Documentation Verification Report

BifunctorFlip

📁 Source: Mathlib/Algebra/Homology/BifunctorFlip.lean

Statistics

MetricCount
DefinitionsmapBifunctorFlipIso
1
TheoremshasMapBifunctor_flip_iff, instHasMapBifunctorFlip, mapBifunctorFlipIso_flip, mapBifunctorFlipIso_hom_naturality, mapBifunctorFlipIso_hom_naturality_assoc, ι_mapBifunctorFlipIso_hom, ι_mapBifunctorFlipIso_hom_assoc, ι_mapBifunctorFlipIso_inv, ι_mapBifunctorFlipIso_inv_assoc
9
Total10

HomologicalComplex

Definitions

NameCategoryTheorems
mapBifunctorFlipIso 📖CompOp
7 mathmath: mapBifunctorFlipIso_hom_naturality_assoc, ι_mapBifunctorFlipIso_inv_assoc, mapBifunctorFlipIso_hom_naturality, mapBifunctorFlipIso_flip, ι_mapBifunctorFlipIso_hom, ι_mapBifunctorFlipIso_hom_assoc, ι_mapBifunctorFlipIso_inv

Theorems

NameKindAssumesProvesValidatesDepends On
hasMapBifunctor_flip_iff 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
CategoryTheory.Functor.flip
CategoryTheory.Functor.instPreservesZeroMorphismsFlipOfObj
CategoryTheory.Functor.instPreservesZeroMorphismsObjFlip
HomologicalComplex₂.flip_hasTotal_iff
instHasMapBifunctorFlip 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
CategoryTheory.Functor.flip
CategoryTheory.Functor.instPreservesZeroMorphismsFlipOfObj
CategoryTheory.Functor.instPreservesZeroMorphismsObjFlip
CategoryTheory.Functor.instPreservesZeroMorphismsFlipOfObj
CategoryTheory.Functor.instPreservesZeroMorphismsObjFlip
hasMapBifunctor_flip_iff
mapBifunctorFlipIso_flip 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
mapBifunctorFlipIso
CategoryTheory.Functor.flip
CategoryTheory.Functor.instPreservesZeroMorphismsFlipOfObj
CategoryTheory.Functor.instPreservesZeroMorphismsObjFlip
instHasMapBifunctorFlip
CategoryTheory.Iso.symm
HomologicalComplex
instCategory
mapBifunctor
HomologicalComplex₂.flip_totalFlipIso
mapBifunctorFlipIso_hom_naturality 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
mapBifunctor
CategoryTheory.Functor.flip
CategoryTheory.Functor.instPreservesZeroMorphismsFlipOfObj
CategoryTheory.Functor.instPreservesZeroMorphismsObjFlip
instHasMapBifunctorFlip
mapBifunctorMap
CategoryTheory.Iso.hom
mapBifunctorFlipIso
hom_ext
CategoryTheory.Functor.instPreservesZeroMorphismsFlipOfObj
CategoryTheory.Functor.instPreservesZeroMorphismsObjFlip
instHasMapBifunctorFlip
mapBifunctor.hom_ext
ι_mapBifunctorMap_assoc
ι_mapBifunctorFlipIso_hom
CategoryTheory.Linear.comp_units_smul
CategoryTheory.NatTrans.naturality_assoc
ι_mapBifunctorFlipIso_hom_assoc
CategoryTheory.Linear.units_smul_comp
ι_mapBifunctorMap
mapBifunctorFlipIso_hom_naturality_assoc 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
mapBifunctor
CategoryTheory.Functor.flip
CategoryTheory.Functor.instPreservesZeroMorphismsFlipOfObj
CategoryTheory.Functor.instPreservesZeroMorphismsObjFlip
instHasMapBifunctorFlip
mapBifunctorMap
CategoryTheory.Iso.hom
mapBifunctorFlipIso
CategoryTheory.Functor.instPreservesZeroMorphismsFlipOfObj
CategoryTheory.Functor.instPreservesZeroMorphismsObjFlip
instHasMapBifunctorFlip
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapBifunctorFlipIso_hom_naturality
ι_mapBifunctorFlipIso_hom 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
ComplexShape.π
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.flip
X
mapBifunctor
CategoryTheory.Functor.instPreservesZeroMorphismsFlipOfObj
CategoryTheory.Functor.instPreservesZeroMorphismsObjFlip
instHasMapBifunctorFlip
ιMapBifunctor
Hom.f
CategoryTheory.Iso.hom
HomologicalComplex
instCategory
mapBifunctorFlipIso
Units
Int.instMonoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
ComplexShape.σ
HomologicalComplex₂.ιTotal_totalFlipIso_f_hom
ι_mapBifunctorFlipIso_hom_assoc 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
ComplexShape.π
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.flip
X
mapBifunctor
CategoryTheory.Functor.instPreservesZeroMorphismsFlipOfObj
CategoryTheory.Functor.instPreservesZeroMorphismsObjFlip
instHasMapBifunctorFlip
ιMapBifunctor
Hom.f
CategoryTheory.Iso.hom
HomologicalComplex
instCategory
mapBifunctorFlipIso
Units
Int.instMonoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
ComplexShape.σ
CategoryTheory.Functor.instPreservesZeroMorphismsFlipOfObj
CategoryTheory.Functor.instPreservesZeroMorphismsObjFlip
instHasMapBifunctorFlip
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_mapBifunctorFlipIso_hom
ι_mapBifunctorFlipIso_inv 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
ComplexShape.π
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
mapBifunctor
CategoryTheory.Functor.flip
CategoryTheory.Functor.instPreservesZeroMorphismsFlipOfObj
CategoryTheory.Functor.instPreservesZeroMorphismsObjFlip
instHasMapBifunctorFlip
ιMapBifunctor
Hom.f
CategoryTheory.Iso.inv
HomologicalComplex
instCategory
mapBifunctorFlipIso
Units
Int.instMonoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
ComplexShape.σ
HomologicalComplex₂.ιTotal_totalFlipIso_f_inv
ι_mapBifunctorFlipIso_inv_assoc 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
ComplexShape.π
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
mapBifunctor
ιMapBifunctor
CategoryTheory.Functor.flip
CategoryTheory.Functor.instPreservesZeroMorphismsFlipOfObj
CategoryTheory.Functor.instPreservesZeroMorphismsObjFlip
instHasMapBifunctorFlip
Hom.f
CategoryTheory.Iso.inv
HomologicalComplex
instCategory
mapBifunctorFlipIso
Units
Int.instMonoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
ComplexShape.σ
CategoryTheory.Functor.instPreservesZeroMorphismsFlipOfObj
CategoryTheory.Functor.instPreservesZeroMorphismsObjFlip
instHasMapBifunctorFlip
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_mapBifunctorFlipIso_inv

---

← Back to Index