Documentation Verification Report

Bifunctor

📁 Source: Mathlib/Algebra/Homology/Bifunctor.lean

Statistics

MetricCount
DefinitionsmapBifunctorHomologicalComplex, mapBifunctorHomologicalComplexObj, map₂CochainComplex, map₂HomologicalComplex, HasMapBifunctor, mapBifunctor, D₁, D₂, d₁, d₂, mapBifunctorDesc, mapBifunctorMap, ÎčMapBifunctor, ÎčMapBifunctorOrZero
14
TheoremsmapBifunctorHomologicalComplexObj_map_f_f, mapBifunctorHomologicalComplexObj_obj_X_X, mapBifunctorHomologicalComplexObj_obj_X_d, mapBifunctorHomologicalComplexObj_obj_d_f, mapBifunctorHomologicalComplex_map_app_f_f, mapBifunctorHomologicalComplex_obj_map_f_f, mapBifunctorHomologicalComplex_obj_obj_X_X, mapBifunctorHomologicalComplex_obj_obj_X_d, mapBifunctorHomologicalComplex_obj_obj_d_f, mapBifunctorHomologicalComplex_obj_obj_toGradedObject, map₂HomologicalComplex_map_app, map₂HomologicalComplex_obj_map, map₂HomologicalComplex_obj_obj, d_eq, d₁_eq, d₁_eq', d₁_eq_zero, d₁_eq_zero', d₂_eq, d₂_eq', d₂_eq_zero, d₂_eq_zero', hom_ext, hom_ext_iff, Îč_D₁, Îč_D₁_assoc, Îč_D₂, Îč_D₂_assoc, ÎčMapBifunctorOrZero_eq, ÎčMapBifunctorOrZero_eq_zero, Îč_mapBifunctorDesc, Îč_mapBifunctorDesc_assoc, Îč_mapBifunctorMap, Îč_mapBifunctorMap_assoc
34
Total48

CategoryTheory.Functor

Definitions

NameCategoryTheorems
mapBifunctorHomologicalComplex 📖CompOp
11 mathmath: mapBifunctorHomologicalComplex_map_app_f_f, CochainComplex.mapBifunctorHomologicalComplexShift₂Iso_inv_f_f, mapBifunctorHomologicalComplex_obj_obj_X_d, CochainComplex.mapBifunctorHomologicalComplexShift₂Iso_hom_f_f, mapBifunctorHomologicalComplex_obj_obj_X_X, CochainComplex.mapBifunctorHomologicalComplexShift₁Iso_hom_f_f, HomologicalComplex.mapBifunctorMapHomotopy.comm₁_aux, CochainComplex.mapBifunctorHomologicalComplexShift₁Iso_inv_f_f, mapBifunctorHomologicalComplex_obj_map_f_f, mapBifunctorHomologicalComplex_obj_obj_toGradedObject, mapBifunctorHomologicalComplex_obj_obj_d_f
mapBifunctorHomologicalComplexObj 📖CompOp
5 mathmath: mapBifunctorHomologicalComplexObj_map_f_f, mapBifunctorHomologicalComplexObj_obj_X_d, mapBifunctorHomologicalComplexObj_obj_X_X, mapBifunctorHomologicalComplex_map_app_f_f, mapBifunctorHomologicalComplexObj_obj_d_f
map₂CochainComplex 📖CompOp
6 mathmath: commShiftIso_map₂CochainComplex_flip_hom_app, commShiftIso_map₂CochainComplex_inv_app, commShiftIso_map₂CochainComplex_flip_inv_app, instCommShiftCochainComplexIntMapMap₂CochainComplex, instCommShiftCochainComplexIntMapFlipMap₂CochainComplex, commShiftIso_map₂CochainComplex_hom_app
map₂HomologicalComplex 📖CompOp
3 mathmath: map₂HomologicalComplex_map_app, map₂HomologicalComplex_obj_obj, map₂HomologicalComplex_obj_map

