Documentation Verification Report

BifunctorAssociator

šŸ“ Source: Mathlib/Algebra/Homology/BifunctorAssociator.lean

Statistics

MetricCount
DefinitionsHasGoodTrifunctor₁₂Obj, HasGoodTrifunctorā‚‚ā‚ƒObj, mapBifunctorAssociator, mapBifunctorAssociatorX, D₁, Dā‚‚, Dā‚ƒ, d₁, dā‚‚, dā‚ƒ, mapBifunctor₁₂Desc, ι, ιOrZero, D₁, Dā‚‚, Dā‚ƒ, d₁, dā‚‚, dā‚ƒ, mapBifunctorā‚‚ā‚ƒDesc, ι, ιOrZero
22
TheoremsinstHasMapProdObjGradedObjectFunctorMapBifunctorMapBifunctorMapObjĻ€X, instHasMapProdObjGradedObjectFunctorMapBifunctorXMapBifunctorMapObjĻ€, instHasMapProdObjGradedObjectFunctorMapBifunctorXĻ€, mapBifunctorAssociatorX_hom_D₁, mapBifunctorAssociatorX_hom_D₁_assoc, mapBifunctorAssociatorX_hom_Dā‚‚, mapBifunctorAssociatorX_hom_Dā‚‚_assoc, mapBifunctorAssociatorX_hom_Dā‚ƒ, mapBifunctorAssociatorX_hom_Dā‚ƒ_assoc, d_eq, d₁_eq, d₁_eq_zero, dā‚‚_eq, dā‚‚_eq_zero, dā‚ƒ_eq, dā‚ƒ_eq_zero, hom_ext, hom_ext_iff, ιOrZero_eq, ιOrZero_eq_zero, ι_D₁, ι_D₁_assoc, ι_Dā‚‚, ι_Dā‚‚_assoc, ι_Dā‚ƒ, ι_Dā‚ƒ_assoc, ι_eq, ι_mapBifunctor₁₂Desc, ι_mapBifunctor₁₂Desc_assoc, d_eq, d₁_eq, d₁_eq_zero, dā‚‚_eq, dā‚‚_eq_zero, dā‚ƒ_eq, dā‚ƒ_eq_zero, hom_ext, ιOrZero_eq, ιOrZero_eq_zero, ι_D₁, ι_D₁_assoc, ι_Dā‚‚, ι_Dā‚‚_assoc, ι_Dā‚ƒ, ι_Dā‚ƒ_assoc, ι_eq, ι_mapBifunctorā‚‚ā‚ƒDesc, ι_mapBifunctorā‚‚ā‚ƒDesc_assoc, ιOrZero_mapBifunctorAssociatorX_hom, ιOrZero_mapBifunctorAssociatorX_hom_assoc, ι_mapBifunctorAssociatorX_hom, ι_mapBifunctorAssociatorX_hom_assoc
52
Total74

