Documentation Verification Report

Hom

πŸ“ Source: Mathlib/Algebra/Group/Units/Hom.lean

Statistics

MetricCount
DefinitionstoHomAddUnits, coeHom, liftRight, map, Hom, Hom, liftRight, IsLocalHom, liftRight, toHomUnits, toHomUnitsMulEquiv, coeHom, liftRight, map
14
Theoremscoe_toHomAddUnits, add_liftRight_neg, coeHom_apply, coeHom_injective, coe_liftRight, coe_map, coe_map_neg, liftRight_neg_add, map_bijective, map_comp, map_id, map_injective, map_mk, val_zsmul_eq_zsmul_val, addUnit_map, addUnit_neg_map, add_liftRight_neg, coe_liftRight, eq_on_neg, liftRight_neg_add, map, of_leftInverse, map_nonunit, coe_liftRight, eq_on_inv, liftRight_inv_mul, map, mul_liftRight_inv, of_leftInverse, of_map, unit_inv_map, unit_map, coe_toHomUnits, isLocalHom_comp, isLocalHom_of_comp, toHomUnitsMulEquiv_apply, toHomUnitsMulEquiv_symm_apply, toHomUnits_mul, coeHom_apply, coeHom_injective, coe_liftRight, coe_map, coe_map_inv, liftRight_inv_mul, map_bijective, map_comp, map_id, map_injective, map_mk, mul_liftRight_inv, val_zpow_eq_zpow_val, eq_on_inv, eq_on_neg, isAddUnit_map_of_leftInverse, isLocalHom_of_leftInverse, isLocalHom_toMonoidHom, isUnit_map_iff, isUnit_map_of_leftInverse, isUnit_of_map_unit, map_addUnits_neg, map_units_inv
61
Total75

AddMonoidHom

Definitions

NameCategoryTheorems
toHomAddUnits πŸ“–CompOp
2 mathmath: ker_toHomAddUnits, coe_toHomAddUnits

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toHomAddUnits πŸ“–mathematicalβ€”AddUnits.val
DFunLike.coe
AddMonoidHom
AddUnits
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddUnits.instAddZeroClass
instFunLike
toHomAddUnits
β€”β€”

AddUnits

Definitions

NameCategoryTheorems
coeHom πŸ“–CompOp
4 mathmath: coeHom_apply, AddSubmonoid.mk_add_mk_neg_eq_zero, coeHom_injective, AddSubmonoid.mk_neg_add_mk_eq_zero
liftRight πŸ“–CompOp
3 mathmath: add_liftRight_neg, liftRight_neg_add, coe_liftRight
map πŸ“–CompOp
10 mathmath: map_mk, Continuous.addUnits_map, map_bijective, coe_map_neg, coe_map, map_injective, isOpenMap_map, map_id, continuous_map, map_comp

