Documentation Verification Report

Additive

📁 Source: Mathlib/Algebra/Homology/Additive.lean

Statistics

MetricCount
DefinitionsmapHomologicalComplex, mapHomologicalComplex, mapHomologicalComplexIdIso, mapHomologicalComplex, mapHomologicalComplex, fAddMonoidHom, hasIntScalar, hasNatScalar, instAddCommGroupHom, instAddHom, instNegHom, instPreadditive, instSubHom, instZeroHom_1, singleMapHomologicalComplex
15
TheoremsmapHomologicalComplex_counitIso, mapHomologicalComplex_functor, mapHomologicalComplex_inverse, mapHomologicalComplex_unitIso, mapHomologicalComplexIdIso_hom_app_f, mapHomologicalComplexIdIso_inv_app_f, mapHomologicalComplex_map_f, mapHomologicalComplex_obj_X, mapHomologicalComplex_obj_d, mapHomologicalComplex_reflects_iso, map_homogical_complex_additive, mapHomologicalComplex_hom_app_f, mapHomologicalComplex_inv_app_f, mapHomologicalComplex_app_f, mapHomologicalComplex_comp, mapHomologicalComplex_id, mapHomologicalComplex_naturality, mapHomologicalComplex_naturality_assoc, instPreservesZeroMorphismsHomologicalComplexMapHomologicalComplex, map_chain_complex_of, fAddMonoidHom_apply, add_f_apply, eval_additive, instAdditiveSingle, neg_f_apply, nsmul_f_apply, singleMapHomologicalComplex_hom_app_ne, singleMapHomologicalComplex_hom_app_self, singleMapHomologicalComplex_inv_app_ne, singleMapHomologicalComplex_inv_app_self, sub_f_apply, zero_f_apply, zsmul_f_apply
33
Total48

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
instPreservesZeroMorphismsHomologicalComplexMapHomologicalComplex 📖mathematical—Functor.PreservesZeroMorphisms
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
Functor.mapHomologicalComplex
—HomologicalComplex.hom_ext
Functor.map_zero

CategoryTheory.Equivalence

Definitions

NameCategoryTheorems
mapHomologicalComplex 📖CompOp
4 mathmath: mapHomologicalComplex_unitIso, mapHomologicalComplex_functor, mapHomologicalComplex_counitIso, mapHomologicalComplex_inverse

Theorems

NameKindAssumesProvesValidatesDepends On
mapHomologicalComplex_counitIso 📖mathematical—counitIso
HomologicalComplex
HomologicalComplex.instCategory
mapHomologicalComplex
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.mapHomologicalComplex
inverse
functor
CategoryTheory.Functor.id
CategoryTheory.NatIso.mapHomologicalComplex
CategoryTheory.Functor.mapHomologicalComplexIdIso
——
mapHomologicalComplex_functor 📖mathematical—functor
HomologicalComplex
HomologicalComplex.instCategory
mapHomologicalComplex
CategoryTheory.Functor.mapHomologicalComplex
——
mapHomologicalComplex_inverse 📖mathematical—inverse
HomologicalComplex
HomologicalComplex.instCategory
mapHomologicalComplex
CategoryTheory.Functor.mapHomologicalComplex
——
mapHomologicalComplex_unitIso 📖mathematical—unitIso
HomologicalComplex
HomologicalComplex.instCategory
mapHomologicalComplex
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.Iso.symm
CategoryTheory.Functor.mapHomologicalComplexIdIso
CategoryTheory.NatIso.mapHomologicalComplex
——