HomologicalComplex

Definitions

NameCategoryTheorems
HasGoodTrifunctor₁₂Obj šŸ“–MathDef—
HasGoodTrifunctorā‚‚ā‚ƒObj šŸ“–MathDef—
mapBifunctorAssociator šŸ“–CompOp—
mapBifunctorAssociatorX šŸ“–CompOp
10 mathmath: ι_mapBifunctorAssociatorX_hom, mapBifunctorAssociatorX_hom_Dā‚‚, mapBifunctorAssociatorX_hom_Dā‚ƒ_assoc, ι_mapBifunctorAssociatorX_hom_assoc, ιOrZero_mapBifunctorAssociatorX_hom, mapBifunctorAssociatorX_hom_Dā‚‚_assoc, mapBifunctorAssociatorX_hom_D₁, mapBifunctorAssociatorX_hom_Dā‚ƒ, mapBifunctorAssociatorX_hom_D₁_assoc, ιOrZero_mapBifunctorAssociatorX_hom_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
instHasMapProdObjGradedObjectFunctorMapBifunctorMapBifunctorMapObjĻ€X šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
CategoryTheory.GradedObject.HasMap
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
CategoryTheory.GradedObject.mapBifunctor
CategoryTheory.GradedObject.mapBifunctorMapObj
ComplexShape.Ļ€
X
instHasMapProdObjGradedObjectFunctorMapBifunctorXĻ€
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
instHasMapProdObjGradedObjectFunctorMapBifunctorXMapBifunctorMapObjĻ€ šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HasMapBifunctor
mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.GradedObject.HasMap
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
CategoryTheory.GradedObject.mapBifunctor
X
CategoryTheory.GradedObject.mapBifunctorMapObj
ComplexShape.Ļ€
instHasMapProdObjGradedObjectFunctorMapBifunctorXĻ€
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
instHasMapProdObjGradedObjectFunctorMapBifunctorXĻ€ šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
CategoryTheory.GradedObject.HasMap
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
CategoryTheory.GradedObject.mapBifunctor
X
ComplexShape.Ļ€
——
mapBifunctorAssociatorX_hom_D₁ šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HasMapBifunctor
mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
HasGoodTrifunctor₁₂Obj
HasGoodTrifunctorā‚‚ā‚ƒObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
mapBifunctorAssociatorX
mapBifunctorā‚‚ā‚ƒ.D₁
mapBifunctor₁₂.D₁
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
mapBifunctor₁₂.hom_ext
mapBifunctor₁₂.ι_D₁_assoc
ι_mapBifunctorAssociatorX_hom_assoc
mapBifunctorā‚‚ā‚ƒ.ι_D₁
CategoryTheory.NatTrans.naturality_app_app
mapBifunctor₁₂.d₁_eq
mapBifunctorā‚‚ā‚ƒ.d₁_eq
CategoryTheory.Linear.comp_units_smul
CategoryTheory.Linear.units_smul_comp
CategoryTheory.Category.assoc
ComplexShape.associative_ε₁_eq_mul
ιOrZero_mapBifunctorAssociatorX_hom
smul_left_cancel_iff
Mathlib.Tactic.Reassoc.eq_whisker'
mapBifunctor₁₂.d₁_eq_zero
mapBifunctorā‚‚ā‚ƒ.d₁_eq_zero
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.zero_comp