Theorems

NameKindAssumesProvesValidatesDepends On
add_liftRight_neg πŸ“–mathematicalval
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
AddZero.toAdd
AddUnits
instNeg
instAddZeroClass
liftRight
AddZero.toZero
β€”add_neg_eq_iff_eq_add
zero_add
coe_liftRight
coeHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddUnits
AddZeroClass.toAddZero
instAddZeroClass
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
coeHom
val
β€”β€”
coeHom_injective πŸ“–mathematicalβ€”AddUnits
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
instAddZeroClass
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
coeHom
β€”val_injective
coe_liftRight πŸ“–mathematicalval
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
AddUnits
instAddZeroClass
liftRight
β€”β€”
coe_map πŸ“–mathematicalβ€”val
DFunLike.coe
AddMonoidHom
AddUnits
AddZeroClass.toAddZero
instAddZeroClass
AddMonoidHom.instFunLike
map
AddMonoid.toAddZeroClass
β€”β€”
coe_map_neg πŸ“–mathematicalβ€”val
AddUnits
instNeg
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
instAddZeroClass
AddMonoidHom.instFunLike
map
AddMonoid.toAddZeroClass
β€”β€”
liftRight_neg_add πŸ“–mathematicalval
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
AddZero.toAdd
AddUnits
instNeg
instAddZeroClass
liftRight
AddZero.toZero
β€”neg_add_eq_iff_eq_add
add_zero
coe_liftRight
map_bijective πŸ“–mathematicalFunction.Bijective
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
AddUnits
instAddZeroClass
map
β€”map_injective
Function.Bijective.injective
Function.Bijective.surjective
map_add
AddMonoidHomClass.toAddHomClass
AddMonoidHom.instAddMonoidHomClass
map_zero
AddMonoidHomClass.toZeroHomClass
map_comp πŸ“–mathematicalβ€”map
AddMonoidHom.comp
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddUnits
instAddZeroClass
β€”β€”
map_id πŸ“–mathematicalβ€”map
AddMonoidHom.id
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddUnits
instAddZeroClass
β€”AddMonoidHom.ext
ext
map_injective πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
AddUnits
instAddZeroClass
map
β€”ext
map_mk πŸ“–mathematicalAddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddZero.toZero
DFunLike.coe
AddMonoidHom
AddUnits
instAddZeroClass
AddMonoidHom.instFunLike
map
β€”β€”
val_zsmul_eq_zsmul_val πŸ“–mathematicalβ€”val
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
AddUnits
SubNegMonoid.toZSMul
instSubNegAddMonoid
β€”AddMonoidHom.map_zsmul

Algebra.Extension

Definitions

NameCategoryTheorems
Hom πŸ“–CompDataβ€”

Algebra.Generators

Definitions

NameCategoryTheorems
Hom πŸ“–CompData
2 mathmath: Hom.equivAlgHom_symm_apply_val, Hom.equivAlgHom_apply_coe

IsAddUnit

Definitions

NameCategoryTheorems
liftRight πŸ“–CompOp
9 mathmath: AddSubmonoid.LocalizationMap.add_neg_right, add_liftRight_neg, AddSubmonoid.LocalizationMap.lift_apply, AddSubmonoid.LocalizationMap.add_neg, AddSubmonoid.LocalizationMap.neg_unique, coe_liftRight, liftRight_neg_add, AddSubmonoid.LocalizationMap.lift_mk', AddSubmonoid.LocalizationMap.add_neg_left

Theorems

NameKindAssumesProvesValidatesDepends On
addUnit_map πŸ“–mathematicalIsAddUnitAddUnits.val
addUnit
DFunLike.coe
map
β€”map
addUnit_neg_map πŸ“–mathematicalIsAddUnitAddUnits.val
AddUnits
AddUnits.instNeg
addUnit
DFunLike.coe
map
β€”AddUnits.neg_eq_of_add_eq_zero_left
map
map_add
AddMonoidHomClass.toAddHomClass
val_neg_add
map_zero
AddMonoidHomClass.toZeroHomClass
add_liftRight_neg πŸ“–mathematicalIsAddUnit
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
AddZero.toAdd
AddUnits.val
AddUnits
AddUnits.instNeg
AddUnits.instAddZeroClass
liftRight
AddZero.toZero
β€”AddUnits.add_liftRight_neg
coe_liftRight πŸ“–mathematicalIsAddUnit
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
AddUnits.val
AddUnits
AddUnits.instAddZeroClass
liftRight
β€”β€”
eq_on_neg πŸ“–mathematicalIsAddUnit
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
DFunLike.coe
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
β€”left_neg_eq_right_neg
map_add_eq_zero
neg_add_cancel
add_neg_cancel
liftRight_neg_add πŸ“–mathematicalIsAddUnit
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
AddZero.toAdd
AddUnits.val
AddUnits
AddUnits.instNeg
AddUnits.instAddZeroClass
liftRight
AddZero.toZero
β€”AddUnits.liftRight_neg_add
map πŸ“–mathematicalIsAddUnitDFunLike.coeβ€”AddUnits.isAddUnit
of_leftInverse πŸ“–β€”DFunLike.coe
IsAddUnit
β€”β€”map

