Documentation Verification Report

BifunctorShift

📁 Source: Mathlib/Algebra/Homology/BifunctorShift.lean

Statistics

MetricCount
DefinitionsinstCommShiftCochainComplexIntObjFlipMap₂CochainComplex, instCommShiftCochainComplexIntObjMap₂CochainComplex, instCommShift₂IntCochainComplexIntMap₂CochainComplex, HasMapBifunctor, mapBifunctor, mapBifunctorHomologicalComplexShift₁Iso, mapBifunctorHomologicalComplexShift₂Iso, mapBifunctorShift₁Iso, mapBifunctorShift₂Iso, ιMapBifunctor
10
TheoremscommShiftIso_map₂CochainComplex_flip_hom_app, commShiftIso_map₂CochainComplex_flip_inv_app, commShiftIso_map₂CochainComplex_hom_app, commShiftIso_map₂CochainComplex_inv_app, instCommShiftCochainComplexIntMapFlipMap₂CochainComplex, instCommShiftCochainComplexIntMapMap₂CochainComplex, instHasMapBifunctorObjIntShiftFunctor, instHasMapBifunctorObjIntShiftFunctor_1, mapBifunctorHomologicalComplexShift₁Iso_hom_f_f, mapBifunctorHomologicalComplexShift₁Iso_inv_f_f, mapBifunctorHomologicalComplexShift₂Iso_hom_f_f, mapBifunctorHomologicalComplexShift₂Iso_inv_f_f, mapBifunctorShift₁Iso_hom_naturality₁, mapBifunctorShift₁Iso_hom_naturality₁_assoc, mapBifunctorShift₁Iso_trans_mapBifunctorShift₂Iso, mapBifunctorShift₂Iso_hom_naturality₂, mapBifunctorShift₂Iso_hom_naturality₂_assoc, ι_mapBifunctorShift₁Iso_hom_f, ι_mapBifunctorShift₁Iso_hom_f_assoc, ι_mapBifunctorShift₂Iso_hom_f, ι_mapBifunctorShift₂Iso_hom_f_assoc
21
Total31

