Documentation Verification Report

ComplexShapeSigns

📁 Source: Mathlib/Algebra/Homology/ComplexShapeSigns.lean

Statistics

MetricCount
DefinitionsAssociative, TensorSigns, Δ', instTensorSignsIntUp, instTensorSignsNatDown, instTotalComplexShape, instTotalComplexShapeSymmetryIntUp, r, symmetryEquiv, Δ, Δ₁, Δ₂, π, ρ₁₂, ρ₂₃, σ, TotalComplexShape, symmSymmetry, Δ₁, Δ₂, π, TotalComplexShapeSymmetry, symmetry, σ, TotalComplexShapeSymmetrySymmetry
25
Theoremsassoc, Δ₁_eq_mul, Δ₂_eq_mul, Δ₂_Δ₁, add_rel, rel_add, Δ'_succ, add_rel, assoc, associative_Δ₁_eq_mul, associative_Δ₂_eq_mul, associative_Δ₂_Δ₁, instAssociative, next_add, next_add', next_π₁, next_π₂, prev_π₁, prev_π₂, rel_add, rel_π₁, rel_π₂, symmetryEquiv_apply_coe, symmetryEquiv_symm_apply_coe, Δ_add, Δ_down_ℕ, Δ_succ, Δ_up_â„€, Δ_zero, Δ₁_def, Δ₁_Δ₂, Δ₂_def, Δ₂_Δ₁, π_def, π_symm, σ_def, σ_symm, σ_Δ₁, σ_Δ₂, rel₁, rel₂, Δ₂_Δ₁, σ_Δ₁, σ_Δ₂, σ_symm
45
Total70