IsLocalHom

Theorems

NameKindAssumesProvesValidatesDepends On
map_nonunit πŸ“–β€”IsUnit
DFunLike.coe
β€”β€”β€”

IsUnit

Definitions

NameCategoryTheorems
liftRight πŸ“–CompOp
12 mathmath: IsLocalization.mul_add_inv_left, Submonoid.LocalizationMap.inv_unique, IsLocalization.lift_mk', coe_liftRight, mul_liftRight_inv, Submonoid.LocalizationMap.lift_mk', Submonoid.LocalizationMap.lift_apply, Submonoid.LocalizationMap.mul_inv_right, Submonoid.LocalizationMap.mul_inv_left, Submonoid.LocalizationMap.mul_inv, Submonoid.LocalizationMap.liftβ‚€_apply, liftRight_inv_mul

Theorems

NameKindAssumesProvesValidatesDepends On
coe_liftRight πŸ“–mathematicalIsUnit
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
Units.val
Units
Units.instMulOneClass
liftRight
β€”β€”
eq_on_inv πŸ“–mathematicalIsUnit
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
DFunLike.coe
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
β€”left_inv_eq_right_inv
map_mul_eq_one
inv_mul_cancel
mul_inv_cancel
liftRight_inv_mul πŸ“–mathematicalIsUnit
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
MulOne.toMul
Units.val
Units
Units.instInv
Units.instMulOneClass
liftRight
MulOne.toOne
β€”Units.liftRight_inv_mul
map πŸ“–mathematicalIsUnitDFunLike.coeβ€”Units.isUnit
mul_liftRight_inv πŸ“–mathematicalIsUnit
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
MulOne.toMul
Units.val
Units
Units.instInv
Units.instMulOneClass
liftRight
MulOne.toOne
β€”Units.mul_liftRight_inv
of_leftInverse πŸ“–β€”DFunLike.coe
IsUnit
β€”β€”map
of_map πŸ“–β€”IsUnit
DFunLike.coe
β€”β€”IsLocalHom.map_nonunit
unit_inv_map πŸ“–mathematicalIsUnitUnits.val
Units
Units.instInv
unit
DFunLike.coe
map
β€”Units.inv_eq_of_mul_eq_one_left
map
MonoidHomClass.toMulHomClass
val_inv_mul
map_one
MonoidHomClass.toOneHomClass
unit_map πŸ“–mathematicalIsUnitUnits.val
unit
DFunLike.coe
map
β€”map

MonoidHom

Definitions

NameCategoryTheorems
toHomUnits πŸ“–CompOp
5 mathmath: toHomPerm_apply_symm_apply, ker_toHomUnits, coe_toHomUnits, toHomUnits_mul, toHomUnitsMulEquiv_apply
toHomUnitsMulEquiv πŸ“–CompOp
2 mathmath: toHomUnitsMulEquiv_symm_apply, toHomUnitsMulEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toHomUnits πŸ“–mathematicalβ€”Units.val
DFunLike.coe
MonoidHom
Units
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Units.instMulOneClass
instFunLike
toHomUnits
β€”β€”
isLocalHom_comp πŸ“–mathematicalβ€”IsLocalHom
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
instFunLike
comp
β€”IsLocalHom.map_nonunit
isLocalHom_of_comp πŸ“–mathematicalβ€”IsLocalHom
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
instFunLike
β€”isUnit_map_iff
instMonoidHomClass
IsUnit.map
toHomUnitsMulEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommMonoid.toMonoid
Units
Units.instMulOneClass
mul
CommGroup.toCommMonoid
Units.instCommGroupUnits
EquivLike.toFunLike
MulEquiv.instEquivLike
toHomUnitsMulEquiv
toHomUnits
β€”β€”
toHomUnitsMulEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
MonoidHom
Units
CommMonoid.toMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Units.instMulOneClass
mul
CommGroup.toCommMonoid
Units.instCommGroupUnits
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
toHomUnitsMulEquiv
comp
Units.coeHom
β€”β€”
toHomUnits_mul πŸ“–mathematicalβ€”toHomUnits
CommMonoid.toMonoid
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
mul
Units
Units.instMulOneClass
CommGroup.toCommMonoid
Units.instCommGroupUnits
β€”ext
Units.ext

