Documentation Verification Report

Augment

๐Ÿ“ Source: Mathlib/Algebra/Homology/Augment.lean

Statistics

MetricCount
Definitionsaugment, augmentTruncate, toSingleโ‚€AsComplex, truncate, truncateAugment, truncateTo, augment, augmentTruncate, fromSingleโ‚€AsComplex, toTruncate, truncate, truncateAugment
12
TheoremsaugmentTruncate_hom_f_succ, augmentTruncate_hom_f_zero, augmentTruncate_inv_f_succ, augmentTruncate_inv_f_zero, augment_X_succ, augment_X_zero, augment_d_one_zero, augment_d_succ_succ, chainComplex_d_succ_succ_zero, truncateAugment_hom_f, truncateAugment_inv_f, truncate_map_f, truncate_obj_X, truncate_obj_d, augmentTruncate_hom_f_succ, augmentTruncate_hom_f_zero, augmentTruncate_inv_f_succ, augmentTruncate_inv_f_zero, augment_X_succ, augment_X_zero, augment_d_succ_succ, augment_d_zero_one, cochainComplex_d_succ_succ_zero, truncateAugment_hom_f, truncateAugment_inv_f, truncate_map_f, truncate_obj_X, truncate_obj_d
28
Total40

ChainComplex

Definitions

NameCategoryTheorems
augment ๐Ÿ“–CompOp
10 mathmath: truncateAugment_inv_f, augmentTruncate_inv_f_succ, augment_X_succ, augmentTruncate_hom_f_succ, truncateAugment_hom_f, augmentTruncate_hom_f_zero, augment_d_succ_succ, augmentTruncate_inv_f_zero, augment_X_zero, augment_d_one_zero
augmentTruncate ๐Ÿ“–CompOp
4 mathmath: augmentTruncate_inv_f_succ, augmentTruncate_hom_f_succ, augmentTruncate_hom_f_zero, augmentTruncate_inv_f_zero
toSingleโ‚€AsComplex ๐Ÿ“–CompOpโ€”
truncate ๐Ÿ“–CompOp
9 mathmath: truncate_map_f, truncateAugment_inv_f, augmentTruncate_inv_f_succ, augmentTruncate_hom_f_succ, truncateAugment_hom_f, augmentTruncate_hom_f_zero, truncate_obj_d, augmentTruncate_inv_f_zero, truncate_obj_X
truncateAugment ๐Ÿ“–CompOp
2 mathmath: truncateAugment_inv_f, truncateAugment_hom_f
truncateTo ๐Ÿ“–CompOpโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
augmentTruncate_hom_f_succ ๐Ÿ“–mathematicalโ€”HomologicalComplex.Hom.f
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
augment
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
truncate
HomologicalComplex.X
HomologicalComplex.d
HomologicalComplex.d_comp_d
CategoryTheory.Iso.hom
augmentTruncate
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
โ€”AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.d_comp_d
augmentTruncate_hom_f_zero ๐Ÿ“–mathematicalโ€”HomologicalComplex.Hom.f
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
augment
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
truncate
HomologicalComplex.X
HomologicalComplex.d
HomologicalComplex.d_comp_d
CategoryTheory.Iso.hom
augmentTruncate
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
โ€”AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.d_comp_d
augmentTruncate_inv_f_succ ๐Ÿ“–mathematicalโ€”HomologicalComplex.Hom.f
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
augment
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
truncate
HomologicalComplex.X
HomologicalComplex.d
HomologicalComplex.d_comp_d
CategoryTheory.Iso.inv
augmentTruncate
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
โ€”AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.d_comp_d
augmentTruncate_inv_f_zero ๐Ÿ“–mathematicalโ€”HomologicalComplex.Hom.f
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
augment
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
truncate
HomologicalComplex.X
HomologicalComplex.d
HomologicalComplex.d_comp_d
CategoryTheory.Iso.inv
augmentTruncate
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
โ€”AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.d_comp_d
augment_X_succ ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
augmentโ€”AddRightCancelSemigroup.toIsRightCancelAdd
augment_X_zero ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
augmentโ€”AddRightCancelSemigroup.toIsRightCancelAdd
augment_d_one_zero ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
augmentโ€”AddRightCancelSemigroup.toIsRightCancelAdd
augment_d_succ_succ ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
augmentโ€”AddRightCancelSemigroup.toIsRightCancelAdd
chainComplex_d_succ_succ_zero ๐Ÿ“–mathematicalโ€”HomologicalComplex.d
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Limits.HasZeroMorphisms.zero
โ€”AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.shape
truncateAugment_hom_f ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.Hom.f
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
truncate
augment
CategoryTheory.Iso.hom
truncateAugment
CategoryTheory.CategoryStruct.id
โ€”AddRightCancelSemigroup.toIsRightCancelAdd
truncateAugment_inv_f ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.Hom.f
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
truncate
augment
CategoryTheory.Iso.inv
truncateAugment
CategoryTheory.CategoryStruct.id
โ€”AddRightCancelSemigroup.toIsRightCancelAdd
truncate_map_f ๐Ÿ“–mathematicalโ€”HomologicalComplex.Hom.f
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.X
HomologicalComplex.d
CategoryTheory.Functor.map
ChainComplex
HomologicalComplex.instCategory
AddRightCancelSemigroup.toIsRightCancelAdd
truncate
โ€”AddRightCancelSemigroup.toIsRightCancelAdd
truncate_obj_X ๐Ÿ“–mathematicalโ€”HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
AddRightCancelSemigroup.toIsRightCancelAdd
truncate
โ€”AddRightCancelSemigroup.toIsRightCancelAdd
truncate_obj_d ๐Ÿ“–mathematicalโ€”HomologicalComplex.d
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
AddRightCancelSemigroup.toIsRightCancelAdd
truncate
โ€”AddRightCancelSemigroup.toIsRightCancelAdd