Theorems

NameKindAssumesProvesValidatesDepends On
mapBifunctorHomologicalComplexObj_map_f_f 📖mathematicalPreservesZeroMorphisms
obj
CategoryTheory.Functor
category
HomologicalComplex.Hom.f
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex₂.ofGradedObject
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
CategoryTheory.GradedObject.mapBifunctor
CategoryTheory.NatTrans.app
map
HomologicalComplex.d
HomologicalComplex₂
mapBifunctorHomologicalComplexObj
——
mapBifunctorHomologicalComplexObj_obj_X_X 📖mathematicalPreservesZeroMorphisms
obj
CategoryTheory.Functor
category
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex₂
mapBifunctorHomologicalComplexObj
——
mapBifunctorHomologicalComplexObj_obj_X_d 📖mathematicalPreservesZeroMorphisms
obj
CategoryTheory.Functor
category
HomologicalComplex.d
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex₂
mapBifunctorHomologicalComplexObj
map
——
mapBifunctorHomologicalComplexObj_obj_d_f 📖mathematicalPreservesZeroMorphisms
obj
CategoryTheory.Functor
category
HomologicalComplex.Hom.f
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
CategoryTheory.GradedObject.mapBifunctor
HomologicalComplex.X
map
HomologicalComplex.d
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex₂
mapBifunctorHomologicalComplexObj
CategoryTheory.NatTrans.app
——
mapBifunctorHomologicalComplex_map_app_f_f 📖mathematicalPreservesZeroMorphisms
obj
CategoryTheory.Functor
category
HomologicalComplex.Hom.f
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex₂
mapBifunctorHomologicalComplexObj
CategoryTheory.NatTrans.app
map
mapBifunctorHomologicalComplex
——
mapBifunctorHomologicalComplex_obj_map_f_f 📖mathematicalPreservesZeroMorphisms
obj
CategoryTheory.Functor
category
HomologicalComplex.Hom.f
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex₂.ofGradedObject
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
CategoryTheory.GradedObject.mapBifunctor
CategoryTheory.NatTrans.app
map
HomologicalComplex.d
HomologicalComplex₂
mapBifunctorHomologicalComplex
——
mapBifunctorHomologicalComplex_obj_obj_X_X 📖mathematicalPreservesZeroMorphisms
obj
CategoryTheory.Functor
category
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex₂
mapBifunctorHomologicalComplex
——
mapBifunctorHomologicalComplex_obj_obj_X_d 📖mathematicalPreservesZeroMorphisms
obj
CategoryTheory.Functor
category
HomologicalComplex.d
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex₂
mapBifunctorHomologicalComplex
map
——
mapBifunctorHomologicalComplex_obj_obj_d_f 📖mathematicalPreservesZeroMorphisms
obj
CategoryTheory.Functor
category
HomologicalComplex.Hom.f
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
CategoryTheory.GradedObject.mapBifunctor
HomologicalComplex.X
map
HomologicalComplex.d
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex₂
mapBifunctorHomologicalComplex
CategoryTheory.NatTrans.app
——
mapBifunctorHomologicalComplex_obj_obj_toGradedObject 📖mathematicalPreservesZeroMorphisms
obj
CategoryTheory.Functor
category
HomologicalComplex₂.toGradedObject
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex₂
HomologicalComplex.instHasZeroMorphisms
mapBifunctorHomologicalComplex
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
CategoryTheory.GradedObject.mapBifunctor
HomologicalComplex.X
——
map₂HomologicalComplex_map_app 📖mathematicalPreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
obj
CategoryTheory.Functor
category
HomologicalComplex.HasMapBifunctor
CategoryTheory.NatTrans.app
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.mapBifunctor
HomologicalComplex.mapBifunctorMap
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
map
map₂HomologicalComplex
——
map₂HomologicalComplex_obj_map 📖mathematicalPreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
obj
CategoryTheory.Functor
category
HomologicalComplex.HasMapBifunctor
map
HomologicalComplex
HomologicalComplex.instCategory
map₂HomologicalComplex
HomologicalComplex.mapBifunctorMap
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
map₂HomologicalComplex_obj_obj 📖mathematicalPreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
obj
CategoryTheory.Functor
category
HomologicalComplex.HasMapBifunctor
HomologicalComplex
HomologicalComplex.instCategory
map₂HomologicalComplex
HomologicalComplex.mapBifunctor
——