Units

Definitions

NameCategoryTheorems
coeHom πŸ“–CompOp
10 mathmath: Submonoid.mk_mul_mk_inv_eq_one, Submonoid.mk_inv_mul_mk_eq_one, unitary_eq, WithZero.toMonoidWithZeroHom_withZeroUnitsEquiv, pinGroup.mem_lipschitzGroup, pinGroup.mem_iff, coeHom_apply, lipschitzGroup.coe_mem_iff_mem, MonoidHom.toHomUnitsMulEquiv_symm_apply, coeHom_injective
liftRight πŸ“–CompOp
3 mathmath: coe_liftRight, mul_liftRight_inv, liftRight_inv_mul
map πŸ“–CompOp
45 mathmath: ValuationSubring.coe_mem_principalUnitGroup_iff, Matrix.GeneralLinearGroup.map_det, unitsNonZeroDivisorsEquiv_apply, Submodule.ker_unitsToPic, LinearEquiv.det_baseChange, Valuation.unit_map_eq, coe_map, map_mk, map_bijective, AffineEquiv.linear_equivUnitsAffineMap_symm_apply, map_neg, map_injective, unitary.toUnits_comp_map, coe_map_inv, isOpenMap_map, IsDedekindDomain.HeightOneSpectrum.valuation_of_unit_eq, map_id, Submodule.unitsQuotEquivRelPic_symm_apply, PowerSeries.map_invUnitsSub, Algebra.smul_units_def, Unitary.toUnits_comp_map, ClassGroup.equivPic_symm_apply, Continuous.units_map, IsLocalRing.surjective_units_map_of_local_ringHom, ValuationSubring.principalUnitGroupEquiv_apply, map_comp, FiniteField.unitsMap_norm_surjective, AlgEquiv.smul_units_def, continuous_map, WeierstrassCurve.map_Ξ”', FractionalIdeal.map_canonicalEquiv_mk0, Submodule.mulExact_unitsMap_spanSingleton_unitsToPic, WeierstrassCurve.inv_map_Ξ”', ClassGroup.mk_canonicalEquiv, ClassGroup.equivPic_apply, IsDedekindDomain.HeightOneSpectrum.valuation_of_unit_mod_eq, mapContinuousMulEquiv_apply, ClassGroup.mk_def, WeierstrassCurve.VariableChange.map_u, Submodule.ker_unitsMap_spanSingleton, map_neg_one, ValuationSubring.principalUnitGroup_symm_apply, Submodule.unitsQuotEquivRelPic_apply_coe, IsPrimitiveRoot.map_rootsOfUnity, ZMod.unitsMap_def