CochainComplex

Definitions

NameCategoryTheorems
augment ๐Ÿ“–CompOp
10 mathmath: augment_d_succ_succ, augmentTruncate_inv_f_zero, augment_X_zero, augment_X_succ, augment_d_zero_one, truncateAugment_inv_f, augmentTruncate_inv_f_succ, augmentTruncate_hom_f_succ, truncateAugment_hom_f, augmentTruncate_hom_f_zero
augmentTruncate ๐Ÿ“–CompOp
4 mathmath: augmentTruncate_inv_f_zero, augmentTruncate_inv_f_succ, augmentTruncate_hom_f_succ, augmentTruncate_hom_f_zero
fromSingleโ‚€AsComplex ๐Ÿ“–CompOpโ€”
toTruncate ๐Ÿ“–CompOpโ€”
truncate ๐Ÿ“–CompOp
9 mathmath: augmentTruncate_inv_f_zero, truncate_obj_X, truncateAugment_inv_f, truncate_map_f, augmentTruncate_inv_f_succ, augmentTruncate_hom_f_succ, truncateAugment_hom_f, truncate_obj_d, augmentTruncate_hom_f_zero
truncateAugment ๐Ÿ“–CompOp
2 mathmath: truncateAugment_inv_f, truncateAugment_hom_f

Theorems

NameKindAssumesProvesValidatesDepends On
augmentTruncate_hom_f_succ ๐Ÿ“–mathematicalโ€”HomologicalComplex.Hom.f
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
augment
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
truncate
HomologicalComplex.X
HomologicalComplex.d
HomologicalComplex.d_comp_d
CategoryTheory.Iso.hom
augmentTruncate
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
โ€”AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.d_comp_d
augmentTruncate_hom_f_zero ๐Ÿ“–mathematicalโ€”HomologicalComplex.Hom.f
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
augment
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
truncate
HomologicalComplex.X
HomologicalComplex.d
HomologicalComplex.d_comp_d
CategoryTheory.Iso.hom
augmentTruncate
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
โ€”AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.d_comp_d
augmentTruncate_inv_f_succ ๐Ÿ“–mathematicalโ€”HomologicalComplex.Hom.f
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
augment
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
truncate
HomologicalComplex.X
HomologicalComplex.d
HomologicalComplex.d_comp_d
CategoryTheory.Iso.inv
augmentTruncate
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
โ€”AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.d_comp_d
augmentTruncate_inv_f_zero ๐Ÿ“–mathematicalโ€”HomologicalComplex.Hom.f
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
augment
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
truncate
HomologicalComplex.X
HomologicalComplex.d
HomologicalComplex.d_comp_d
CategoryTheory.Iso.inv
augmentTruncate
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
โ€”AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.d_comp_d
augment_X_succ ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
augmentโ€”AddRightCancelSemigroup.toIsRightCancelAdd
augment_X_zero ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
augmentโ€”AddRightCancelSemigroup.toIsRightCancelAdd
augment_d_succ_succ ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
augmentโ€”AddRightCancelSemigroup.toIsRightCancelAdd
augment_d_zero_one ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
augmentโ€”AddRightCancelSemigroup.toIsRightCancelAdd
cochainComplex_d_succ_succ_zero ๐Ÿ“–mathematicalโ€”HomologicalComplex.d
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Limits.HasZeroMorphisms.zero
โ€”AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.shape
zero_add
LT.lt.ne
truncateAugment_hom_f ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.Hom.f
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
truncate
augment
CategoryTheory.Iso.hom
truncateAugment
CategoryTheory.CategoryStruct.id
โ€”AddRightCancelSemigroup.toIsRightCancelAdd
truncateAugment_inv_f ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.Hom.f
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
truncate
augment
CategoryTheory.Iso.inv
truncateAugment
CategoryTheory.CategoryStruct.id
โ€”AddRightCancelSemigroup.toIsRightCancelAdd
truncate_map_f ๐Ÿ“–mathematicalโ€”HomologicalComplex.Hom.f
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.X
HomologicalComplex.d
CategoryTheory.Functor.map
CochainComplex
HomologicalComplex.instCategory
AddRightCancelSemigroup.toIsRightCancelAdd
truncate
โ€”AddRightCancelSemigroup.toIsRightCancelAdd
truncate_obj_X ๐Ÿ“–mathematicalโ€”HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
AddRightCancelSemigroup.toIsRightCancelAdd
truncate
โ€”AddRightCancelSemigroup.toIsRightCancelAdd
truncate_obj_d ๐Ÿ“–mathematicalโ€”HomologicalComplex.d
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
AddRightCancelSemigroup.toIsRightCancelAdd
truncate
โ€”AddRightCancelSemigroup.toIsRightCancelAdd

---

โ† Back to Index