| Name | Category | Theorems |
Associative đ | CompData | 1 mathmath: instAssociative
|
TensorSigns đ | CompData | â |
instTensorSignsIntUp đ | CompOp | 6 mathmath: CochainComplex.mapBifunctorShiftâIso_hom_naturalityâ_assoc, CochainComplex.mapBifunctorShiftâIso_hom_naturalityâ_assoc, CochainComplex.mapBifunctorShiftâIso_hom_naturalityâ, Ï_def, CochainComplex.mapBifunctorShiftâIso_hom_naturalityâ, Δ_up_â€
|
instTensorSignsNatDown đ | CompOp | 1 mathmath: Δ_down_â
|
instTotalComplexShape đ | CompOp | 11 mathmath: CochainComplex.mapBifunctorShiftâIso_hom_naturalityâ_assoc, CochainComplex.mapBifunctorShiftâIso_hom_naturalityâ_assoc, Δâ_def, CochainComplex.mapBifunctorShiftâIso_hom_naturalityâ, instAssociative, HomologicalComplex.tensor_unit_dâ, Ï_def, HomologicalComplex.unit_tensor_dâ, Δâ_def, CochainComplex.mapBifunctorShiftâIso_hom_naturalityâ, Ï_def
|
instTotalComplexShapeSymmetryIntUp đ | CompOp | 1 mathmath: Ï_def
|
r đ | CompOp | â |
symmetryEquiv đ | CompOp | 2 mathmath: symmetryEquiv_apply_coe, symmetryEquiv_symm_apply_coe
|
Δ đ | CompOp | 6 mathmath: Δ_succ, Δ_add, Δ_down_â, Δ_zero, Δâ_def, Δ_up_â€
|
Δâ đ | CompOp | 23 mathmath: associative_Δâ_Δâ, HomologicalComplex.mapBifunctorââ.dâ_eq, Δâ_Δâ, TotalComplexShapeSymmetry.Ï_Δâ, HomologicalComplexâ.dâ_eq, Associative.Δâ_Δâ, HomologicalComplexâ.totalAux.dâ_eq, Δâ_Δâ, Ï_Δâ, associative_Δâ_eq_mul, HomologicalComplex.mapBifunctorââ.dâ_eq, TotalComplexShapeSymmetry.Ï_Δâ, Ï_Δâ, HomologicalComplex.mapBifunctorMapHomotopy.commâ_aux, Associative.Δâ_eq_mul, HomologicalComplex.mapBifunctor.dâ_eq', HomologicalComplex.mapBifunctorMapHomotopy.ÎčMapBifunctor_homâ_assoc, HomologicalComplexâ.dâ_eq', HomologicalComplex.mapBifunctorââ.dâ_eq, HomologicalComplex.mapBifunctorMapHomotopy.ÎčMapBifunctor_homâ, HomologicalComplex.mapBifunctorââ.dâ_eq, HomologicalComplexâ.totalAux.dâ_eq', HomologicalComplex.mapBifunctor.dâ_eq
|
Δâ đ | CompOp | 22 mathmath: associative_Δâ_Δâ, HomologicalComplex.mapBifunctorââ.dâ_eq, HomologicalComplexâ.totalAux.dâ_eq, HomologicalComplex.mapBifunctorââ.dâ_eq, Δâ_Δâ, TotalComplexShapeSymmetry.Ï_Δâ, Associative.Δâ_Δâ, associative_Δâ_eq_mul, HomologicalComplexâ.totalAux.dâ_eq', HomologicalComplex.mapBifunctor.dâ_eq, Δâ_Δâ, Ï_Δâ, TotalComplexShapeSymmetry.Ï_Δâ, Ï_Δâ, HomologicalComplex.mapBifunctorMapHomotopy.ÎčMapBifunctor_homâ, HomologicalComplexâ.dâ_eq, Associative.Δâ_eq_mul, HomologicalComplex.mapBifunctor.dâ_eq', HomologicalComplexâ.dâ_eq', HomologicalComplex.mapBifunctorââ.dâ_eq, HomologicalComplex.mapBifunctorââ.dâ_eq, HomologicalComplex.mapBifunctorMapHomotopy.ÎčMapBifunctor_homâ_assoc
|
