Documentation Verification Report

CochainComplexOpposite

📁 Source: Mathlib/Algebra/Homology/CochainComplexOpposite.lean

Statistics

MetricCount
DefinitionscochainComplexEquivalence, homotopyOp, homotopyOpEquiv, homotopyUnop, opEquivalence, embeddingDownIntUpInt, embeddingUpIntDownInt
7
Theoremsacyclic_op, exactAt_op, homotopyOp_hom_eq, homotopyUnop_hom_eq, embeddingDownIntUpInt_f, embeddingUpIntDownInt_f, instIsRelIffIntEmbeddingDownIntUpInt, instIsRelIffIntEmbeddingUpIntDownInt
8
Total15

ChainComplex

Definitions

NameCategoryTheorems
cochainComplexEquivalence 📖CompOp

CochainComplex

Definitions

NameCategoryTheorems
homotopyOp 📖CompOp
1 mathmath: homotopyOp_hom_eq
homotopyOpEquiv 📖CompOp
homotopyUnop 📖CompOp
1 mathmath: homotopyUnop_hom_eq
opEquivalence 📖CompOp
4 mathmath: acyclic_op, exactAt_op, homotopyUnop_hom_eq, homotopyOp_hom_eq

Theorems

NameKindAssumesProvesValidatesDepends On
acyclic_op 📖mathematicalHomologicalComplex.Acyclic
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CategoryTheory.Equivalence.functor
opEquivalence
Opposite.op
AddRightCancelSemigroup.toIsRightCancelAdd
exactAt_op
exactAt_op 📖mathematicalHomologicalComplex.ExactAt
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CategoryTheory.Equivalence.functor
opEquivalence
Opposite.op
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.exactAt_iff'
prev
next
CategoryTheory.ShortComplex.exact_unop_iff
homotopyOp_hom_eq 📖mathematicalHomotopy.hom
Opposite
CategoryTheory.Category.opposite
CategoryTheory.instPreadditiveOpposite
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.Equivalence.functor
opEquivalence
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
homotopyOp
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.opposite
HomologicalComplex.X
ComplexShape.Embedding.f
ComplexShape.down
ComplexShape.embeddingUpIntDownInt
CategoryTheory.Iso.hom
HomologicalComplex.XIsoOfEq
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
homotopyUnop_hom_eq 📖mathematicalHomotopy.hom
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
homotopyUnop
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.Embedding.f
ComplexShape.down
ComplexShape.embeddingUpIntDownInt
CategoryTheory.Iso.hom
HomologicalComplex.XIsoOfEq
Opposite.unop
Opposite
CategoryTheory.Category.opposite
CategoryTheory.instPreadditiveOpposite
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.Equivalence.functor
opEquivalence
Opposite.op
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.map
Quiver.Hom.op
AddRightCancelSemigroup.toIsRightCancelAdd
ComplexShape.instIsRelIffIntEmbeddingUpIntDownInt

ComplexShape

Definitions

NameCategoryTheorems
embeddingDownIntUpInt 📖CompOp
2 mathmath: instIsRelIffIntEmbeddingDownIntUpInt, embeddingDownIntUpInt_f
embeddingUpIntDownInt 📖CompOp
4 mathmath: embeddingUpIntDownInt_f, CochainComplex.homotopyUnop_hom_eq, CochainComplex.homotopyOp_hom_eq, instIsRelIffIntEmbeddingUpIntDownInt

Theorems

NameKindAssumesProvesValidatesDepends On
embeddingDownIntUpInt_f 📖mathematicalEmbedding.f
down
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
up
embeddingDownIntUpInt
AddRightCancelSemigroup.toIsRightCancelAdd
embeddingUpIntDownInt_f 📖mathematicalEmbedding.f
up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
down
embeddingUpIntDownInt
AddRightCancelSemigroup.toIsRightCancelAdd
instIsRelIffIntEmbeddingDownIntUpInt 📖mathematicalEmbedding.IsRelIff
down
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
up
embeddingDownIntUpInt
AddRightCancelSemigroup.toIsRightCancelAdd
instIsRelIffIntEmbeddingUpIntDownInt 📖mathematicalEmbedding.IsRelIff
up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
down
embeddingUpIntDownInt
AddRightCancelSemigroup.toIsRightCancelAdd

---

← Back to Index