ComplexShape

Definitions

NameCategoryTheorems
Associative 📖CompData
1 mathmath: instAssociative
TensorSigns 📖CompData—
instTensorSignsIntUp 📖CompOp
6 mathmath: CochainComplex.mapBifunctorShift₂Iso_hom_naturality₂_assoc, CochainComplex.mapBifunctorShift₁Iso_hom_naturality₁_assoc, CochainComplex.mapBifunctorShift₂Iso_hom_naturality₂, σ_def, CochainComplex.mapBifunctorShift₁Iso_hom_naturality₁, Δ_up_â„€
instTensorSignsNatDown 📖CompOp
1 mathmath: Δ_down_ℕ
instTotalComplexShape 📖CompOp
11 mathmath: CochainComplex.mapBifunctorShift₂Iso_hom_naturality₂_assoc, CochainComplex.mapBifunctorShift₁Iso_hom_naturality₁_assoc, Δ₁_def, CochainComplex.mapBifunctorShift₂Iso_hom_naturality₂, instAssociative, HomologicalComplex.tensor_unit_d₂, σ_def, HomologicalComplex.unit_tensor_d₁, Δ₂_def, CochainComplex.mapBifunctorShift₁Iso_hom_naturality₁, π_def
instTotalComplexShapeSymmetryIntUp 📖CompOp
1 mathmath: σ_def
r 📖CompOp—
symmetryEquiv 📖CompOp
2 mathmath: symmetryEquiv_apply_coe, symmetryEquiv_symm_apply_coe
Δ 📖CompOp
6 mathmath: Δ_succ, Δ_add, Δ_down_ℕ, Δ_zero, Δ₂_def, Δ_up_â„€
Δ₁ 📖CompOp
23 mathmath: associative_Δ₂_Δ₁, HomologicalComplex.mapBifunctor₂₃.d₂_eq, Δ₁_Δ₂, TotalComplexShapeSymmetry.σ_Δ₁, HomologicalComplex₂.d₁_eq, Associative.Δ₂_Δ₁, HomologicalComplex₂.totalAux.d₁_eq, Δ₂_Δ₁, σ_Δ₁, associative_Δ₁_eq_mul, HomologicalComplex.mapBifunctor₂₃.d₁_eq, TotalComplexShapeSymmetry.σ_Δ₂, σ_Δ₂, HomologicalComplex.mapBifunctorMapHomotopy.comm₁_aux, Associative.Δ₁_eq_mul, HomologicalComplex.mapBifunctor.d₁_eq', HomologicalComplex.mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₁_assoc, HomologicalComplex₂.d₁_eq', HomologicalComplex.mapBifunctor₁₂.d₁_eq, HomologicalComplex.mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₁, HomologicalComplex.mapBifunctor₁₂.d₂_eq, HomologicalComplex₂.totalAux.d₁_eq', HomologicalComplex.mapBifunctor.d₁_eq
Δ₂ 📖CompOp
22 mathmath: associative_Δ₂_Δ₁, HomologicalComplex.mapBifunctor₂₃.d₂_eq, HomologicalComplex₂.totalAux.d₂_eq, HomologicalComplex.mapBifunctor₂₃.d₃_eq, Δ₁_Δ₂, TotalComplexShapeSymmetry.σ_Δ₁, Associative.Δ₂_Δ₁, associative_Δ₂_eq_mul, HomologicalComplex₂.totalAux.d₂_eq', HomologicalComplex.mapBifunctor.d₂_eq, Δ₂_Δ₁, σ_Δ₁, TotalComplexShapeSymmetry.σ_Δ₂, σ_Δ₂, HomologicalComplex.mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₂, HomologicalComplex₂.d₂_eq, Associative.Δ₂_eq_mul, HomologicalComplex.mapBifunctor.d₂_eq', HomologicalComplex₂.d₂_eq', HomologicalComplex.mapBifunctor₁₂.d₃_eq, HomologicalComplex.mapBifunctor₁₂.d₂_eq, HomologicalComplex.mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₂_assoc
π 📖CompOp
69 mathmath: HomologicalComplex₂.totalFlipIso_hom_f_D₁, associative_Δ₂_Δ₁, HomologicalComplex.mapBifunctor₂₃.d₂_eq, HomologicalComplex₂.D₂_totalShift₁XIso_hom_assoc, HomologicalComplex₂.D₂_totalShift₂XIso_hom_assoc, HomologicalComplex₂.d₁_eq_zero', HomologicalComplex₂.D₁_D₁_assoc, HomologicalComplex₂.total.mapAux.mapMap_D₁_assoc, HomologicalComplex.mapBifunctor₂₃.d₃_eq, HomologicalComplex₂.D₁_D₁, HomologicalComplex₂.D₂_D₁_assoc, HomologicalComplex₂.D₂_D₂, HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorXπ, HomologicalComplex₂.d₂_eq_zero, assoc, HomologicalComplex₂.total.mapAux.d₁_mapMap, Associative.Δ₂_Δ₁, HomologicalComplex₂.D₁_shape, HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorXMapBifunctorMapObjπ, HomologicalComplex₂.totalFlipIsoX_hom_D₂_assoc, associative_Δ₂_eq_mul, symmetryEquiv_apply_coe, symmetryEquiv_symm_apply_coe, HomologicalComplex₂.totalAux.d₂_eq', HomologicalComplex₂.D₁_totalShift₂XIso_hom_assoc, HomologicalComplex₂.total.mapAux.d₂_mapMap_assoc, HomologicalComplex₂.d₁_eq_zero, HomologicalComplex₂.D₁_totalShift₁XIso_hom_assoc, Associative.assoc, π_symm, HomologicalComplex₂.total.mapAux.mapMap_D₁, associative_Δ₁_eq_mul, HomologicalComplex₂.d₂_eq_zero', HomologicalComplex₂.total.mapAux.mapMap_D₂, HomologicalComplex₂.D₂_shape, HomologicalComplex₂.total.mapAux.mapMap_D₂_assoc, HomologicalComplex₂.totalFlipIso_hom_f_D₂, HomologicalComplex.mapBifunctor₂₃.d₁_eq, HomologicalComplex₂.D₁_totalShift₁XIso_hom, HomologicalComplex₂.D₂_totalShift₁XIso_hom, HomologicalComplex₂.totalFlipIso_hom_f_D₁_assoc, HomologicalComplex₂.totalFlipIsoX_hom_D₁, HomologicalComplex₂.D₂_D₂_assoc, HomologicalComplex₂.D₂_D₁, rel_π₂, HomologicalComplex₂.D₁_D₂_assoc, Associative.Δ₂_eq_mul, rel_π₁, Associative.Δ₁_eq_mul, HomologicalComplex₂.total.mapAux.d₂_mapMap, prev_π₁, next_π₁, HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorMapBifunctorMapObjπX, TotalComplexShapeSymmetry.symm, HomologicalComplex₂.total_d, HomologicalComplex₂.total.mapAux.d₁_mapMap_assoc, HomologicalComplex₂.totalFlipIsoX_hom_D₂, HomologicalComplex₂.D₁_totalShift₂XIso_hom, HomologicalComplex.mapBifunctor₁₂.d₁_eq, HomologicalComplex₂.D₂_totalShift₂XIso_hom, HomologicalComplex.mapBifunctor₁₂.d₃_eq, HomologicalComplex.mapBifunctor₁₂.d₂_eq, HomologicalComplex₂.totalAux.d₁_eq', HomologicalComplex₂.D₁_D₂, HomologicalComplex₂.totalFlipIsoX_hom_D₁_assoc, next_π₂, HomologicalComplex₂.total.forget_map, HomologicalComplex₂.totalFlipIso_hom_f_D₂_assoc, prev_π₂
ρ₁₂ 📖CompOp—
ρ₂₃ 📖CompOp—
σ 📖CompOp
12 mathmath: TotalComplexShapeSymmetrySymmetry.σ_symm, HomologicalComplex₂.ÎčTotal_totalFlipIso_f_inv_assoc, σ_symm, HomologicalComplex.Îč_mapBifunctorFlipIso_inv_assoc, σ_Δ₁, HomologicalComplex₂.ÎčTotal_totalFlipIso_f_hom_assoc, σ_Δ₂, HomologicalComplex₂.ÎčTotal_totalFlipIso_f_hom, HomologicalComplex.Îč_mapBifunctorFlipIso_hom, HomologicalComplex.Îč_mapBifunctorFlipIso_hom_assoc, HomologicalComplex.Îč_mapBifunctorFlipIso_inv, HomologicalComplex₂.ÎčTotal_totalFlipIso_f_inv