HomologicalComplex

Definitions

NameCategoryTheorems
HasMapBifunctor 📖MathDef
1 mathmath: hasMapBifunctor_flip_iff
mapBifunctor 📖CompOp
41 mathmath: mapBifunctor.Îč_D₂, mapBifunctor.Îč_D₂_assoc, mapBifunctor.Îč_D₁_assoc, CochainComplex.mapBifunctorShift₂Iso_hom_naturality₂_assoc, CochainComplex.mapBifunctorShift₁Iso_hom_naturality₁_assoc, mapBifunctorMapHomotopy.comm₁, mapBifunctorFlipIso_hom_naturality_assoc, mapBifunctor.hom_ext_iff, Îč_mapBifunctorDesc, mapBifunctorMapHomotopy.zero₁, mapBifunctor.d₂_eq, Îč_mapBifunctorFlipIso_inv_assoc, mapBifunctor.d₁_eq_zero, CategoryTheory.Functor.map₂HomologicalComplex_map_app, mapBifunctorFlipIso_hom_naturality, CochainComplex.mapBifunctorShift₂Iso_hom_naturality₂, tensor_unit_d₂, mapBifunctor.d_eq, Îč_mapBifunctorMap_assoc, ÎčMapBifunctorOrZero_eq_zero, CategoryTheory.Functor.map₂HomologicalComplex_obj_obj, mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₂, Îč_mapBifunctorDesc_assoc, mapBifunctorFlipIso_flip, mapBifunctorMapHomotopy.comm₁_aux, mapBifunctor.Îč_D₁, mapBifunctor.d₁_eq', mapBifunctor.d₂_eq_zero, Îč_mapBifunctorFlipIso_hom, mapBifunctor.d₂_eq_zero', mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₁_assoc, mapBifunctor.d₂_eq', mapBifunctor.d₁_eq_zero', unit_tensor_d₁, CochainComplex.mapBifunctorShift₁Iso_hom_naturality₁, mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₁, Îč_mapBifunctorFlipIso_hom_assoc, mapBifunctor.d₁_eq, mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₂_assoc, Îč_mapBifunctorMap, Îč_mapBifunctorFlipIso_inv
mapBifunctorDesc 📖CompOp
2 mathmath: Îč_mapBifunctorDesc, Îč_mapBifunctorDesc_assoc
mapBifunctorMap 📖CompOp
11 mathmath: CochainComplex.mapBifunctorShift₂Iso_hom_naturality₂_assoc, CochainComplex.mapBifunctorShift₁Iso_hom_naturality₁_assoc, mapBifunctorMapHomotopy.comm₁, mapBifunctorFlipIso_hom_naturality_assoc, CategoryTheory.Functor.map₂HomologicalComplex_map_app, mapBifunctorFlipIso_hom_naturality, CochainComplex.mapBifunctorShift₂Iso_hom_naturality₂, Îč_mapBifunctorMap_assoc, CategoryTheory.Functor.map₂HomologicalComplex_obj_map, CochainComplex.mapBifunctorShift₁Iso_hom_naturality₁, Îč_mapBifunctorMap
ÎčMapBifunctor 📖CompOp
22 mathmath: mapBifunctor.Îč_D₂, mapBifunctor.Îč_D₂_assoc, mapBifunctor.Îč_D₁_assoc, mapBifunctor.hom_ext_iff, Îč_mapBifunctorDesc, mapBifunctor.d₂_eq, Îč_mapBifunctorFlipIso_inv_assoc, Îč_mapBifunctorMap_assoc, mapBifunctor₂₃.Îč_eq, mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₂, Îč_mapBifunctorDesc_assoc, ÎčMapBifunctorOrZero_eq, mapBifunctor.Îč_D₁, Îč_mapBifunctorFlipIso_hom, mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₁_assoc, mapBifunctor₁₂.Îč_eq, mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₁, Îč_mapBifunctorFlipIso_hom_assoc, mapBifunctor.d₁_eq, mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₂_assoc, Îč_mapBifunctorMap, Îč_mapBifunctorFlipIso_inv
ÎčMapBifunctorOrZero 📖CompOp
8 mathmath: ÎčMapBifunctorOrZero_eq_zero, mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₂, ÎčMapBifunctorOrZero_eq, mapBifunctor.d₁_eq', mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₁_assoc, mapBifunctor.d₂_eq', mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₁, mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₂_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
ÎčMapBifunctorOrZero_eq 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
ComplexShape.π
ÎčMapBifunctorOrZero
ÎčMapBifunctor
——
ÎčMapBifunctorOrZero_eq_zero 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
ÎčMapBifunctorOrZero
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
mapBifunctor
CategoryTheory.Limits.HasZeroMorphisms.zero
——
Îč_mapBifunctorDesc 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
ComplexShape.π
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
mapBifunctor
ÎčMapBifunctor
mapBifunctorDesc
—HomologicalComplex₂.Îč_totalDesc
Îč_mapBifunctorDesc_assoc 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
ComplexShape.π
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
mapBifunctor
ÎčMapBifunctor
mapBifunctorDesc
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
Îč_mapBifunctorDesc
Îč_mapBifunctorMap 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
ComplexShape.π
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
mapBifunctor
ÎčMapBifunctor
Hom.f
mapBifunctorMap
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
—HomologicalComplex₂.ÎčTotal_map
CategoryTheory.Category.assoc
Îč_mapBifunctorMap_assoc 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
ComplexShape.π
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
mapBifunctor
ÎčMapBifunctor
Hom.f
mapBifunctorMap
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
Îč_mapBifunctorMap