mapBifunctorAssociatorX_hom_D₁_assoc šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HasMapBifunctor
mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
HasGoodTrifunctor₁₂Obj
HasGoodTrifunctorā‚‚ā‚ƒObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
mapBifunctorAssociatorX
mapBifunctorā‚‚ā‚ƒ.D₁
mapBifunctor₁₂.D₁
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapBifunctorAssociatorX_hom_D₁
mapBifunctorAssociatorX_hom_Dā‚‚ šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HasMapBifunctor
mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
HasGoodTrifunctor₁₂Obj
HasGoodTrifunctorā‚‚ā‚ƒObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
mapBifunctorAssociatorX
mapBifunctorā‚‚ā‚ƒ.Dā‚‚
mapBifunctor₁₂.Dā‚‚
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
mapBifunctor₁₂.hom_ext
mapBifunctor₁₂.ι_Dā‚‚_assoc
ι_mapBifunctorAssociatorX_hom_assoc
mapBifunctorā‚‚ā‚ƒ.ι_Dā‚‚
CategoryTheory.NatTrans.naturality_app
mapBifunctor₁₂.dā‚‚_eq
mapBifunctorā‚‚ā‚ƒ.dā‚‚_eq
CategoryTheory.Linear.units_smul_comp
CategoryTheory.Category.assoc
ιOrZero_mapBifunctorAssociatorX_hom
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Linear.comp_units_smul
ComplexShape.associative_ε₂_ε₁
mapBifunctor₁₂.dā‚‚_eq_zero
mapBifunctorā‚‚ā‚ƒ.dā‚‚_eq_zero
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.zero_comp
mapBifunctorAssociatorX_hom_Dā‚‚_assoc šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HasMapBifunctor
mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
HasGoodTrifunctor₁₂Obj
HasGoodTrifunctorā‚‚ā‚ƒObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
mapBifunctorAssociatorX
mapBifunctorā‚‚ā‚ƒ.Dā‚‚
mapBifunctor₁₂.Dā‚‚
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapBifunctorAssociatorX_hom_Dā‚‚
mapBifunctorAssociatorX_hom_Dā‚ƒ šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HasMapBifunctor
mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
HasGoodTrifunctor₁₂Obj
HasGoodTrifunctorā‚‚ā‚ƒObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
mapBifunctorAssociatorX
mapBifunctorā‚‚ā‚ƒ.Dā‚ƒ
mapBifunctor₁₂.Dā‚ƒ
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
mapBifunctor₁₂.hom_ext
mapBifunctor₁₂.ι_Dā‚ƒ_assoc
ι_mapBifunctorAssociatorX_hom_assoc
mapBifunctorā‚‚ā‚ƒ.ι_Dā‚ƒ
mapBifunctor₁₂.dā‚ƒ_eq
mapBifunctorā‚‚ā‚ƒ.dā‚ƒ_eq
CategoryTheory.Linear.comp_units_smul
CategoryTheory.Linear.units_smul_comp
CategoryTheory.Category.assoc
ιOrZero_mapBifunctorAssociatorX_hom
CategoryTheory.NatTrans.naturality_assoc
ComplexShape.associative_ε₂_eq_mul
mapBifunctor₁₂.dā‚ƒ_eq_zero
mapBifunctorā‚‚ā‚ƒ.dā‚ƒ_eq_zero
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.zero_comp
mapBifunctorAssociatorX_hom_Dā‚ƒ_assoc šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HasMapBifunctor
mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
HasGoodTrifunctor₁₂Obj
HasGoodTrifunctorā‚‚ā‚ƒObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
mapBifunctorAssociatorX
mapBifunctorā‚‚ā‚ƒ.Dā‚ƒ
mapBifunctor₁₂.Dā‚ƒ
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapBifunctorAssociatorX_hom_Dā‚ƒ
ιOrZero_mapBifunctorAssociatorX_hom šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HasMapBifunctor
mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
HasGoodTrifunctor₁₂Obj
HasGoodTrifunctorā‚‚ā‚ƒObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
mapBifunctor₁₂.ιOrZero
CategoryTheory.Iso.hom
mapBifunctorAssociatorX
CategoryTheory.bifunctorComp₁₂
CategoryTheory.bifunctorCompā‚‚ā‚ƒ
CategoryTheory.NatTrans.app
mapBifunctorā‚‚ā‚ƒ.ιOrZero
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
mapBifunctor₁₂.ιOrZero_eq
mapBifunctorā‚‚ā‚ƒ.ιOrZero_eq
ι_mapBifunctorAssociatorX_hom
mapBifunctor₁₂.ιOrZero_eq_zero
mapBifunctorā‚‚ā‚ƒ.ιOrZero_eq_zero
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.comp_zero
ιOrZero_mapBifunctorAssociatorX_hom_assoc šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HasMapBifunctor
mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
HasGoodTrifunctor₁₂Obj
HasGoodTrifunctorā‚‚ā‚ƒObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
mapBifunctor₁₂.ιOrZero
CategoryTheory.Iso.hom
mapBifunctorAssociatorX
CategoryTheory.bifunctorCompā‚‚ā‚ƒ
CategoryTheory.NatTrans.app
CategoryTheory.bifunctorComp₁₂
mapBifunctorā‚‚ā‚ƒ.ιOrZero
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ιOrZero_mapBifunctorAssociatorX_hom
ι_mapBifunctorAssociatorX_hom šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HasMapBifunctor
mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
HasGoodTrifunctor₁₂Obj
HasGoodTrifunctorā‚‚ā‚ƒObj
ComplexShape.r
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
mapBifunctor₁₂.ι
CategoryTheory.Iso.hom
mapBifunctorAssociatorX
CategoryTheory.bifunctorComp₁₂
CategoryTheory.bifunctorCompā‚‚ā‚ƒ
CategoryTheory.NatTrans.app
mapBifunctorā‚‚ā‚ƒ.ι
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.GradedObject.ι_mapBifunctorAssociator_hom
instHasMapProdObjGradedObjectFunctorMapBifunctorXĻ€
ι_mapBifunctorAssociatorX_hom_assoc šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HasMapBifunctor
mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
HasGoodTrifunctor₁₂Obj
HasGoodTrifunctorā‚‚ā‚ƒObj
ComplexShape.r
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
mapBifunctor₁₂.ι
CategoryTheory.Iso.hom
mapBifunctorAssociatorX
CategoryTheory.bifunctorCompā‚‚ā‚ƒ
CategoryTheory.NatTrans.app
CategoryTheory.bifunctorComp₁₂
mapBifunctorā‚‚ā‚ƒ.ι
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_mapBifunctorAssociatorX_hom