CategoryTheory.Functor

Definitions

NameCategoryTheorems
mapHomologicalComplex 📖CompOp
107 mathmath: HomologicalComplex.singleMapHomologicalComplex_hom_app_ne, CategoryTheory.NatIso.mapHomologicalComplex_inv_app_f, mapHomologicalComplexIdIso_hom_app_f, HomologicalComplex.singleMapHomologicalComplex_hom_app_self, mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app_assoc, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_inv_naturality_assoc, CategoryTheory.InjectiveResolution.toRightDerivedZero'_naturality_assoc, mapHomologicalComplex_linear, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_inv_naturality, mapHomotopyEquiv_inv, mapHomologicalComplex_obj_d, mapHomologicalComplex_map_f, mapHomotopyEquiv_homotopyHomInvId, HomologicalComplex.map_isStrictlySupported, CochainComplex.HomComplex.Cochain.map_v, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles, map_homogical_complex_additive, CategoryTheory.NatTrans.mapHomologicalComplex_app_f, CochainComplex.HomComplex.Cochain.map_zero, CategoryTheory.NatTrans.mapHomologicalComplex_id, CategoryTheory.NatTrans.mapHomotopyCategory_app, mapProjectiveResolution_π, CategoryTheory.instIsIsoToRightDerivedZero', CategoryTheory.Abelian.LeftResolution.exactAt_map_chainComplex_succ, CategoryTheory.ProjectiveResolution.isoLeftDerivedObj_hom_naturality_assoc, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_inv_naturality_assoc, mapHomologicalComplex_commShiftIso_eq, CategoryTheory.Equivalence.mapHomologicalComplex_unitIso, CategoryTheory.InjectiveResolution.toRightDerivedZero_eq, CategoryTheory.ProjectiveResolution.isoLeftDerivedObj_inv_naturality_assoc, Homotopy.map_nullHomotopicMap', mapProjectiveResolution_complex, Rep.standardComplex.εToSingle₀_comp_eq, HomologicalComplex.quasiIso_iff_evaluation, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_hom_naturality_assoc, CategoryTheory.NatTrans.mapHomologicalComplex_comp, CategoryTheory.InjectiveResolution.instIsIsoToRightDerivedZero'Self, HomologicalComplex.singleMapHomologicalComplex_inv_app_self, CategoryTheory.ProjectiveResolution.isoLeftDerivedObj_hom_naturality, mapHomologicalComplex_obj_X, CochainComplex.HomComplex.Cochain.map_add, mapHomologicalComplex_upToQuasiIso_Q_inverts_quasiIso, mapHomologicalComplex_reflects_iso, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero'_assoc, CategoryTheory.NatIso.mapHomologicalComplex_hom_app_f, CategoryTheory.InjectiveResolution.isoRightDerivedObj_hom_naturality, CategoryTheory.ProjectiveResolution.instIsIsoFromLeftDerivedZero'Self, instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, Homotopy.map_nullHomotopicMap, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero', AlgebraicTopology.DoldKan.compatibility_N₂_N₁_karoubi, CochainComplex.mappingCone.map_inr, mapCochainComplexShiftIso_inv_app_f, CategoryTheory.InjectiveResolution.toRightDerivedZero'_naturality, mapHomotopy_hom, CategoryTheory.ProjectiveResolution.fromLeftDerivedZero'_naturality, mapHomologicalComplexIdIso_inv_app_f, CategoryTheory.ProjectiveResolution.leftDerived_app_eq, CochainComplex.HomComplex.Cochain.map_comp, CategoryTheory.ProjectiveResolution.fromLeftDerivedZero'_naturality_assoc, CochainComplex.HomComplex.Cochain.map_sub, mapHomologicalComplexUpToQuasiIsoLocalizerMorphism_functor, CategoryTheory.Equivalence.mapHomologicalComplex_functor, CategoryTheory.NatTrans.mapHomologicalComplex_naturality, mapHomologicalComplex_commShiftIso_inv_app_f, mapHomotopyEquiv_homotopyInvHomId, AlgebraicTopology.map_alternatingFaceMapComplex, CategoryTheory.InjectiveResolution.isoRightDerivedObj_hom_naturality_assoc, CategoryTheory.InjectiveResolution.isoRightDerivedObj_inv_naturality, Rep.standardComplex.quasiIso_forget₂_εToSingle₀, HomologicalComplex.singleMapHomologicalComplex_inv_app_ne, CategoryTheory.Equivalence.mapHomologicalComplex_counitIso, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_hom_naturality_assoc, leftDerived_map_eq, CategoryTheory.ProjectiveResolution.leftDerivedToHomotopyCategory_app_eq, HomologicalComplex.quasiIsoAt_iff_evaluation, CategoryTheory.NatTrans.mapHomologicalComplex_naturality_assoc, mapHomotopyCategory_map, rightDerived_map_eq, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_inv_naturality, mapHomotopyCategory_obj, mapHomologicalComplex_commShiftIso_hom_app_f, CochainComplex.mappingCone.mapHomologicalComplexXIso'_hom, CochainComplex.HomComplex.δ_map, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_hom_naturality, mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app, CochainComplex.HomComplex.Cochain.map_ofHom, mapCochainComplexShiftIso_hom_app_f, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles_assoc, HomologicalComplex.quasiIsoAt_map_of_preservesHomology, CategoryTheory.InjectiveResolution.isoRightDerivedObj_inv_naturality_assoc, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_hom_naturality, CategoryTheory.ProjectiveResolution.isoLeftDerivedObj_inv_naturality, CategoryTheory.InjectiveResolution.rightDerivedToHomotopyCategory_app_eq, mapHomotopyEquiv_hom, CategoryTheory.Equivalence.mapHomologicalComplex_inverse, mapDerivedCategoryFactorsh_hom_app, CategoryTheory.ProjectiveResolution.fromLeftDerivedZero_eq, CategoryTheory.instPreservesZeroMorphismsHomologicalComplexMapHomologicalComplex, CochainComplex.mappingCone.mapHomologicalComplexXIso'_inv, CategoryTheory.InjectiveResolution.rightDerived_app_eq, CochainComplex.HomComplex.Cochain.map_neg, ChainComplex.map_chain_complex_of, CategoryTheory.instIsIsoFromLeftDerivedZero', HomotopyCategory.instCommShiftHomologicalComplexIntUpHomFunctorMapHomotopyCategoryFactors, CochainComplex.mappingCone.map_δ, HomologicalComplex.quasiIsoAt_map_iff_of_preservesHomology
mapHomologicalComplexIdIso 📖CompOp
4 mathmath: mapHomologicalComplexIdIso_hom_app_f, CategoryTheory.Equivalence.mapHomologicalComplex_unitIso, mapHomologicalComplexIdIso_inv_app_f, CategoryTheory.Equivalence.mapHomologicalComplex_counitIso

