injective
toTwoUniqueSums_of_addGroup πŸ“–mathematicalβ€”TwoUniqueSums
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”uniqueAdd_of_nonempty
Finset.card_pos
add_right_injective
AddLeftCancelSemigroup.toIsLeftCancelAdd
add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
Finset.card_map
Finset.mem_map
neg_add_cancel
add_neg_cancel
Finset.Nonempty.add
Finset.Nonempty.image
Finset.Nonempty.map
Finset.mem_add
Finset.mem_image
add_assoc
add_right_cancel_iff
add_left_cancel_iff
add_zero
zero_add
neg_add_rev
Finset.exists_mem_ne
neg_zero
neg_eq_zero
Finset.mem_product
not_and_or
add_neg_eq_zero
neg_add_eq_zero
Finset.mem_map_of_mem
uniqueAdd_of_nonempty πŸ“–mathematicalFinset.NonemptyFinset
Finset.instMembership
UniqueAdd
β€”β€”

(root)

Definitions

NameCategoryTheorems
TwoUniqueProds πŸ“–CompData
12 mathmath: TwoUniqueProds.instMulOpposite, TwoUniqueProds.of_injective_mulHom, TwoUniqueProds.of_covariant_right, Multiplicative.instTwoUniqueProdsOfTwoUniqueSums, FreeMonoid.instTwoUniqueProds, TwoUniqueProds.of_covariant_left, Prod.instTwoUniqueProds, TwoUniqueProds.of_mulOpposite, MulEquiv.twoUniqueProds_iff, UniqueProds.toTwoUniqueProds_of_group, AffineMonoid.to_twoUniqueProds, TwoUniqueProds.of_mulHom
TwoUniqueSums πŸ“–CompData
15 mathmath: AffineAddMonoid.to_twoUniqueSums, TwoUniqueSums.of_addHom, Additive.instTwoUniqueSumsOfTwoUniqueProds, TwoUniqueSums.of_covariant_right, instTwoUniqueSumsFinsupp, AddEquiv.twoUniqueSums_iff, TwoUniqueSums.of_addOpposite, TwoUniqueSums.of_covariant_left, TwoUniqueSums.instAddOpposite, instTwoUniqueSumsOfModuleRat, TwoUniqueSums.of_injective_addHom, FreeAddMonoid.instTwoUniqueSums, instTwoUniqueSumsFreeAbelianGroup, Prod.instTwoUniqueSums, UniqueSums.toTwoUniqueSums_of_addGroup
UniqueAdd πŸ“–MathDef
10 mathmath: UniqueAdd.of_subsingleton, UniqueAdd.iff_addOpposite, TwoUniqueSums.uniqueAdd_of_one_lt_card, UniqueAdd.exists_iff_exists_existsUnique, UniqueAdd.addHom_image_iff, UniqueAdd.addHom_map_iff, UniqueAdd.iff_card_le_one, UniqueSums.uniqueAdd_of_nonempty, UniqueAdd.of_card_le_one, UniqueAdd.iff_existsUnique
UniqueMul πŸ“–MathDef
10 mathmath: UniqueMul.exists_iff_exists_existsUnique, UniqueMul.mulHom_image_iff, TwoUniqueProds.uniqueMul_of_one_lt_card, UniqueMul.iff_existsUnique, UniqueProds.uniqueMul_of_nonempty, UniqueMul.iff_mulOpposite, UniqueMul.iff_card_le_one, UniqueMul.of_card_le_one, UniqueMul.of_subsingleton, UniqueMul.mulHom_map_iff

Theorems

NameKindAssumesProvesValidatesDepends On
instTwoUniqueSumsDFinsupp πŸ“–mathematicalTwoUniqueSums
AddZero.toAdd
AddZeroClass.toAddZero
DFinsupp
AddZero.toZero
DFinsupp.instAdd
β€”TwoUniqueSums.of_injective_addHom
DFunLike.coe_injective
TwoUniqueSums.instForall
instTwoUniqueSumsFinsupp πŸ“–mathematicalβ€”TwoUniqueSums
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
Finsupp.instAdd
β€”TwoUniqueSums.of_injective_addHom
DFunLike.coe_injective
TwoUniqueSums.instForall
instUniqueSumsDFinsupp πŸ“–mathematicalUniqueSums
AddZero.toAdd
AddZeroClass.toAddZero
DFinsupp
AddZero.toZero
DFinsupp.instAdd
β€”UniqueSums.of_injective_addHom
DFunLike.coe_injective
UniqueSums.instForall
instUniqueSumsFinsupp πŸ“–mathematicalβ€”UniqueSums
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
Finsupp.instAdd
β€”UniqueSums.of_injective_addHom
DFunLike.coe_injective
UniqueSums.instForall
uniqueAdd_of_twoUniqueAdd πŸ“–β€”Finset
Finset.instMembership
SProd.sprod
Finset.instSProd
UniqueAdd
Finset.Nonempty
β€”β€”UniqueAdd.of_card_le_one
Finset.card_pos
Mathlib.Tactic.Push.not_and_or_eq
not_le
Finset.mem_product
uniqueMul_of_twoUniqueMul πŸ“–β€”Finset
Finset.instMembership
SProd.sprod
Finset.instSProd
UniqueMul
Finset.Nonempty
β€”β€”UniqueMul.of_card_le_one
Finset.card_pos
Mathlib.Tactic.Push.not_and_or_eq
Finset.mem_product

---

← Back to Index