CategoryTheory.Functor

Definitions

NameCategoryTheorems
instCommShiftCochainComplexIntObjFlipMap₂CochainComplex 📖CompOp
3 mathmath: commShiftIso_map₂CochainComplex_flip_hom_app, commShiftIso_map₂CochainComplex_flip_inv_app, instCommShiftCochainComplexIntMapFlipMap₂CochainComplex
instCommShiftCochainComplexIntObjMap₂CochainComplex 📖CompOp
3 mathmath: commShiftIso_map₂CochainComplex_inv_app, instCommShiftCochainComplexIntMapMap₂CochainComplex, commShiftIso_map₂CochainComplex_hom_app
instCommShift₂IntCochainComplexIntMap₂CochainComplex 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
commShiftIso_map₂CochainComplex_flip_hom_app 📖mathematicalAdditive
obj
CategoryTheory.Functor
category
CochainComplex.HasMapBifunctor
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
CategoryTheory.NatTrans.app
CochainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
comp
CategoryTheory.shiftFunctor
Int.instAddMonoid
CochainComplex.instHasShiftInt
flip
map₂CochainComplex
CategoryTheory.Iso.hom
CommShift.commShiftIso
instCommShiftCochainComplexIntObjFlipMap₂CochainComplex
CochainComplex.mapBifunctor
CochainComplex.instHasMapBifunctorObjIntShiftFunctor
CochainComplex.mapBifunctorShift₁Iso
—preservesZeroMorphisms_of_additive
AddRightCancelSemigroup.toIsRightCancelAdd
commShiftIso_map₂CochainComplex_flip_inv_app 📖mathematicalAdditive
obj
CategoryTheory.Functor
category
CochainComplex.HasMapBifunctor
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
CategoryTheory.NatTrans.app
CochainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
comp
flip
map₂CochainComplex
CategoryTheory.shiftFunctor
Int.instAddMonoid
CochainComplex.instHasShiftInt
CategoryTheory.Iso.inv
CommShift.commShiftIso
instCommShiftCochainComplexIntObjFlipMap₂CochainComplex
CochainComplex.mapBifunctor
CochainComplex.instHasMapBifunctorObjIntShiftFunctor
CochainComplex.mapBifunctorShift₁Iso
—preservesZeroMorphisms_of_additive
AddRightCancelSemigroup.toIsRightCancelAdd
commShiftIso_map₂CochainComplex_hom_app 📖mathematicalAdditive
obj
CategoryTheory.Functor
category
CochainComplex.HasMapBifunctor
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
CategoryTheory.NatTrans.app
CochainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
comp
CategoryTheory.shiftFunctor
Int.instAddMonoid
CochainComplex.instHasShiftInt
map₂CochainComplex
CategoryTheory.Iso.hom
CommShift.commShiftIso
instCommShiftCochainComplexIntObjMap₂CochainComplex
CochainComplex.mapBifunctor
CochainComplex.instHasMapBifunctorObjIntShiftFunctor_1
CochainComplex.mapBifunctorShift₂Iso
—preservesZeroMorphisms_of_additive
AddRightCancelSemigroup.toIsRightCancelAdd
commShiftIso_map₂CochainComplex_inv_app 📖mathematicalAdditive
obj
CategoryTheory.Functor
category
CochainComplex.HasMapBifunctor
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
CategoryTheory.NatTrans.app
CochainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
comp
map₂CochainComplex
CategoryTheory.shiftFunctor
Int.instAddMonoid
CochainComplex.instHasShiftInt
CategoryTheory.Iso.inv
CommShift.commShiftIso
instCommShiftCochainComplexIntObjMap₂CochainComplex
CochainComplex.mapBifunctor
CochainComplex.instHasMapBifunctorObjIntShiftFunctor_1
CochainComplex.mapBifunctorShift₂Iso
—preservesZeroMorphisms_of_additive
AddRightCancelSemigroup.toIsRightCancelAdd
instCommShiftCochainComplexIntMapFlipMap₂CochainComplex 📖mathematicalAdditive
obj
CategoryTheory.Functor
category
CochainComplex.HasMapBifunctor
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
CategoryTheory.NatTrans.CommShift
CochainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
flip
map₂CochainComplex
map
Int.instAddMonoid
CochainComplex.instHasShiftInt
instCommShiftCochainComplexIntObjFlipMap₂CochainComplex
—preservesZeroMorphisms_of_additive
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.NatTrans.ext'
HomologicalComplex.hom_ext
HomologicalComplex.mapBifunctor.hom_ext
CochainComplex.instHasMapBifunctorObjIntShiftFunctor
CochainComplex.ι_mapBifunctorShift₁Iso_hom_f_assoc
map_id
CategoryTheory.Category.id_comp
HomologicalComplex.Κ_mapBifunctorMap
HomologicalComplex.Κ_mapBifunctorMap_assoc
CochainComplex.ι_mapBifunctorShift₁Iso_hom_f
CategoryTheory.Category.comp_id
instCommShiftCochainComplexIntMapMap₂CochainComplex 📖mathematicalAdditive
obj
CategoryTheory.Functor
category
CochainComplex.HasMapBifunctor
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
CategoryTheory.NatTrans.CommShift
CochainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
map₂CochainComplex
map
Int.instAddMonoid
CochainComplex.instHasShiftInt
instCommShiftCochainComplexIntObjMap₂CochainComplex
—preservesZeroMorphisms_of_additive
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.NatTrans.ext'
HomologicalComplex.hom_ext
HomologicalComplex.mapBifunctor.hom_ext
CochainComplex.instHasMapBifunctorObjIntShiftFunctor_1
CochainComplex.ι_mapBifunctorShift₂Iso_hom_f_assoc
map_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Linear.units_smul_comp
HomologicalComplex.Κ_mapBifunctorMap
HomologicalComplex.Κ_mapBifunctorMap_assoc
CochainComplex.ι_mapBifunctorShift₂Iso_hom_f
CategoryTheory.Linear.comp_units_smul