Theorems

NameKindAssumesProvesValidatesDepends On
mapHomologicalComplexIdIso_hom_app_f 📖mathematical—HomologicalComplex.Hom.f
obj
HomologicalComplex
HomologicalComplex.instCategory
mapHomologicalComplex
id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
preservesZeroMorphisms_of_full
Full.id
mapHomologicalComplexIdIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
—preservesZeroMorphisms_of_full
Full.id
mapHomologicalComplexIdIso_inv_app_f 📖mathematical—HomologicalComplex.Hom.f
obj
HomologicalComplex
HomologicalComplex.instCategory
id
mapHomologicalComplex
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
preservesZeroMorphisms_of_full
Full.id
mapHomologicalComplexIdIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
—preservesZeroMorphisms_of_full
Full.id
mapHomologicalComplex_map_f 📖mathematical—HomologicalComplex.Hom.f
obj
HomologicalComplex.X
map
HomologicalComplex.d
HomologicalComplex
HomologicalComplex.instCategory
mapHomologicalComplex
——
mapHomologicalComplex_obj_X 📖mathematical—HomologicalComplex.X
obj
HomologicalComplex
HomologicalComplex.instCategory
mapHomologicalComplex
——
mapHomologicalComplex_obj_d 📖mathematical—HomologicalComplex.d
obj
HomologicalComplex
HomologicalComplex.instCategory
mapHomologicalComplex
map
HomologicalComplex.X
——
mapHomologicalComplex_reflects_iso 📖mathematical—ReflectsIsomorphisms
HomologicalComplex
HomologicalComplex.instCategory
mapHomologicalComplex
—HomologicalComplex.Hom.isIso_of_components
CategoryTheory.isIso_of_reflects_iso
CategoryTheory.Iso.isIso_hom
map_homogical_complex_additive 📖mathematical—Additive
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomologicalComplex.instPreadditive
mapHomologicalComplex
preservesZeroMorphisms_of_additive
—preservesZeroMorphisms_of_additive
HomologicalComplex.hom_ext
map_add

