| Name | Category | Theorems |
HasMapBifunctor đ | MathDef | â |
mapBifunctor đ | CompOp | 13 mathmath: mapBifunctorShiftâIso_hom_naturalityâ_assoc, CategoryTheory.Functor.commShiftIso_mapâCochainComplex_flip_hom_app, mapBifunctorShiftâIso_hom_naturalityâ_assoc, Κ_mapBifunctorShiftâIso_hom_f_assoc, mapBifunctorShiftâIso_hom_naturalityâ, CategoryTheory.Functor.commShiftIso_mapâCochainComplex_inv_app, Κ_mapBifunctorShiftâIso_hom_f, CategoryTheory.Functor.commShiftIso_mapâCochainComplex_flip_inv_app, Κ_mapBifunctorShiftâIso_hom_f_assoc, mapBifunctorShiftâIso_trans_mapBifunctorShiftâIso, mapBifunctorShiftâIso_hom_naturalityâ, CategoryTheory.Functor.commShiftIso_mapâCochainComplex_hom_app, Κ_mapBifunctorShiftâIso_hom_f
|
mapBifunctorHomologicalComplexShiftâIso đ | CompOp | 2 mathmath: mapBifunctorHomologicalComplexShiftâIso_hom_f_f, mapBifunctorHomologicalComplexShiftâIso_inv_f_f
|
mapBifunctorHomologicalComplexShiftâIso đ | CompOp | 2 mathmath: mapBifunctorHomologicalComplexShiftâIso_inv_f_f, mapBifunctorHomologicalComplexShiftâIso_hom_f_f
|
mapBifunctorShiftâIso đ | CompOp | 7 mathmath: CategoryTheory.Functor.commShiftIso_mapâCochainComplex_flip_hom_app, mapBifunctorShiftâIso_hom_naturalityâ_assoc, CategoryTheory.Functor.commShiftIso_mapâCochainComplex_flip_inv_app, Κ_mapBifunctorShiftâIso_hom_f_assoc, mapBifunctorShiftâIso_trans_mapBifunctorShiftâIso, mapBifunctorShiftâIso_hom_naturalityâ, Κ_mapBifunctorShiftâIso_hom_f
|
mapBifunctorShiftâIso đ | CompOp | 7 mathmath: mapBifunctorShiftâIso_hom_naturalityâ_assoc, Κ_mapBifunctorShiftâIso_hom_f_assoc, mapBifunctorShiftâIso_hom_naturalityâ, CategoryTheory.Functor.commShiftIso_mapâCochainComplex_inv_app, Κ_mapBifunctorShiftâIso_hom_f, mapBifunctorShiftâIso_trans_mapBifunctorShiftâIso, CategoryTheory.Functor.commShiftIso_mapâCochainComplex_hom_app
|
ΚMapBifunctor đ | CompOp | 4 mathmath: Κ_mapBifunctorShiftâIso_hom_f_assoc, Κ_mapBifunctorShiftâIso_hom_f, Κ_mapBifunctorShiftâIso_hom_f_assoc, Κ_mapBifunctorShiftâIso_hom_f
|