Theorems

NameKindAssumesProvesValidatesDepends On
coeHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Units
MulOneClass.toMulOne
instMulOneClass
Monoid.toMulOneClass
MonoidHom.instFunLike
coeHom
val
β€”β€”
coeHom_injective πŸ“–mathematicalβ€”Units
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
instMulOneClass
Monoid.toMulOneClass
MonoidHom.instFunLike
coeHom
β€”val_injective
coe_liftRight πŸ“–mathematicalval
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
Units
instMulOneClass
liftRight
β€”β€”
coe_map πŸ“–mathematicalβ€”val
DFunLike.coe
MonoidHom
Units
MulOneClass.toMulOne
instMulOneClass
MonoidHom.instFunLike
map
Monoid.toMulOneClass
β€”β€”
coe_map_inv πŸ“–mathematicalβ€”val
Units
instInv
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
instMulOneClass
MonoidHom.instFunLike
map
Monoid.toMulOneClass
β€”β€”
liftRight_inv_mul πŸ“–mathematicalval
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
MulOne.toMul
Units
instInv
instMulOneClass
liftRight
MulOne.toOne
β€”inv_mul_eq_iff_eq_mul
mul_one
coe_liftRight
map_bijective πŸ“–mathematicalFunction.Bijective
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
Units
instMulOneClass
map
β€”map_injective
Function.Bijective.injective
Function.Bijective.surjective
map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
map_one
MonoidHomClass.toOneHomClass
map_comp πŸ“–mathematicalβ€”map
MonoidHom.comp
MulOneClass.toMulOne
Monoid.toMulOneClass
Units
instMulOneClass
β€”β€”
map_id πŸ“–mathematicalβ€”map
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
Units
instMulOneClass
β€”MonoidHom.ext
ext
map_injective πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
Units
instMulOneClass
map
β€”ext
map_mk πŸ“–mathematicalMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toOne
DFunLike.coe
MonoidHom
Units
instMulOneClass
MonoidHom.instFunLike
map
β€”β€”
mul_liftRight_inv πŸ“–mathematicalval
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
MulOne.toMul
Units
instInv
instMulOneClass
liftRight
MulOne.toOne
β€”mul_inv_eq_iff_eq_mul
one_mul
coe_liftRight
val_zpow_eq_zpow_val πŸ“–mathematicalβ€”val
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
Units
DivInvMonoid.toZPow
instDivInvMonoid
β€”MonoidHom.map_zpow

(root)