Theorems

NameKindAssumesProvesValidatesDepends On
add_rel 📖mathematicalRelAddSemigroup.toAdd
AddMonoid.toAddSemigroup
—TensorSigns.add_rel
assoc 📖mathematical—π—Associative.assoc
associative_Δ₁_eq_mul 📖mathematical—Δ₁
π
Units
Int.instMonoid
Units.instMul
—Associative.Δ₁_eq_mul
associative_Δ₂_eq_mul 📖mathematical—Δ₂
π
Units
Int.instMonoid
Units.instMul
—Associative.Δ₂_eq_mul
associative_Δ₂_Δ₁ 📖mathematical—Units
Int.instMonoid
Units.instMul
Δ₂
π
Δ₁
—Associative.Δ₂_Δ₁
instAssociative 📖mathematical—Associative
instTotalComplexShape
—add_assoc
one_mul
mul_one
Δ_add
next_add 📖mathematicalRel
next
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
—next_eq'
rel_add
next_add' 📖mathematicalRel
next
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
—next_eq'
add_rel
next_π₁ 📖mathematicalRelnext
π
—next_eq'
rel_π₁
next_π₂ 📖mathematicalRelnext
π
—next_eq'
rel_π₂
prev_π₁ 📖mathematicalRelprev
π
—prev_eq'
rel_π₁
prev_π₂ 📖mathematicalRelprev
π
—prev_eq'
rel_π₂
rel_add 📖mathematicalRelAddSemigroup.toAdd
AddMonoid.toAddSemigroup
—TensorSigns.rel_add
rel_π₁ 📖mathematicalRelπ—TotalComplexShape.rel₁
rel_π₂ 📖mathematicalRelπ—TotalComplexShape.rel₂
symmetryEquiv_apply_coe 📖mathematical—Set
Set.instMembership
Set.preimage
π
Set.instSingletonSet
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
symmetryEquiv
——
symmetryEquiv_symm_apply_coe 📖mathematical—Set
Set.instMembership
Set.preimage
π
Set.instSingletonSet
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
symmetryEquiv
——
Δ_add 📖mathematical—Δ
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
Units
Int.instMonoid
Units.instMul
—map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
Δ_down_ℕ 📖mathematical—Δ
Nat.instAddMonoid
down
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
instTensorSignsNatDown
Units
Int.instMonoid
Int.instUnitsPow
Nat.instCommSemiring
AddCommMonoid.toNatModule
Additive
Additive.addCommMonoid
CommGroup.toCommMonoid
Units.instCommGroupUnits
Int.instCommMonoid
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
Units.instOne
—AddRightCancelSemigroup.toIsRightCancelAdd
Δ_succ 📖mathematicalRelΔ
Units
Int.instMonoid
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
—TensorSigns.Δ'_succ
Δ_up_â„€ 📖mathematical—Δ
Int.instAddMonoid
up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instTensorSignsIntUp
Int.negOnePow
—AddRightCancelSemigroup.toIsRightCancelAdd
Δ_zero 📖mathematical—Δ
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Units
Int.instMonoid
Units.instOne
—map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
Δ₁_def 📖mathematical—TotalComplexShape.Δ₁
instTotalComplexShape
Units
Int.instMonoid
Units.instOne
——
Δ₁_Δ₂ 📖mathematicalRelUnits
Int.instMonoid
Units.instMul
Δ₁
Δ₂
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
—mul_one
Int.units_mul_self
mul_assoc
Δ₂_Δ₁
neg_mul
mul_neg
one_mul
Δ₂_def 📖mathematical—TotalComplexShape.Δ₂
instTotalComplexShape
Units
Int.instMonoid
Δ
——
Δ₂_Δ₁ 📖mathematicalRelUnits
Int.instMonoid
Units.instMul
Δ₂
Δ₁
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
—TotalComplexShape.Δ₂_Δ₁
π_def 📖mathematical—TotalComplexShape.π
instTotalComplexShape
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
——
π_symm 📖mathematical—π—TotalComplexShapeSymmetry.symm
σ_def 📖mathematical—TotalComplexShapeSymmetry.σ
up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instTotalComplexShape
Int.instAddMonoid
instTensorSignsIntUp
instTotalComplexShapeSymmetryIntUp
Int.negOnePow
—AddRightCancelSemigroup.toIsRightCancelAdd
σ_symm 📖mathematical—σ—TotalComplexShapeSymmetrySymmetry.σ_symm
σ_Δ₁ 📖mathematicalRelUnits
Int.instMonoid
Units.instMul
σ
Δ₁
Δ₂
—TotalComplexShapeSymmetry.σ_Δ₁
σ_Δ₂ 📖mathematicalRelUnits
Int.instMonoid
Units.instMul
σ
Δ₂
Δ₁
—TotalComplexShapeSymmetry.σ_Δ₂

