| Name | Category | Theorems |
hasIntScalar đ | CompOp | 3 mathmath: HomologicalComplexâ.totalShiftâIso_hom_totalShiftâIso_hom, zsmul_f_apply, HomologicalComplexâ.totalShiftâIso_hom_totalShiftâIso_hom_assoc
|
hasNatScalar đ | CompOp | 1 mathmath: nsmul_f_apply
|
instAddCommGroupHom đ | CompOp | 1 mathmath: Hom.fAddMonoidHom_apply
|
instAddHom đ | CompOp | 26 mathmath: CochainComplex.HomComplex.Cocycle.equivHom_symm_apply, CochainComplex.HomComplex.Cocycle.equivHomShift_symm_postcomp, add_f_apply, CochainComplex.HomComplex.Cocycle.equivHomShift'_symm_apply, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CochainComplex.HomComplex.CohomologyClass.toSmallShiftedHom_mk, CategoryTheory.ProjectiveResolution.extMk_hom, homologyMap_add, CochainComplex.HomComplex.CohomologyClass.equiv_toSmallShiftedHom_mk, AlgebraicTopology.DoldKan.P_succ, CochainComplex.HomComplex.Cocycle.equivHomShift_symm_apply, Homotopy.add_hom, CochainComplex.HomComplex.Cocycle.equivHomShift'_apply, extendMap_add, AlgebraicTopology.DoldKan.P_add_Q, CategoryTheory.InjectiveResolution.extMk_hom, CochainComplex.HomComplex.Cocycle.equivHomShift_comp, CochainComplex.HomComplex.Cocycle.equivHom_apply, CochainComplex.HomComplex.Cochain.ofHom_add, CochainComplex.HomComplex.Cocycle.equivHomShift_symm_precomp, CochainComplex.HomComplex.Cocycle.equivHomShift_comp_shift, CochainComplex.HomComplex.CohomologyClass.toHom_mk, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, AlgebraicTopology.DoldKan.HigherFacesVanish.induction, CochainComplex.HomComplex.Cocycle.equivHomShift_apply, AlgebraicTopology.DoldKan.PInfty_add_QInfty
|
instNegHom đ | CompOp | 9 mathmath: homologyMap_neg, CochainComplex.HomComplex.Cochain.ofHom_neg, CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv, CochainComplex.mappingCone.rotateHomotopyEquiv_commâ_assoc, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_morâ_assoc, CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv_assoc, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_morâ, neg_f_apply, CochainComplex.mappingCone.rotateHomotopyEquiv_commâ
|
instPreadditive đ | CompOp | 29 mathmath: CategoryTheory.ShortComplex.ShortExact.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoXâCochainComplexMapSingleFunctorOfNatXâ, CategoryTheory.Functor.mapHomologicalComplex_linear, CochainComplex.instLinearIntFunctorSingleFunctors, CategoryTheory.Functor.map_homogical_complex_additive, HomotopyCategory.instAdditiveHomologicalComplexQuotientHomotopicFunctor, DerivedCategory.instLinearCochainComplexIntQ, CochainComplex.instAdditiveIntFunctorSingleFunctors, CochainComplex.mappingCone.triangleRotateShortComplex_Xâ, CochainComplex.mappingCone.triangleRotateShortComplex_Xâ, CochainComplex.instLinearHomologicalComplexIntUpShiftFunctor, CochainComplex.mappingCone.triangleRotateShortComplex_Xâ, instAdditiveHomologyFunctor, CochainComplex.instLinearIntShiftFunctor, CochainComplex.instAdditiveIntShiftFunctor, ComplexShape.Embedding.instAdditiveHomologicalComplexRestrictionFunctor, HomologicalComplexâ.totalShiftâIso_trans_totalShiftâIso, ComplexShape.Embedding.instAdditiveHomologicalComplexExtendFunctor, groupCohomology.instAdditiveRepCochainComplexModuleCatNatCochainsFunctor, CochainComplex.mappingCone.triangleRotateShortComplex_g, DerivedCategory.instAdditiveCochainComplexIntQ, CochainComplex.mapBifunctorShiftâIso_trans_mapBifunctorShiftâIso, HomotopyCategory.instAdditiveHomologicalComplexQuotient, instAdditiveSingle, opFunctor_additive, eval_additive, CochainComplex.mappingCone.triangleRotateShortComplex_f, unopFunctor_additive, HomotopyCategory.instLinearHomologicalComplexQuotient, CochainComplex.instAdditiveHomologicalComplexIntUpShiftFunctor
|
instSubHom đ | CompOp | 7 mathmath: cylinder.ĎCompΚâHomotopy.nullHomotopicMap_eq, sub_f_apply, CochainComplex.HomComplex.Cochain.ofHom_sub, homologyMap_sub, cylinder.ĎCompΚâHomotopy.inrX_nullHomotopy_f, AlgebraicTopology.DoldKan.Q_succ, cylinder.ĎCompΚâHomotopy.inlX_nullHomotopy_f
|
instZeroHom_1 đ | CompOp | 28 mathmath: homotopyCofiber.inrCompHomotopy_hom_desc_hom_assoc, AlgebraicTopology.DoldKan.PInfty_comp_QInfty, CochainComplex.IsKInjective.nonempty_homotopy_zero, HomotopyCategory.isZero_quotient_obj_iff, CochainComplex.IsKProjective.homotopyZero_def, HomotopyCategory.quotient_map_eq_zero_iff, CochainComplex.mappingCone.inr_triangleδ, homotopyCofiber.inrCompHomotopy_hom, homotopyCofiber.descSigma_ext_iff, homotopyCofiber.inrCompHomotopy_hom_desc_hom, groupCohomology.cochainsMap_zero, CochainComplex.IsKInjective.homotopyZero_def, homotopyCofiber.inlX_desc_f_assoc, CochainComplex.mappingCone.inr_triangleδ_assoc, homotopyCofiber.eq_desc, CochainComplex.IsKProjective.nonempty_homotopy_zero, AlgebraicTopology.DoldKan.QInfty_comp_PInfty, homotopyCofiber.inrCompHomotopy_hom_eq_zero, zero_f_apply, homotopyCofiber.desc_f, groupHomology.chainsMap_zero, CochainComplex.HomComplex.Cochain.ofHom_zero, Homotopy.nullHomotopy_hom, homotopyCofiber.inlX_desc_f, AlgebraicTopology.DoldKan.QInfty_comp_PInfty_assoc, AlgebraicTopology.DoldKan.Q_zero, AlgebraicTopology.DoldKan.PInfty_comp_QInfty_assoc, Homotopy.nullHomotopy'_hom
|
singleMapHomologicalComplex đ | CompOp | 6 mathmath: singleMapHomologicalComplex_hom_app_ne, singleMapHomologicalComplex_hom_app_self, CategoryTheory.Functor.mapProjectiveResolution_Ď, Rep.standardComplex.ÎľToSingleâ_comp_eq, singleMapHomologicalComplex_inv_app_self, singleMapHomologicalComplex_inv_app_ne
|