CochainComplex

Definitions

NameCategoryTheorems
HasMapBifunctor 📖MathDef—
mapBifunctor 📖CompOp
13 mathmath: mapBifunctorShift₂Iso_hom_naturality₂_assoc, CategoryTheory.Functor.commShiftIso_map₂CochainComplex_flip_hom_app, mapBifunctorShift₁Iso_hom_naturality₁_assoc, ι_mapBifunctorShift₂Iso_hom_f_assoc, mapBifunctorShift₂Iso_hom_naturality₂, CategoryTheory.Functor.commShiftIso_map₂CochainComplex_inv_app, ι_mapBifunctorShift₂Iso_hom_f, CategoryTheory.Functor.commShiftIso_map₂CochainComplex_flip_inv_app, ι_mapBifunctorShift₁Iso_hom_f_assoc, mapBifunctorShift₁Iso_trans_mapBifunctorShift₂Iso, mapBifunctorShift₁Iso_hom_naturality₁, CategoryTheory.Functor.commShiftIso_map₂CochainComplex_hom_app, ι_mapBifunctorShift₁Iso_hom_f
mapBifunctorHomologicalComplexShift₁Iso 📖CompOp
2 mathmath: mapBifunctorHomologicalComplexShift₁Iso_hom_f_f, mapBifunctorHomologicalComplexShift₁Iso_inv_f_f
mapBifunctorHomologicalComplexShift₂Iso 📖CompOp
2 mathmath: mapBifunctorHomologicalComplexShift₂Iso_inv_f_f, mapBifunctorHomologicalComplexShift₂Iso_hom_f_f
mapBifunctorShift₁Iso 📖CompOp
7 mathmath: CategoryTheory.Functor.commShiftIso_map₂CochainComplex_flip_hom_app, mapBifunctorShift₁Iso_hom_naturality₁_assoc, CategoryTheory.Functor.commShiftIso_map₂CochainComplex_flip_inv_app, ι_mapBifunctorShift₁Iso_hom_f_assoc, mapBifunctorShift₁Iso_trans_mapBifunctorShift₂Iso, mapBifunctorShift₁Iso_hom_naturality₁, ι_mapBifunctorShift₁Iso_hom_f
mapBifunctorShift₂Iso 📖CompOp
7 mathmath: mapBifunctorShift₂Iso_hom_naturality₂_assoc, ι_mapBifunctorShift₂Iso_hom_f_assoc, mapBifunctorShift₂Iso_hom_naturality₂, CategoryTheory.Functor.commShiftIso_map₂CochainComplex_inv_app, ι_mapBifunctorShift₂Iso_hom_f, mapBifunctorShift₁Iso_trans_mapBifunctorShift₂Iso, CategoryTheory.Functor.commShiftIso_map₂CochainComplex_hom_app
ιMapBifunctor 📖CompOp
4 mathmath: ι_mapBifunctorShift₂Iso_hom_f_assoc, ι_mapBifunctorShift₂Iso_hom_f, ι_mapBifunctorShift₁Iso_hom_f_assoc, ι_mapBifunctorShift₁Iso_hom_f