HomologicalComplex.mapBifunctor₁₂

Definitions

NameCategoryTheorems
D₁ šŸ“–CompOp
5 mathmath: d_eq, ι_D₁_assoc, ι_D₁, HomologicalComplex.mapBifunctorAssociatorX_hom_D₁, HomologicalComplex.mapBifunctorAssociatorX_hom_D₁_assoc
Dā‚‚ šŸ“–CompOp
5 mathmath: d_eq, ι_Dā‚‚_assoc, HomologicalComplex.mapBifunctorAssociatorX_hom_Dā‚‚, HomologicalComplex.mapBifunctorAssociatorX_hom_Dā‚‚_assoc, ι_Dā‚‚
Dā‚ƒ šŸ“–CompOp
5 mathmath: ι_Dā‚ƒ_assoc, d_eq, HomologicalComplex.mapBifunctorAssociatorX_hom_Dā‚ƒ_assoc, ι_Dā‚ƒ, HomologicalComplex.mapBifunctorAssociatorX_hom_Dā‚ƒ
d₁ šŸ“–CompOp
4 mathmath: ι_D₁_assoc, ι_D₁, d₁_eq_zero, d₁_eq
dā‚‚ šŸ“–CompOp
4 mathmath: ι_Dā‚‚_assoc, dā‚‚_eq_zero, ι_Dā‚‚, dā‚‚_eq
dā‚ƒ šŸ“–CompOp
4 mathmath: ι_Dā‚ƒ_assoc, ι_Dā‚ƒ, dā‚ƒ_eq_zero, dā‚ƒ_eq
mapBifunctor₁₂Desc šŸ“–CompOp
2 mathmath: ι_mapBifunctor₁₂Desc, ι_mapBifunctor₁₂Desc_assoc
ι šŸ“–CompOp
13 mathmath: ι_Dā‚ƒ_assoc, HomologicalComplex.ι_mapBifunctorAssociatorX_hom, ι_D₁_assoc, hom_ext_iff, ι_mapBifunctor₁₂Desc, ι_Dā‚‚_assoc, ι_D₁, HomologicalComplex.ι_mapBifunctorAssociatorX_hom_assoc, ι_Dā‚ƒ, ιOrZero_eq, ι_eq, ι_Dā‚‚, ι_mapBifunctor₁₂Desc_assoc
ιOrZero šŸ“–CompOp
7 mathmath: ιOrZero_eq_zero, HomologicalComplex.ιOrZero_mapBifunctorAssociatorX_hom, ιOrZero_eq, d₁_eq, dā‚ƒ_eq, dā‚‚_eq, HomologicalComplex.ιOrZero_mapBifunctorAssociatorX_hom_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
d_eq šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
HomologicalComplex.HasGoodTrifunctor₁₂Obj
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
D₁
Dā‚‚
Dā‚ƒ
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomologicalComplex.mapBifunctor.d_eq
hom_ext
CategoryTheory.Preadditive.comp_add
ι_D₁
ι_Dā‚‚
ι_eq
CategoryTheory.Category.assoc
HomologicalComplex.mapBifunctor.ι_D₁
HomologicalComplex.mapBifunctor.d₁_eq
CategoryTheory.Functor.map_add
CategoryTheory.Preadditive.add_comp
smul_add
CategoryTheory.Linear.comp_units_smul
CategoryTheory.NatTrans.comp_app_assoc
CategoryTheory.Functor.map_comp
ComplexShape.next_π₁
d₁_eq
ιOrZero_eq
CategoryTheory.Functor.map_units_smul
CategoryTheory.Functor.intLinear
CategoryTheory.NatTrans.app_units_zsmul
CategoryTheory.NatTrans.comp_app
CategoryTheory.Linear.units_smul_comp
smul_smul
d₁_eq_zero
HomologicalComplex.mapBifunctor.d₁_eq_zero
CategoryTheory.Functor.map_zero
CategoryTheory.Limits.zero_app
CategoryTheory.Limits.zero_comp
smul_zero
HomologicalComplex.mapBifunctor.ι_Dā‚‚
ComplexShape.next_π₂
HomologicalComplex.mapBifunctor.dā‚‚_eq
dā‚‚_eq
dā‚‚_eq_zero
HomologicalComplex.mapBifunctor.dā‚‚_eq_zero
HomologicalComplex.mapBifunctor.d₁_eq_zero'
CategoryTheory.Limits.comp_zero
add_zero
ιOrZero_eq_zero
ComplexShape.rel_π₁
ComplexShape.next_eq'
ComplexShape.rel_π₂
zero_add
d₁_eq šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
ComplexShape.Rel
d₁
Units
Int.instMonoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
Units.instMul
ComplexShape.ε₁
ComplexShape.Ļ€
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
HomologicalComplex.d
ιOrZero
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ComplexShape.next_eq'
d₁_eq_zero šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
ComplexShape.Rel
ComplexShape.next
d₁
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomologicalComplex.shape
CategoryTheory.Functor.map_zero
CategoryTheory.Limits.zero_app
CategoryTheory.Limits.zero_comp
smul_zero
dā‚‚_eq šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
ComplexShape.Rel
dā‚‚
Units
Int.instMonoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
Units.instMul
ComplexShape.ε₁
ComplexShape.Ļ€
ComplexShape.ε₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
HomologicalComplex.d
ιOrZero
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ComplexShape.next_eq'
dā‚‚_eq_zero šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
ComplexShape.Rel
ComplexShape.next
dā‚‚
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomologicalComplex.shape
CategoryTheory.Functor.map_zero
CategoryTheory.Limits.zero_app
CategoryTheory.Limits.zero_comp
smul_zero
dā‚ƒ_eq šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