Definitions

NameCategoryTheorems
IsLocalHom πŸ“–CompData
66 mathmath: ExteriorAlgebra.isLocalHom_algebraMap, MonoidAlgebra.isLocalHom_algebraMap, Valuation.HasExtension.instIsLocalHomSubtypeMemValuationSubringValuationSubringRingHomAlgebraMap, IsLocalRing.instIsLocalHomRingHomOfNontrivial, instIsLocalHomOfMonoidWithZeroHomClassOfNontrivial, AlgebraicGeometry.ValuativeCriterion.Existence.instIsLocalHomCarrierRingHomHomHomCommRingCat, AlgebraicGeometry.SpecToEquivOfLocalRing_apply_snd_coe, instIsLocalHomAtPrimeRingHomAlgebraMap, IsLocalRing.instIsLocalHomResidueFieldRingHomResidue, IsLocalHom.of_surjective, isLocalHom_toMonoidHom, RingHom.IsIntegral.isLocalHom, AddMonoidAlgebra.isLocalHom_singleZeroRingHom, AlgebraicGeometry.LocallyRingedSpace.isLocalHomStalkMap, AddMonoidAlgebra.isLocalHom_algebraMap, MonoidAlgebra.isLocalHom_singleOneRingHom, CommRingCat.instIsLocalHomCarrierObjWalkingParallelPairFunctorConstPtEqualizerForkZeroParallelPairRingHomHomΞΉ, isLocalHom_equiv, MvPolynomial.instIsLocalHomRingHomAlgebraMap, isLocalHom_of_comp, MonoidHom.isLocalHom_comp, MonoidAlgebra.isLocalHom_singleOneAlgHom, RingHom.isLocalHom_comp, AlgebraicGeometry.LocallyRingedSpace.Hom.prop, AlgebraicGeometry.SpecToEquivOfLocalRing_apply_fst, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.coequalizer_Ο€_stalk_isLocalHom, IsLocalRing.exists_factor_valuationRing, isLocalHom_id, IsLocalHom.of_specComap_surjective, Valuation.HasExtension.instIsLocalHomValuationInteger, MvPolynomial.isLocalHom_expand, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.coequalizer_Ο€_app_isLocalHom, Polynomial.instIsLocalHomRingHomC, AlgebraicGeometry.LocallyRingedSpace.isLocalHomStalkMap', isLocalHom_of_isIso, CommRingCat.equalizer_ΞΉ_isLocalHom', AlgebraicGeometry.Scheme.isLocalHom_stalkClosedPointTo', IsLocalRing.isLocalHom_iff_comap_closedPoint, MvPowerSeries.map.isLocalHom, IsLocalRing.isLocalHom_residue, CommRingCat.equalizer_ΞΉ_isLocalHom, isLocalHom_of_le_jacobson_bot, LocalSubring.le_def, AlgebraicGeometry.SpecToEquivOfLocalRing_symm_apply, Function.Surjective.isLocalHom, isLocalHom_of_iso, Localization.isLocalHom_localRingHom, CommRingCat.isLocalHom_comp, instIsLocalHomZModRingHomOfIsLocalRingOfNontrivial, isLocalHom_of_exists_map_ne_one, AlgebraicGeometry.Scheme.isLocalHom_stalkClosedPointTo, isLocalHom_of_leftInverse, AlgebraicGeometry.SpecToEquivOfLocalRing_eq_iff, Algebra.IsIntegral.isLocalHom, AlgebraicGeometry.LocallyRingedSpace.isLocalHom_stalkMap_congr, Polynomial.isLocalHom_expand, AlgebraicGeometry.Scheme.Hom.instIsLocalHomCarrierStalkCommRingCatPresheafCoeContinuousMapCarrierCarrierHomTopCatBaseRingHomHomStalkMap, isLocalHom_toRingHom, IsLocalRing.local_hom_TFAE, AddMonoidAlgebra.isLocalHom_singleZeroAlgHom, AlgebraicGeometry.LocallyRingedSpace.isLocalHomValStalkMap, MvPolynomial.instIsLocalHomRingHomC, Polynomial.instIsLocalHomRingHomAlgebraMap, PowerSeries.map.isLocalHom, IsLocalHom.of_comap_surjective, MonoidHom.isLocalHom_of_comp

Theorems

NameKindAssumesProvesValidatesDepends On
eq_on_inv πŸ“–mathematicalDFunLike.coeInvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”IsUnit.eq_on_inv
Group.isUnit
eq_on_neg πŸ“–mathematicalDFunLike.coeNegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”IsAddUnit.eq_on_neg
AddGroup.isAddUnit
isAddUnit_map_of_leftInverse πŸ“–mathematicalDFunLike.coeIsAddUnitβ€”IsAddUnit.of_leftInverse
IsAddUnit.map
isLocalHom_of_leftInverse πŸ“–mathematicalDFunLike.coeIsLocalHomβ€”isUnit_map_of_leftInverse
isLocalHom_toMonoidHom πŸ“–mathematicalβ€”IsLocalHom
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
MonoidHomClass.toMonoidHom
β€”IsLocalHom.map_nonunit
isUnit_map_iff πŸ“–mathematicalβ€”IsUnit
DFunLike.coe
β€”IsLocalHom.map_nonunit
IsUnit.map
isUnit_map_of_leftInverse πŸ“–mathematicalDFunLike.coeIsUnitβ€”IsUnit.of_leftInverse
IsUnit.map
isUnit_of_map_unit πŸ“–β€”IsUnit
DFunLike.coe
β€”β€”IsUnit.of_map
map_addUnits_neg πŸ“–mathematicalβ€”DFunLike.coe
AddUnits.val
AddUnits
AddUnits.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
β€”AddMonoidHom.map_neg
map_units_inv πŸ“–mathematicalβ€”DFunLike.coe
Units.val
Units
Units.instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
β€”MonoidHom.map_inv

---

← Back to Index