Theorems

NameKindAssumesProvesValidatesDepends On
instHasMapBifunctorObjIntShiftFunctor 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
CochainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomologicalComplex₂.hasTotal_of_iso
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex₂.instHasTotalIntObjUpShiftFunctor₁
instHasMapBifunctorObjIntShiftFunctor_1 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CochainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomologicalComplex₂.hasTotal_of_iso
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex₂.instHasTotalIntObjUpShiftFunctor₂
mapBifunctorHomologicalComplexShift₁Iso_hom_f_f 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.Hom.f
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex₂
CategoryTheory.Functor.mapBifunctorHomologicalComplex
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
HomologicalComplex₂.shiftFunctor₁
CategoryTheory.Iso.hom
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
mapBifunctorHomologicalComplexShift₁Iso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
mapBifunctorHomologicalComplexShift₁Iso_inv_f_f 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.Hom.f
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex₂
HomologicalComplex₂.shiftFunctor₁
CategoryTheory.Functor.mapBifunctorHomologicalComplex
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
CategoryTheory.Iso.inv
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
mapBifunctorHomologicalComplexShift₁Iso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
mapBifunctorHomologicalComplexShift₂Iso_hom_f_f 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex₂
CategoryTheory.Functor.mapBifunctorHomologicalComplex
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
HomologicalComplex₂.shiftFunctor₂
CategoryTheory.Iso.hom
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
mapBifunctorHomologicalComplexShift₂Iso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
mapBifunctorHomologicalComplexShift₂Iso_inv_f_f 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex₂
HomologicalComplex₂.shiftFunctor₂
CategoryTheory.Functor.mapBifunctorHomologicalComplex
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
CategoryTheory.Iso.inv
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
mapBifunctorHomologicalComplexShift₂Iso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
mapBifunctorShift₁Iso_hom_naturality₁ 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
CategoryTheory.CategoryStruct.comp
HomologicalComplex
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.mapBifunctor
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
ComplexShape.instTotalComplexShape
ComplexShape.instTensorSignsIntUp
instHasMapBifunctorObjIntShiftFunctor
CochainComplex
mapBifunctor
HomologicalComplex.mapBifunctorMap
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
mapBifunctorShift₁Iso
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomologicalComplex.hom_ext
instHasMapBifunctorObjIntShiftFunctor
HomologicalComplex.mapBifunctor.hom_ext
HomologicalComplex.Κ_mapBifunctorMap_assoc
CategoryTheory.Functor.map_id
ι_mapBifunctorShift₁Iso_hom_f
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
ι_mapBifunctorShift₁Iso_hom_f_assoc
HomologicalComplex.Κ_mapBifunctorMap
mapBifunctorShift₁Iso_hom_naturality₁_assoc 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
CategoryTheory.CategoryStruct.comp
HomologicalComplex
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.mapBifunctor
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
ComplexShape.instTotalComplexShape
ComplexShape.instTensorSignsIntUp
instHasMapBifunctorObjIntShiftFunctor
HomologicalComplex.mapBifunctorMap
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.id
CochainComplex
mapBifunctor
CategoryTheory.Iso.hom
mapBifunctorShift₁Iso
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
instHasMapBifunctorObjIntShiftFunctor
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapBifunctorShift₁Iso_hom_naturality₁
mapBifunctorShift₁Iso_trans_mapBifunctorShift₂Iso 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
CategoryTheory.Iso.trans
CochainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
mapBifunctor
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
instHasMapBifunctorObjIntShiftFunctor
instHasMapBifunctorObjIntShiftFunctor_1
mapBifunctorShift₁Iso
CategoryTheory.Functor.mapIso
mapBifunctorShift₂Iso
Units
Int.instMonoid
CategoryTheory.Iso
CategoryTheory.Functor.comp
AddCommMonoid.toAddMonoid
Int.instAddCommMonoid
CategoryTheory.Preadditive.instSMulUnitsIntIso
HomologicalComplex.instPreadditive
Int.negOnePow
CategoryTheory.Iso.app
CategoryTheory.shiftFunctorComm
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Iso.ext
AddRightCancelSemigroup.toIsRightCancelAdd
instHasMapBifunctorObjIntShiftFunctor
instHasMapBifunctorObjIntShiftFunctor_1
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
HomologicalComplex₂.instHasTotalIntObjUpShiftFunctor₁
HomologicalComplex₂.totalShift₁Iso_hom_naturality_assoc
HomologicalComplex₂.instHasTotalIntObjUpCompShiftFunctor₂ShiftFunctor₁
HomologicalComplex₂.instHasTotalIntObjUpCompShiftFunctor₁ShiftFunctor₂
