Documentation Verification Report

AlternatingConst

📁 Source: Mathlib/Algebra/Homology/AlternatingConst.lean

Statistics

MetricCount
DefinitionsalternatingFaceMapComplexConst, alternatingConst, alternatingConstHomologyDataEvenNEZero, alternatingConstHomologyDataOdd, alternatingConstHomologyDataZero, alternatingConstHomologyZero, alternatingConstHomotopyEquiv, alternatingConst, alternatingConstHomologyIsoEven, alternatingConstHomologyIsoOdd, alternatingConstScIsoEven, alternatingConstScIsoOdd
12
TheoremsalternatingConst_exactAt, alternatingConst_map_f, alternatingConst_obj, instHasHomologyNatObjAlternatingConst, down_nat_odd_add, up_nat_odd_add, alternatingConst_X, alternatingConst_d, alternatingConst_iCycles_even_comp, alternatingConst_iCycles_even_comp_apply, alternatingConst_iCycles_even_comp_assoc, alternatingConst_iCycles_odd_comp, alternatingConst_iCycles_odd_comp_apply, alternatingConst_iCycles_odd_comp_assoc
14
Total26

AlgebraicTopology

Definitions

NameCategoryTheorems
alternatingFaceMapComplexConst 📖CompOp

ChainComplex

Definitions

NameCategoryTheorems
alternatingConst 📖CompOp
4 mathmath: instHasHomologyNatObjAlternatingConst, alternatingConst_exactAt, alternatingConst_map_f, alternatingConst_obj
alternatingConstHomologyDataEvenNEZero 📖CompOp
alternatingConstHomologyDataOdd 📖CompOp
alternatingConstHomologyDataZero 📖CompOp
alternatingConstHomologyZero 📖CompOp
alternatingConstHomotopyEquiv 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
alternatingConst_exactAt 📖mathematicalHomologicalComplex.ExactAt
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
alternatingConst
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.even_or_odd
CategoryTheory.Limits.isZero_zero
alternatingConst_map_f 📖mathematicalHomologicalComplex.Hom.f
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.alternatingConst
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
ComplexShape.instDecidableRelRelDown
ComplexShape.down_nat_odd_add
CategoryTheory.Functor.map
ChainComplex
HomologicalComplex.instCategory
AddRightCancelSemigroup.toIsRightCancelAdd
alternatingConst
ComplexShape.down_nat_odd_add
AddRightCancelSemigroup.toIsRightCancelAdd
alternatingConst_obj 📖mathematicalCategoryTheory.Functor.obj
ChainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
alternatingConst
HomologicalComplex.alternatingConst
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
ComplexShape.instDecidableRelRelDown
ComplexShape.down_nat_odd_add
AddRightCancelSemigroup.toIsRightCancelAdd
instHasHomologyNatObjAlternatingConst 📖mathematicalHomologicalComplex.HasHomology
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
alternatingConst
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.even_or_odd

ComplexShape

Theorems

NameKindAssumesProvesValidatesDepends On
down_nat_odd_add 📖mathematicalRel
down
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
Odd
Nat.instSemiring
AddRightCancelSemigroup.toIsRightCancelAdd
up_nat_odd_add 📖mathematicalRel
up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
Odd
Nat.instSemiring
AddRightCancelSemigroup.toIsRightCancelAdd

HomologicalComplex

Definitions

NameCategoryTheorems
alternatingConst 📖CompOp
13 mathmath: alternatingConst_iCycles_odd_comp_assoc, Rep.FiniteCyclicGroup.chainComplexFunctor_obj, alternatingConst_iCycles_even_comp_apply, Rep.FiniteCyclicGroup.chainComplexFunctor_map_f, alternatingConst_iCycles_odd_comp, alternatingConst_iCycles_even_comp, alternatingConst_d, alternatingConst_iCycles_odd_comp_apply, alternatingConst_X, alternatingConst_iCycles_even_comp_assoc, ChainComplex.alternatingConst_map_f, ChainComplex.alternatingConst_obj, Rep.FiniteCyclicGroup.resolution.π_f
alternatingConstHomologyIsoEven 📖CompOp
alternatingConstHomologyIsoOdd 📖CompOp
alternatingConstScIsoEven 📖CompOp
alternatingConstScIsoOdd 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
alternatingConst_X 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
Odd
Nat.instSemiring
X
alternatingConst
alternatingConst_d 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
Odd
Nat.instSemiring
d
alternatingConst
ComplexShape.Rel
Even
Nat.instDecidablePredEven
alternatingConst_iCycles_even_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
Odd
Nat.instSemiring
ComplexShape.Rel
ComplexShape.prev
ComplexShape.next
Even
cycles
alternatingConst
CategoryTheory.CategoryWithHomology.hasHomology
sc
X
iCycles
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.ShortComplex.cyclesMap_i_assoc
CategoryTheory.Category.id_comp
CategoryTheory.Limits.comp_zero
CategoryTheory.ShortComplex.iCycles_g
alternatingConst_iCycles_even_comp_apply 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
Odd
Nat.instSemiring
ComplexShape.Rel
ComplexShape.prev
ComplexShape.next
Even
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
cycles
alternatingConst
CategoryTheory.CategoryWithHomology.hasHomology
sc
iCycles
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.comp_apply
Mathlib.Tactic.Elementwise.hom_elementwise
alternatingConst_iCycles_even_comp
alternatingConst_iCycles_even_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
Odd
Nat.instSemiring
ComplexShape.Rel
ComplexShape.prev
ComplexShape.next
Even
cycles
alternatingConst
CategoryTheory.CategoryWithHomology.hasHomology
sc
X
iCycles
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
alternatingConst_iCycles_even_comp
alternatingConst_iCycles_odd_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
Odd
Nat.instSemiring
ComplexShape.Rel
ComplexShape.prev
ComplexShape.next
cycles
alternatingConst
CategoryTheory.CategoryWithHomology.hasHomology
sc
X
iCycles
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.ShortComplex.cyclesMap_i_assoc
CategoryTheory.Category.id_comp
CategoryTheory.Limits.comp_zero
CategoryTheory.ShortComplex.iCycles_g
alternatingConst_iCycles_odd_comp_apply 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
Odd
Nat.instSemiring
ComplexShape.Rel
ComplexShape.prev
ComplexShape.next
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
cycles
alternatingConst
CategoryTheory.CategoryWithHomology.hasHomology
sc
iCycles
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.comp_apply
Mathlib.Tactic.Elementwise.hom_elementwise
alternatingConst_iCycles_odd_comp
alternatingConst_iCycles_odd_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
Odd
Nat.instSemiring
ComplexShape.Rel
ComplexShape.prev
ComplexShape.next
cycles
alternatingConst
CategoryTheory.CategoryWithHomology.hasHomology
sc
X
iCycles
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
alternatingConst_iCycles_odd_comp

---

← Back to Index