ComplexShape.Rel
dā‚ƒ
Units
Int.instMonoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
ComplexShape.ε₂
ComplexShape.Ļ€
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
HomologicalComplex.d
ιOrZero
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ComplexShape.next_eq'
dā‚ƒ_eq_zero šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
ComplexShape.Rel
ComplexShape.next
dā‚ƒ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomologicalComplex.shape
CategoryTheory.Functor.map_zero
CategoryTheory.Limits.zero_comp
smul_zero
hom_ext šŸ“–ā€”CategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
HomologicalComplex.HasGoodTrifunctor₁₂Obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ι
——CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.GradedObject.mapBifunctor₁₂BifunctorMapObj_ext
HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorXĻ€
hom_ext_iff šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
HomologicalComplex.HasGoodTrifunctor₁₂Obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ι
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
hom_ext
ιOrZero_eq šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
ComplexShape.r
ιOrZero
ι
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ιOrZero_eq_zero šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
ιOrZero
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ι_D₁ šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
ComplexShape.r
HomologicalComplex.HasGoodTrifunctor₁₂Obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ι
D₁
d₁
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ι_mapBifunctor₁₂Desc
ι_D₁_assoc šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
ComplexShape.r
HomologicalComplex.HasGoodTrifunctor₁₂Obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ι
D₁
d₁
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_D₁
ι_Dā‚‚ šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
ComplexShape.r
HomologicalComplex.HasGoodTrifunctor₁₂Obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ι
Dā‚‚
dā‚‚
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ι_mapBifunctor₁₂Desc
ι_Dā‚‚_assoc šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
ComplexShape.r
HomologicalComplex.HasGoodTrifunctor₁₂Obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ι
Dā‚‚
dā‚‚
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_Dā‚‚
ι_Dā‚ƒ šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
ComplexShape.r
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ι
Dā‚ƒ
dā‚ƒ
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ι_eq
CategoryTheory.Category.assoc
HomologicalComplex.mapBifunctor.ι_Dā‚‚
dā‚ƒ_eq
HomologicalComplex.mapBifunctor.dā‚‚_eq
ιOrZero_eq
CategoryTheory.Linear.comp_units_smul
smul_left_cancel_iff
CategoryTheory.NatTrans.naturality_assoc
HomologicalComplex.mapBifunctor.dā‚‚_eq_zero'
CategoryTheory.Limits.comp_zero
ιOrZero_eq_zero
smul_zero
HomologicalComplex.mapBifunctor.dā‚‚_eq_zero
dā‚ƒ_eq_zero
ι_Dā‚ƒ_assoc šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
ComplexShape.r
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ι
Dā‚ƒ
dā‚ƒ
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_Dā‚ƒ
ι_eq šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
ComplexShape.Ļ€
ι
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
HomologicalComplex.ιMapBifunctor
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ι_mapBifunctor₁₂Desc šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
HomologicalComplex.HasGoodTrifunctor₁₂Obj
ComplexShape.r
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ι
mapBifunctor₁₂Desc
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.GradedObject.ι_mapBifunctor₁₂BifunctorDesc
HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorXĻ€
ι_mapBifunctor₁₂Desc_assoc šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
HomologicalComplex.HasGoodTrifunctor₁₂Obj
ComplexShape.r
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ι
mapBifunctor₁₂Desc
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_mapBifunctor₁₂Desc