HomologicalComplex.mapBifunctor

Definitions

NameCategoryTheorems
D₁ 📖CompOp
3 mathmath: Îč_D₁_assoc, d_eq, Îč_D₁
D₂ 📖CompOp
3 mathmath: Îč_D₂, Îč_D₂_assoc, d_eq
d₁ 📖CompOp
7 mathmath: Îč_D₁_assoc, d₁_eq_zero, Îč_D₁, d₁_eq', d₁_eq_zero', HomologicalComplex.unit_tensor_d₁, d₁_eq
d₂ 📖CompOp
7 mathmath: Îč_D₂, Îč_D₂_assoc, d₂_eq, HomologicalComplex.tensor_unit_d₂, d₂_eq_zero, d₂_eq_zero', d₂_eq'

Theorems

NameKindAssumesProvesValidatesDepends On
d_eq 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
HomologicalComplex.d
HomologicalComplex.mapBifunctor
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
D₁
D₂
——
d₁_eq 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
ComplexShape.Rel
ComplexShape.π
d₁
Units
Int.instMonoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.mapBifunctor
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
ComplexShape.Δ₁
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
HomologicalComplex.d
HomologicalComplex.ÎčMapBifunctor
—HomologicalComplex₂.d₁_eq
d₁_eq' 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
ComplexShape.Rel
d₁
Units
Int.instMonoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.mapBifunctor
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
ComplexShape.Δ₁
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
HomologicalComplex.d
HomologicalComplex.ÎčMapBifunctorOrZero
—HomologicalComplex₂.d₁_eq'
d₁_eq_zero 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
ComplexShape.Rel
ComplexShape.next
d₁
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.mapBifunctor
CategoryTheory.Limits.HasZeroMorphisms.zero
—HomologicalComplex₂.d₁_eq_zero
d₁_eq_zero' 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
ComplexShape.Rel
d₁
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.mapBifunctor
CategoryTheory.Limits.HasZeroMorphisms.zero
—HomologicalComplex₂.d₁_eq_zero'
d₂_eq 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
ComplexShape.Rel
ComplexShape.π
d₂
Units
Int.instMonoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.mapBifunctor
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
ComplexShape.Δ₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
HomologicalComplex.d
HomologicalComplex.ÎčMapBifunctor
—HomologicalComplex₂.d₂_eq
d₂_eq' 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
ComplexShape.Rel
d₂
Units
Int.instMonoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.mapBifunctor
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
ComplexShape.Δ₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
HomologicalComplex.d
HomologicalComplex.ÎčMapBifunctorOrZero
—HomologicalComplex₂.d₂_eq'
d₂_eq_zero 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
ComplexShape.Rel
ComplexShape.next
d₂
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.mapBifunctor
CategoryTheory.Limits.HasZeroMorphisms.zero
—HomologicalComplex₂.d₂_eq_zero
d₂_eq_zero' 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
ComplexShape.Rel
d₂
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.mapBifunctor
CategoryTheory.Limits.HasZeroMorphisms.zero
—HomologicalComplex₂.d₂_eq_zero'
hom_ext 📖—CategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.mapBifunctor
HomologicalComplex.ÎčMapBifunctor
——HomologicalComplex₂.total.hom_ext
hom_ext_iff 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.mapBifunctor
HomologicalComplex.ÎčMapBifunctor
—hom_ext
Îč_D₁ 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
ComplexShape.π
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.mapBifunctor
HomologicalComplex.ÎčMapBifunctor
D₁
d₁
—HomologicalComplex₂.Îč_D₁
Îč_D₁_assoc 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
ComplexShape.π
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.mapBifunctor
HomologicalComplex.ÎčMapBifunctor
D₁
d₁
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
Îč_D₁
Îč_D₂ 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
ComplexShape.π
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.mapBifunctor
HomologicalComplex.ÎčMapBifunctor
D₂
d₂
—HomologicalComplex₂.Îč_D₂
Îč_D₂_assoc 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
ComplexShape.π
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.mapBifunctor
HomologicalComplex.ÎčMapBifunctor
D₂
d₂
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
Îč_D₂

---

← Back to Index