Documentation Verification Report

ConcreteCategory

📁 Source: Mathlib/Algebra/Homology/ConcreteCategory.lean

Statistics

MetricCount
DefinitionscyclesMk
1
Theoremsd_eq_zero_of_f_eq_d_apply, δ_apply, δ_apply', i_cyclesMk
4
Total5

CategoryTheory.ShortComplex.ShortExact

Theorems

NameKindAssumesProvesValidatesDepends On
d_eq_zero_of_f_eq_d_apply 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
DFunLike.coe
CategoryTheory.Functor.obj
Ab
AddCommGrpCat.instCategory
CategoryTheory.forget₂
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
HomologicalComplex.X
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
HomologicalComplex.Hom.f
CategoryTheory.ShortComplex.f
HomologicalComplex.d
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
mono_f
CategoryTheory.Preadditive.mono_iff_injective
CategoryTheory.Abelian.hasZeroObject
HomologicalComplex.instMonoFOfHasFiniteLimits
CategoryTheory.Abelian.hasFiniteLimits
CategoryTheory.ConcreteCategory.forget₂_comp_apply
HomologicalComplex.Hom.comm
HomologicalComplex.d_comp_d
CategoryTheory.Functor.map_zero
map_zero
AddMonoidHomClass.toZeroHomClass
AddMonoidHom.instAddMonoidHomClass
δ_apply 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
DFunLike.coe
CategoryTheory.Functor.obj
Ab
AddCommGrpCat.instCategory
CategoryTheory.forget₂
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
HomologicalComplex.X
CategoryTheory.ShortComplex.X₃
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
HomologicalComplex.d
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.ShortComplex.X₂
HomologicalComplex.Hom.f
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.f
ComplexShape.next
HomologicalComplex.homology
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
δ
HomologicalComplex.cycles
HomologicalComplex.homologyπ
HomologicalComplex.cyclesMk
ComplexShape.next_eq'
d_eq_zero_of_f_eq_d_apply
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
δ_apply'
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
ComplexShape.next_eq'
d_eq_zero_of_f_eq_d_apply
CategoryTheory.ConcreteCategory.forget₂_comp_apply
HomologicalComplex.p_opcyclesMap
CategoryTheory.Functor.map_comp
CategoryTheory.ConcreteCategory.comp_apply
HomologicalComplex.homology_π_ι
HomologicalComplex.i_cyclesMk
CategoryTheory.Preadditive.mono_iff_injective
CategoryTheory.Abelian.hasZeroObject
HomologicalComplex.instMonoICycles
HomologicalComplex.cyclesMap_i
HomologicalComplex.pOpcycles_opcyclesToCycles_assoc
HomologicalComplex.toCycles_i
δ_apply' 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
DFunLike.coe
CategoryTheory.Functor.obj
Ab
AddCommGrpCat.instCategory
CategoryTheory.forget₂
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
HomologicalComplex.opcycles
CategoryTheory.ShortComplex.X₂
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
CategoryTheory.ShortComplex.X₃
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
HomologicalComplex.opcyclesMap
CategoryTheory.ShortComplex.g
HomologicalComplex.homology
HomologicalComplex.homologyι
HomologicalComplex.cycles
CategoryTheory.ShortComplex.X₁
HomologicalComplex.cyclesMap
CategoryTheory.ShortComplex.f
HomologicalComplex.opcyclesToCycles
δ
HomologicalComplex.homologyπ
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.ShortComplex.SnakeInput.δ_apply'

HomologicalComplex

Definitions

NameCategoryTheorems
cyclesMk 📖CompOp
2 mathmath: i_cyclesMk, CategoryTheory.ShortComplex.ShortExact.δ_apply

Theorems

NameKindAssumesProvesValidatesDepends On
i_cyclesMk 📖mathematicalComplexShape.next
DFunLike.coe
CategoryTheory.Functor.obj
Ab
AddCommGrpCat.instCategory
CategoryTheory.forget₂
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
d
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
cycles
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
sc
iCycles
cyclesMk
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.ShortComplex.i_cyclesMk

---

← Back to Index