ComplexShape.Associative

Theorems

NameKindAssumesProvesValidatesDepends On
assoc 📖mathematical—ComplexShape.π——
Δ₁_eq_mul 📖mathematical—ComplexShape.Δ₁
ComplexShape.π
Units
Int.instMonoid
Units.instMul
——
Δ₂_eq_mul 📖mathematical—ComplexShape.Δ₂
ComplexShape.π
Units
Int.instMonoid
Units.instMul
——
Δ₂_Δ₁ 📖mathematical—Units
Int.instMonoid
Units.instMul
ComplexShape.Δ₂
ComplexShape.π
ComplexShape.Δ₁
——

ComplexShape.TensorSigns

Definitions

NameCategoryTheorems
Δ' 📖CompOp
1 mathmath: Δ'_succ

Theorems

NameKindAssumesProvesValidatesDepends On
add_rel 📖mathematicalComplexShape.RelAddSemigroup.toAdd
AddMonoid.toAddSemigroup
——
rel_add 📖mathematicalComplexShape.RelAddSemigroup.toAdd
AddMonoid.toAddSemigroup
——
Δ'_succ 📖mathematicalComplexShape.RelDFunLike.coe
MonoidHom
Multiplicative
Units
Int.instMonoid
MulOneClass.toMulOne
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
Units.instMulOneClass
MonoidHom.instFunLike
Δ'
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
——

TotalComplexShape

Definitions

NameCategoryTheorems
symmSymmetry 📖CompOp—
Δ₁ 📖CompOp
2 mathmath: ComplexShape.Δ₁_def, Δ₂_Δ₁
Δ₂ 📖CompOp
2 mathmath: ComplexShape.Δ₂_def, Δ₂_Δ₁
π 📖CompOp
3 mathmath: rel₂, rel₁, ComplexShape.π_def

Theorems

NameKindAssumesProvesValidatesDepends On
rel₁ 📖mathematicalComplexShape.Relπ——
rel₂ 📖mathematicalComplexShape.Relπ——
Δ₂_Δ₁ 📖mathematicalComplexShape.RelUnits
Int.instMonoid
Units.instMul
Δ₂
Δ₁
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
——

TotalComplexShapeSymmetry

Definitions

NameCategoryTheorems
symmetry 📖CompOp—
σ 📖CompOp
3 mathmath: σ_Δ₁, σ_Δ₂, ComplexShape.σ_def

Theorems

NameKindAssumesProvesValidatesDepends On
σ_Δ₁ 📖mathematicalComplexShape.RelUnits
Int.instMonoid
Units.instMul
σ
ComplexShape.Δ₁
ComplexShape.Δ₂
——
σ_Δ₂ 📖mathematicalComplexShape.RelUnits
Int.instMonoid
Units.instMul
σ
ComplexShape.Δ₂
ComplexShape.Δ₁
——

TotalComplexShapeSymmetrySymmetry

Theorems

NameKindAssumesProvesValidatesDepends On
σ_symm 📖mathematical—ComplexShape.σ——

(root)

Definitions

NameCategoryTheorems
TotalComplexShape 📖CompData—
TotalComplexShapeSymmetry 📖CompData—
TotalComplexShapeSymmetrySymmetry 📖CompData—

---

← Back to Index