HomologicalComplex.mapBifunctorā‚‚ā‚ƒ

Definitions

NameCategoryTheorems
D₁ šŸ“–CompOp
5 mathmath: ι_D₁, HomologicalComplex.mapBifunctorAssociatorX_hom_D₁, ι_D₁_assoc, d_eq, HomologicalComplex.mapBifunctorAssociatorX_hom_D₁_assoc
Dā‚‚ šŸ“–CompOp
5 mathmath: HomologicalComplex.mapBifunctorAssociatorX_hom_Dā‚‚, ι_Dā‚‚, HomologicalComplex.mapBifunctorAssociatorX_hom_Dā‚‚_assoc, d_eq, ι_Dā‚‚_assoc
Dā‚ƒ šŸ“–CompOp
5 mathmath: ι_Dā‚ƒ, HomologicalComplex.mapBifunctorAssociatorX_hom_Dā‚ƒ_assoc, d_eq, HomologicalComplex.mapBifunctorAssociatorX_hom_Dā‚ƒ, ι_Dā‚ƒ_assoc
d₁ šŸ“–CompOp
4 mathmath: ι_D₁, d₁_eq, ι_D₁_assoc, d₁_eq_zero
dā‚‚ šŸ“–CompOp
4 mathmath: dā‚‚_eq, ι_Dā‚‚, dā‚‚_eq_zero, ι_Dā‚‚_assoc
dā‚ƒ šŸ“–CompOp
4 mathmath: ι_Dā‚ƒ, dā‚ƒ_eq, dā‚ƒ_eq_zero, ι_Dā‚ƒ_assoc
mapBifunctorā‚‚ā‚ƒDesc šŸ“–CompOp
2 mathmath: ι_mapBifunctorā‚‚ā‚ƒDesc, ι_mapBifunctorā‚‚ā‚ƒDesc_assoc
ι šŸ“–CompOp
12 mathmath: ι_Dā‚ƒ, HomologicalComplex.ι_mapBifunctorAssociatorX_hom, ι_mapBifunctorā‚‚ā‚ƒDesc, ι_D₁, ι_mapBifunctorā‚‚ā‚ƒDesc_assoc, ι_Dā‚‚, ιOrZero_eq, HomologicalComplex.ι_mapBifunctorAssociatorX_hom_assoc, ι_eq, ι_D₁_assoc, ι_Dā‚ƒ_assoc, ι_Dā‚‚_assoc
ιOrZero šŸ“–CompOp
7 mathmath: dā‚‚_eq, dā‚ƒ_eq, ιOrZero_eq_zero, ιOrZero_eq, HomologicalComplex.ιOrZero_mapBifunctorAssociatorX_hom, d₁_eq, HomologicalComplex.ιOrZero_mapBifunctorAssociatorX_hom_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
d_eq šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomologicalComplex.HasGoodTrifunctorā‚‚ā‚ƒObj
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
D₁
Dā‚‚
Dā‚ƒ
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomologicalComplex.mapBifunctor.d_eq
add_assoc
hom_ext
CategoryTheory.Preadditive.comp_add
ι_Dā‚‚
ι_Dā‚ƒ
ComplexShape.assoc
ι_eq
CategoryTheory.Category.assoc
HomologicalComplex.mapBifunctor.ι_Dā‚‚
HomologicalComplex.mapBifunctor.dā‚‚_eq
CategoryTheory.Linear.comp_units_smul
CategoryTheory.Functor.map_add
CategoryTheory.Preadditive.add_comp
smul_add
CategoryTheory.Functor.map_comp_assoc
HomologicalComplex.mapBifunctor.ι_D₁
dā‚‚_eq
ComplexShape.next_π₁
HomologicalComplex.mapBifunctor.d₁_eq
CategoryTheory.Functor.map_units_smul
CategoryTheory.Functor.intLinear
CategoryTheory.Functor.map_comp
CategoryTheory.Linear.units_smul_comp
smul_smul
smul_left_cancel_iff
ιOrZero_eq
dā‚‚_eq_zero
HomologicalComplex.mapBifunctor.d₁_eq_zero
CategoryTheory.Functor.map_zero
CategoryTheory.Limits.zero_comp
smul_zero
dā‚ƒ_eq
ComplexShape.next_π₂
dā‚ƒ_eq_zero
HomologicalComplex.mapBifunctor.dā‚‚_eq_zero
HomologicalComplex.mapBifunctor.dā‚‚_eq_zero'
CategoryTheory.Limits.comp_zero
add_zero
ιOrZero_eq_zero
ComplexShape.rel_π₁
ComplexShape.rel_π₂
d₁_eq šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ComplexShape.Rel
d₁
Units
Int.instMonoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
ComplexShape.ε₁
ComplexShape.Ļ€
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
HomologicalComplex.d
ιOrZero
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ComplexShape.next_eq'
d₁_eq_zero šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ComplexShape.Rel
ComplexShape.next
d₁
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomologicalComplex.shape
CategoryTheory.Functor.map_zero
CategoryTheory.Limits.zero_app
CategoryTheory.Limits.zero_comp
smul_zero
dā‚‚_eq šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ComplexShape.Rel
dā‚‚
Units
Int.instMonoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
Units.instMul
ComplexShape.ε₂
ComplexShape.Ļ€
ComplexShape.ε₁
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
HomologicalComplex.d
ιOrZero
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ComplexShape.next_eq'
dā‚‚_eq_zero šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ComplexShape.Rel
ComplexShape.next
dā‚‚
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomologicalComplex.shape
CategoryTheory.Functor.map_zero
CategoryTheory.Limits.zero_app
CategoryTheory.Limits.zero_comp
smul_zero
dā‚ƒ_eq šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ComplexShape.Rel
dā‚ƒ
Units