CategoryTheory.NatIso

Definitions

NameCategoryTheorems
mapHomologicalComplex 📖CompOp
4 mathmath: mapHomologicalComplex_inv_app_f, CategoryTheory.Equivalence.mapHomologicalComplex_unitIso, mapHomologicalComplex_hom_app_f, CategoryTheory.Equivalence.mapHomologicalComplex_counitIso

Theorems

NameKindAssumesProvesValidatesDepends On
mapHomologicalComplex_hom_app_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapHomologicalComplex
HomologicalComplex.X
——
mapHomologicalComplex_inv_app_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapHomologicalComplex
HomologicalComplex.X
——

CategoryTheory.NatTrans

Definitions

NameCategoryTheorems
mapHomologicalComplex 📖CompOp
10 mathmath: mapHomologicalComplex_app_f, mapHomologicalComplex_id, mapHomotopyCategory_app, mapHomologicalComplex_comp, CategoryTheory.ProjectiveResolution.leftDerived_app_eq, mapHomologicalComplex_naturality, CategoryTheory.ProjectiveResolution.leftDerivedToHomotopyCategory_app_eq, mapHomologicalComplex_naturality_assoc, CategoryTheory.InjectiveResolution.rightDerivedToHomotopyCategory_app_eq, CategoryTheory.InjectiveResolution.rightDerived_app_eq

Theorems

NameKindAssumesProvesValidatesDepends On
mapHomologicalComplex_app_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.mapHomologicalComplex
app
mapHomologicalComplex
HomologicalComplex.X
——
mapHomologicalComplex_comp 📖mathematical—mapHomologicalComplex
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
HomologicalComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.mapHomologicalComplex
——
mapHomologicalComplex_id 📖mathematical—mapHomologicalComplex
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
HomologicalComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.mapHomologicalComplex
——
mapHomologicalComplex_naturality 📖mathematical—CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.map
app
mapHomologicalComplex
—naturality
mapHomologicalComplex_naturality_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.map
app
mapHomologicalComplex
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapHomologicalComplex_naturality

ChainComplex

Theorems

NameKindAssumesProvesValidatesDepends On
map_chain_complex_of 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Functor.obj
HomologicalComplex
ComplexShape.down
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.instCategory
CategoryTheory.Functor.mapHomologicalComplex
of
CategoryTheory.Functor.map
—HomologicalComplex.ext
AddRightCancelSemigroup.toIsRightCancelAdd
of_d
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp

HomologicalComplex

Definitions

NameCategoryTheorems
hasIntScalar 📖CompOp
3 mathmath: HomologicalComplex₂.totalShift₁Iso_hom_totalShift₂Iso_hom, zsmul_f_apply, HomologicalComplex₂.totalShift₁Iso_hom_totalShift₂Iso_hom_assoc
hasNatScalar 📖CompOp
1 mathmath: nsmul_f_apply
instAddCommGroupHom 📖CompOp
1 mathmath: Hom.fAddMonoidHom_apply
instAddHom 📖CompOp
26 mathmath: CochainComplex.HomComplex.Cocycle.equivHom_symm_apply, CochainComplex.HomComplex.Cocycle.equivHomShift_symm_postcomp, add_f_apply, CochainComplex.HomComplex.Cocycle.equivHomShift'_symm_apply, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CochainComplex.HomComplex.CohomologyClass.toSmallShiftedHom_mk, CategoryTheory.ProjectiveResolution.extMk_hom, homologyMap_add, CochainComplex.HomComplex.CohomologyClass.equiv_toSmallShiftedHom_mk, AlgebraicTopology.DoldKan.P_succ, CochainComplex.HomComplex.Cocycle.equivHomShift_symm_apply, Homotopy.add_hom, CochainComplex.HomComplex.Cocycle.equivHomShift'_apply, extendMap_add, AlgebraicTopology.DoldKan.P_add_Q, CategoryTheory.InjectiveResolution.extMk_hom, CochainComplex.HomComplex.Cocycle.equivHomShift_comp, CochainComplex.HomComplex.Cocycle.equivHom_apply, CochainComplex.HomComplex.Cochain.ofHom_add, CochainComplex.HomComplex.Cocycle.equivHomShift_symm_precomp, CochainComplex.HomComplex.Cocycle.equivHomShift_comp_shift, CochainComplex.HomComplex.CohomologyClass.toHom_mk, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, AlgebraicTopology.DoldKan.HigherFacesVanish.induction, CochainComplex.HomComplex.Cocycle.equivHomShift_apply, AlgebraicTopology.DoldKan.PInfty_add_QInfty
instNegHom 📖CompOp
9 mathmath: homologyMap_neg, CochainComplex.HomComplex.Cochain.ofHom_neg, CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₃_assoc, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_mor₃_assoc, CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv_assoc, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_mor₃, neg_f_apply, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₃
instPreadditive 📖CompOp
29 mathmath: CategoryTheory.ShortComplex.ShortExact.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoX₃CochainComplexMapSingleFunctorOfNatX₁, CategoryTheory.Functor.mapHomologicalComplex_linear, CochainComplex.instLinearIntFunctorSingleFunctors, CategoryTheory.Functor.map_homogical_complex_additive, HomotopyCategory.instAdditiveHomologicalComplexQuotientHomotopicFunctor, DerivedCategory.instLinearCochainComplexIntQ, CochainComplex.instAdditiveIntFunctorSingleFunctors, CochainComplex.mappingCone.triangleRotateShortComplex_X₂, CochainComplex.mappingCone.triangleRotateShortComplex_X₃, CochainComplex.instLinearHomologicalComplexIntUpShiftFunctor, CochainComplex.mappingCone.triangleRotateShortComplex_X₁, instAdditiveHomologyFunctor, CochainComplex.instLinearIntShiftFunctor, CochainComplex.instAdditiveIntShiftFunctor, ComplexShape.Embedding.instAdditiveHomologicalComplexRestrictionFunctor, HomologicalComplex₂.totalShift₁Iso_trans_totalShift₂Iso, ComplexShape.Embedding.instAdditiveHomologicalComplexExtendFunctor, groupCohomology.instAdditiveRepCochainComplexModuleCatNatCochainsFunctor, CochainComplex.mappingCone.triangleRotateShortComplex_g, DerivedCategory.instAdditiveCochainComplexIntQ, CochainComplex.mapBifunctorShift₁Iso_trans_mapBifunctorShift₂Iso, HomotopyCategory.instAdditiveHomologicalComplexQuotient, instAdditiveSingle, opFunctor_additive, eval_additive, CochainComplex.mappingCone.triangleRotateShortComplex_f, unopFunctor_additive, HomotopyCategory.instLinearHomologicalComplexQuotient, CochainComplex.instAdditiveHomologicalComplexIntUpShiftFunctor
instSubHom 📖CompOp
7 mathmath: cylinder.πCompι₀Homotopy.nullHomotopicMap_eq, sub_f_apply, CochainComplex.HomComplex.Cochain.ofHom_sub, homologyMap_sub, cylinder.πCompι₀Homotopy.inrX_nullHomotopy_f, AlgebraicTopology.DoldKan.Q_succ, cylinder.πCompι₀Homotopy.inlX_nullHomotopy_f
instZeroHom_1 📖CompOp
28 mathmath: homotopyCofiber.inrCompHomotopy_hom_desc_hom_assoc, AlgebraicTopology.DoldKan.PInfty_comp_QInfty, CochainComplex.IsKInjective.nonempty_homotopy_zero, HomotopyCategory.isZero_quotient_obj_iff, CochainComplex.IsKProjective.homotopyZero_def, HomotopyCategory.quotient_map_eq_zero_iff, CochainComplex.mappingCone.inr_triangleδ, homotopyCofiber.inrCompHomotopy_hom, homotopyCofiber.descSigma_ext_iff, homotopyCofiber.inrCompHomotopy_hom_desc_hom, groupCohomology.cochainsMap_zero, CochainComplex.IsKInjective.homotopyZero_def, homotopyCofiber.inlX_desc_f_assoc, CochainComplex.mappingCone.inr_triangleδ_assoc, homotopyCofiber.eq_desc, CochainComplex.IsKProjective.nonempty_homotopy_zero, AlgebraicTopology.DoldKan.QInfty_comp_PInfty, homotopyCofiber.inrCompHomotopy_hom_eq_zero, zero_f_apply, homotopyCofiber.desc_f, groupHomology.chainsMap_zero, CochainComplex.HomComplex.Cochain.ofHom_zero, Homotopy.nullHomotopy_hom, homotopyCofiber.inlX_desc_f, AlgebraicTopology.DoldKan.QInfty_comp_PInfty_assoc, AlgebraicTopology.DoldKan.Q_zero, AlgebraicTopology.DoldKan.PInfty_comp_QInfty_assoc, Homotopy.nullHomotopy'_hom
singleMapHomologicalComplex 📖CompOp
6 mathmath: singleMapHomologicalComplex_hom_app_ne, singleMapHomologicalComplex_hom_app_self, CategoryTheory.Functor.mapProjectiveResolution_π, Rep.standardComplex.εToSingle₀_comp_eq, singleMapHomologicalComplex_inv_app_self, singleMapHomologicalComplex_inv_app_ne