HomologicalComplex₂.instHasTotalIntObjUpShiftFunctor₂
HomologicalComplex₂.totalShift₁Iso_hom_totalShift₂Iso_hom
HomologicalComplex₂.totalShift₂Iso_hom_naturality_assoc
CategoryTheory.Linear.comp_units_smul
smul_left_cancel_iff
HomologicalComplex₂.total.map_comp_assoc
HomologicalComplex.hom_ext
CategoryTheory.Category.id_comp
mapBifunctorShift₂Iso_hom_naturality₂ 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.CategoryStruct.comp
HomologicalComplex
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.mapBifunctor
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
ComplexShape.instTotalComplexShape
ComplexShape.instTensorSignsIntUp
instHasMapBifunctorObjIntShiftFunctor_1
CochainComplex
mapBifunctor
HomologicalComplex.mapBifunctorMap
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
mapBifunctorShift₂Iso
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomologicalComplex.hom_ext
instHasMapBifunctorObjIntShiftFunctor_1
HomologicalComplex.mapBifunctor.hom_ext
HomologicalComplex.Κ_mapBifunctorMap_assoc
CategoryTheory.Functor.map_id
ι_mapBifunctorShift₂Iso_hom_f
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Linear.comp_units_smul
ι_mapBifunctorShift₂Iso_hom_f_assoc
CategoryTheory.Linear.units_smul_comp
HomologicalComplex.Κ_mapBifunctorMap
mapBifunctorShift₂Iso_hom_naturality₂_assoc 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.CategoryStruct.comp
HomologicalComplex
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.mapBifunctor
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
ComplexShape.instTotalComplexShape
ComplexShape.instTensorSignsIntUp
instHasMapBifunctorObjIntShiftFunctor_1
HomologicalComplex.mapBifunctorMap
CategoryTheory.CategoryStruct.id
CochainComplex
CategoryTheory.Functor.map
mapBifunctor
CategoryTheory.Iso.hom
mapBifunctorShift₂Iso
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
instHasMapBifunctorObjIntShiftFunctor_1
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapBifunctorShift₂Iso_hom_naturality₂
ι_mapBifunctorShift₁Iso_hom_f 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CochainComplex
HomologicalComplex.instCategory
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
mapBifunctor
instHasMapBifunctorObjIntShiftFunctor
ΚMapBifunctor
HomologicalComplex.Hom.f
CategoryTheory.Iso.hom
mapBifunctorShift₁Iso
shiftFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
shiftFunctorObjXIso
CategoryTheory.Iso.inv
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
AddRightCancelSemigroup.toIsRightCancelAdd
instHasMapBifunctorObjIntShiftFunctor
HomologicalComplex₂.ιTotal_map_assoc
HomologicalComplex₂.ι_totalShift₁Iso_hom_f
CategoryTheory.Functor.congr_obj
CategoryTheory.Category.id_comp
CategoryTheory.eqToHom_map
CategoryTheory.eqToHom_app
ι_mapBifunctorShift₁Iso_hom_f_assoc 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CochainComplex
HomologicalComplex.instCategory
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
mapBifunctor
instHasMapBifunctorObjIntShiftFunctor
ΚMapBifunctor
HomologicalComplex.Hom.f
CategoryTheory.Iso.hom
mapBifunctorShift₁Iso
CategoryTheory.NatTrans.app
shiftFunctor
CategoryTheory.Functor.map
shiftFunctorObjXIso
CategoryTheory.Iso.inv
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
AddRightCancelSemigroup.toIsRightCancelAdd
instHasMapBifunctorObjIntShiftFunctor
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_mapBifunctorShift₁Iso_hom_f
ι_mapBifunctorShift₂Iso_hom_f 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CochainComplex
HomologicalComplex.instCategory
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
mapBifunctor
instHasMapBifunctorObjIntShiftFunctor_1
ΚMapBifunctor
HomologicalComplex.Hom.f
CategoryTheory.Iso.hom
mapBifunctorShift₂Iso
Units
Int.instMonoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
shiftFunctor
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
Int.negOnePow
CategoryTheory.Functor.map
shiftFunctorObjXIso
CategoryTheory.Iso.inv
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
AddRightCancelSemigroup.toIsRightCancelAdd
instHasMapBifunctorObjIntShiftFunctor_1
HomologicalComplex₂.ιTotal_map_assoc
HomologicalComplex₂.ι_totalShift₂Iso_hom_f
CategoryTheory.Linear.comp_units_smul
CategoryTheory.Category.id_comp
CategoryTheory.eqToHom_map
ι_mapBifunctorShift₂Iso_hom_f_assoc 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMapBifunctor
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CochainComplex
HomologicalComplex.instCategory
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
mapBifunctor
instHasMapBifunctorObjIntShiftFunctor_1
ΚMapBifunctor
HomologicalComplex.Hom.f
CategoryTheory.Iso.hom
mapBifunctorShift₂Iso
Units
Int.instMonoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
shiftFunctor
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
Int.negOnePow
CategoryTheory.Functor.map
shiftFunctorObjXIso
CategoryTheory.Iso.inv
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
AddRightCancelSemigroup.toIsRightCancelAdd
instHasMapBifunctorObjIntShiftFunctor_1
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_mapBifunctorShift₂Iso_hom_f

---

← Back to Index