Int.instMonoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
Units.instMul
ComplexShape.ε₂
ComplexShape.Ļ€
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
HomologicalComplex.d
ιOrZero
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ComplexShape.next_eq'
dā‚ƒ_eq_zero šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ComplexShape.Rel
ComplexShape.next
dā‚ƒ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomologicalComplex.shape
CategoryTheory.Functor.map_zero
CategoryTheory.Limits.zero_comp
smul_zero
hom_ext šŸ“–ā€”CategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomologicalComplex.HasGoodTrifunctorā‚‚ā‚ƒObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ι
——CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.GradedObject.mapBifunctorBifunctorā‚‚ā‚ƒMapObj_ext
HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorXĻ€
HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorXMapBifunctorMapObjπ
ιOrZero_eq šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ComplexShape.r
ιOrZero
ι
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ιOrZero_eq_zero šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ιOrZero
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ι_D₁ šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ComplexShape.r
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ι
D₁
d₁
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ComplexShape.assoc
ι_eq
CategoryTheory.Category.assoc
HomologicalComplex.mapBifunctor.ι_D₁
d₁_eq
HomologicalComplex.mapBifunctor.d₁_eq
ιOrZero_eq
CategoryTheory.Linear.comp_units_smul
CategoryTheory.NatTrans.naturality_assoc
HomologicalComplex.mapBifunctor.d₁_eq_zero'
CategoryTheory.Limits.comp_zero
ιOrZero_eq_zero
smul_zero
HomologicalComplex.mapBifunctor.d₁_eq_zero
d₁_eq_zero
ι_D₁_assoc šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ComplexShape.r
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ι
D₁
d₁
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_D₁
ι_Dā‚‚ šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ComplexShape.r
HomologicalComplex.HasGoodTrifunctorā‚‚ā‚ƒObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ι
Dā‚‚
dā‚‚
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ι_mapBifunctorā‚‚ā‚ƒDesc
ι_Dā‚‚_assoc šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ComplexShape.r
HomologicalComplex.HasGoodTrifunctorā‚‚ā‚ƒObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ι
Dā‚‚
dā‚‚
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_Dā‚‚
ι_Dā‚ƒ šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ComplexShape.r
HomologicalComplex.HasGoodTrifunctorā‚‚ā‚ƒObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ι
Dā‚ƒ
dā‚ƒ
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ι_mapBifunctorā‚‚ā‚ƒDesc
ι_Dā‚ƒ_assoc šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ComplexShape.r
HomologicalComplex.HasGoodTrifunctorā‚‚ā‚ƒObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ι
Dā‚ƒ
dā‚ƒ
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_Dā‚ƒ
ι_eq šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ComplexShape.Ļ€
ι
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Functor.map
HomologicalComplex.ιMapBifunctor
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ι_mapBifunctorā‚‚ā‚ƒDesc šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomologicalComplex.HasGoodTrifunctorā‚‚ā‚ƒObj
ComplexShape.r
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ι
mapBifunctorā‚‚ā‚ƒDesc
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.GradedObject.ι_mapBifunctorBifunctorā‚‚ā‚ƒDesc
HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorXĻ€
ι_mapBifunctorā‚‚ā‚ƒDesc_assoc šŸ“–mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.Additive
HomologicalComplex.HasMapBifunctor
HomologicalComplex.mapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomologicalComplex.HasGoodTrifunctorā‚‚ā‚ƒObj
ComplexShape.r
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ι
mapBifunctorā‚‚ā‚ƒDesc
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_mapBifunctorā‚‚ā‚ƒDesc

---

← Back to Index