Ï đ | CompOp | 69 mathmath: HomologicalComplexâ.totalFlipIso_hom_f_Dâ, associative_Δâ_Δâ, HomologicalComplex.mapBifunctorââ.dâ_eq, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, HomologicalComplexâ.dâ_eq_zero', HomologicalComplexâ.Dâ_Dâ_assoc, HomologicalComplexâ.total.mapAux.mapMap_Dâ_assoc, HomologicalComplex.mapBifunctorââ.dâ_eq, HomologicalComplexâ.Dâ_Dâ, HomologicalComplexâ.Dâ_Dâ_assoc, HomologicalComplexâ.Dâ_Dâ, HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorXÏ, HomologicalComplexâ.dâ_eq_zero, assoc, HomologicalComplexâ.total.mapAux.dâ_mapMap, Associative.Δâ_Δâ, HomologicalComplexâ.Dâ_shape, HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorXMapBifunctorMapObjÏ, HomologicalComplexâ.totalFlipIsoX_hom_Dâ_assoc, associative_Δâ_eq_mul, symmetryEquiv_apply_coe, symmetryEquiv_symm_apply_coe, HomologicalComplexâ.totalAux.dâ_eq', HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, HomologicalComplexâ.total.mapAux.dâ_mapMap_assoc, HomologicalComplexâ.dâ_eq_zero, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, Associative.assoc, Ï_symm, HomologicalComplexâ.total.mapAux.mapMap_Dâ, associative_Δâ_eq_mul, HomologicalComplexâ.dâ_eq_zero', HomologicalComplexâ.total.mapAux.mapMap_Dâ, HomologicalComplexâ.Dâ_shape, HomologicalComplexâ.total.mapAux.mapMap_Dâ_assoc, HomologicalComplexâ.totalFlipIso_hom_f_Dâ, HomologicalComplex.mapBifunctorââ.dâ_eq, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, HomologicalComplexâ.totalFlipIso_hom_f_Dâ_assoc, HomologicalComplexâ.totalFlipIsoX_hom_Dâ, HomologicalComplexâ.Dâ_Dâ_assoc, HomologicalComplexâ.Dâ_Dâ, rel_Ïâ, HomologicalComplexâ.Dâ_Dâ_assoc, Associative.Δâ_eq_mul, rel_Ïâ, Associative.Δâ_eq_mul, HomologicalComplexâ.total.mapAux.dâ_mapMap, prev_Ïâ, next_Ïâ, HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorMapBifunctorMapObjÏX, TotalComplexShapeSymmetry.symm, HomologicalComplexâ.total_d, HomologicalComplexâ.total.mapAux.dâ_mapMap_assoc, HomologicalComplexâ.totalFlipIsoX_hom_Dâ, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, HomologicalComplex.mapBifunctorââ.dâ_eq, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, HomologicalComplex.mapBifunctorââ.dâ_eq, HomologicalComplex.mapBifunctorââ.dâ_eq, HomologicalComplexâ.totalAux.dâ_eq', HomologicalComplexâ.Dâ_Dâ, HomologicalComplexâ.totalFlipIsoX_hom_Dâ_assoc, next_Ïâ, HomologicalComplexâ.total.forget_map, HomologicalComplexâ.totalFlipIso_hom_f_Dâ_assoc, prev_Ïâ
|
Ïââ đ | CompOp | â |
Ïââ đ | CompOp | â |
Ï đ | CompOp | 12 mathmath: TotalComplexShapeSymmetrySymmetry.Ï_symm, HomologicalComplexâ.ÎčTotal_totalFlipIso_f_inv_assoc, Ï_symm, HomologicalComplex.Îč_mapBifunctorFlipIso_inv_assoc, Ï_Δâ, HomologicalComplexâ.ÎčTotal_totalFlipIso_f_hom_assoc, Ï_Δâ, HomologicalComplexâ.ÎčTotal_totalFlipIso_f_hom, HomologicalComplex.Îč_mapBifunctorFlipIso_hom, HomologicalComplex.Îč_mapBifunctorFlipIso_hom_assoc, HomologicalComplex.Îč_mapBifunctorFlipIso_inv, HomologicalComplexâ.ÎčTotal_totalFlipIso_f_inv
|