Theorems

NameKindAssumesProvesValidatesDepends On
add_f_apply 📖mathematical—Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
instAddHom
X
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
——
eval_additive 📖mathematical—CategoryTheory.Functor.Additive
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instCategory
instPreadditive
eval
——
instAdditiveSingle 📖mathematical—CategoryTheory.Functor.Additive
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instCategory
instPreadditive
single
—from_single_hom_ext
CategoryTheory.Preadditive.add_comp
CategoryTheory.Preadditive.comp_add
neg_f_apply 📖mathematical—Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
instNegHom
X
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.Preadditive.homGroup
——
nsmul_f_apply 📖mathematical—Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
hasNatScalar
X
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
——
singleMapHomologicalComplex_hom_app_ne 📖mathematical—Hom.f
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.Functor.comp
single
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
singleMapHomologicalComplex
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.NatIso.ofComponents.congr_simp
singleMapHomologicalComplex_hom_app_self 📖mathematical—Hom.f
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.Functor.comp
single
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
singleMapHomologicalComplex
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Functor.map
singleObjXSelf
CategoryTheory.Iso.inv
—CategoryTheory.NatIso.ofComponents.congr_simp
CategoryTheory.eqToHom_map
CategoryTheory.eqToHom_trans
singleMapHomologicalComplex_inv_app_ne 📖mathematical—Hom.f
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.Functor.comp
single
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
singleMapHomologicalComplex
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.NatIso.ofComponents.congr_simp
singleMapHomologicalComplex_inv_app_self 📖mathematical—Hom.f
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.Functor.comp
single
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
singleMapHomologicalComplex
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
singleObjXSelf
CategoryTheory.Functor.map
—CategoryTheory.NatIso.ofComponents.congr_simp
CategoryTheory.eqToHom_map
CategoryTheory.eqToHom_trans
sub_f_apply 📖mathematical—Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
instSubHom
X
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
——
zero_f_apply 📖mathematical—Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
instZeroHom_1
X
CategoryTheory.Limits.HasZeroMorphisms.zero
——
zsmul_f_apply 📖mathematical—Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
hasIntScalar
X
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
——

HomologicalComplex.Hom

Definitions

NameCategoryTheorems
fAddMonoidHom 📖CompOp
1 mathmath: fAddMonoidHom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
fAddMonoidHom_apply 📖mathematical—DFunLike.coe
AddMonoidHom
Quiver.Hom
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.X
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HomologicalComplex.instAddCommGroupHom
CategoryTheory.Preadditive.homGroup
AddMonoidHom.instFunLike
fAddMonoidHom
f
——

---

← Back to Index