Documentation Verification Report

Basic

📁 Source: Mathlib/Algebra/Homology/DerivedCategory/Basic.lean

Statistics

MetricCount
DefinitionsDerivedCategory, Q, Qh, instCategory, instCommShiftCochainComplexIntQ, instCommShiftHomotopyCategoryIntUpQh, instHasShiftInt, instPreadditive, instPretriangulated, quotientCompQhIso, singleFunctor, singleFunctorIsoCompQ, singleFunctors, singleFunctorsPostcompQIso, singleFunctorsPostcompQhIso, HasDerivedCategory, standard
17
TheoremsQ_map_eq_of_homotopy, Qh_obj_singleFunctors_obj, instAdditiveCochainComplexIntQ, instAdditiveHomotopyCategoryIntUpQh, instAdditiveShiftFunctorInt, instAdditiveSingleFunctor, instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, instEssSurjArrowHomotopyCategoryIntUpMapArrowQh, instEssSurjCochainComplexIntQ, instEssSurjHomotopyCategoryIntUpQh, instFaithfulFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, instFullFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, instHasZeroObject, instIsIsoMapCochainComplexIntQ, instIsLocalizationCochainComplexIntQQuasiIsoUp, instIsLocalizationHomotopyCategoryIntUpQhQuasiIso, instIsLocalizationHomotopyCategoryIntUpQhTrWSubcategoryAcyclic, instIsTriangulated, instIsTriangulatedHomotopyCategoryIntUpQh, isIso_Q_map_iff_quasiIso, mem_distTriang_iff, singleFunctorsPostcompQIso_hom_hom, singleFunctorsPostcompQIso_inv_hom
23
Total40

DerivedCategory

Definitions

NameCategoryTheorems
Q 📖CompOp
45 mathmath: instIsLocalizationCochainComplexIntQQuasiIsoUp, right_fac, instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, singleFunctorsPostcompQIso_inv_hom, subsingleton_hom_of_isStrictlyLE_of_isStrictlyGE, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₁, triangleOfSES_mor₁, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, to_singleFunctor_obj_eq_zero_of_injective, right_fac_of_isStrictlyLE_of_isStrictlyGE, triangleOfSES_obj₃, instLinearCochainComplexIntQ, CategoryTheory.ProjectiveResolution.extMk_hom, instIsIsoMapCochainComplexIntQ, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₂, CategoryTheory.Functor.instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, left_fac_of_isStrictlyLE_of_isStrictlyGE, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₃, CochainComplex.HomComplex.CohomologyClass.equiv_toSmallShiftedHom_mk, isLE_Q_obj_iff, triangleOfSES_obj₁, isGE_Q_obj_iff, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₁, instIsGEObjCochainComplexIntQOfIsGE, exists_iso_Q_obj_of_isGE_of_isLE, from_singleFunctor_obj_eq_zero_of_projective, exists_iso_Q_obj_of_isGE, CategoryTheory.InjectiveResolution.extMk_hom, right_fac_of_isStrictlyLE, instAdditiveCochainComplexIntQ, exists_iso_Q_obj_of_isLE, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₂, triangleOfSES_obj₂, instEssSurjCochainComplexIntQ, singleFunctorsPostcompQIso_hom_hom, triangleOfSES_mor₂, mem_distTriang_iff, instIsLEObjCochainComplexIntQOfIsLE, Q_map_eq_of_homotopy, isIso_Q_map_iff_quasiIso, left_fac_of_isStrictlyGE, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.Functor.mapDerivedCategoryFactorsh_hom_app, left_fac
Qh 📖CompOp
16 mathmath: instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, CochainComplex.IsKInjective.Qh_map_bijective, CategoryTheory.Functor.instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh, instIsTriangulatedHomotopyCategoryIntUpQh, instAdditiveHomotopyCategoryIntUpQh, instIsLocalizationHomotopyCategoryIntUpQhQuasiIso, CochainComplex.IsKProjective.Qh_map_bijective, instEssSurjHomotopyCategoryIntUpQh, instFaithfulFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, instEssSurjArrowHomotopyCategoryIntUpMapArrowQh, Qh_obj_singleFunctors_obj, instFullFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, instLinearHomotopyCategoryIntUpQh, isIso_Qh_map_iff, CategoryTheory.Functor.mapDerivedCategoryFactorsh_hom_app, instIsLocalizationHomotopyCategoryIntUpQhTrWSubcategoryAcyclic
instCategory 📖CompOp
103 mathmath: instIsLocalizationCochainComplexIntQQuasiIsoUp, right_fac, CategoryTheory.Abelian.Ext.homLinearEquiv_apply, instHasZeroObject, instIsTriangulated, instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, CategoryTheory.Abelian.Ext.preadditiveYoneda_homologySequenceδ_singleTriangle_apply, isLE_iff, CategoryTheory.Abelian.Ext.smul_hom, isZero_of_isGE, singleFunctorsPostcompQIso_inv_hom, CochainComplex.IsKInjective.Qh_map_bijective, subsingleton_hom_of_isStrictlyLE_of_isStrictlyGE, instFaithfulSingleFunctor, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₁, triangleOfSES_mor₁, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.Abelian.Ext.mk₀_hom, CategoryTheory.Abelian.Ext.preadditiveCoyoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.Functor.instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh, instIsTriangulatedHomotopyCategoryIntUpQh, isZero_of_isLE, to_singleFunctor_obj_eq_zero_of_injective, right_fac_of_isStrictlyLE_of_isStrictlyGE, triangleOfSES_obj₃, instLinearCochainComplexIntQ, CategoryTheory.Abelian.Ext.singleFunctor_map_comp_hom, CategoryTheory.ProjectiveResolution.extMk_hom, CategoryTheory.Abelian.Ext.mapExactFunctor_hom, instIsIsoMapCochainComplexIntQ, CategoryTheory.Abelian.Ext.homEquiv_chgUniv, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₂, instAdditiveHomotopyCategoryIntUpQh, CategoryTheory.Functor.instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, instIsLocalizationHomotopyCategoryIntUpQhQuasiIso, left_fac_of_isStrictlyLE_of_isStrictlyGE, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₂, CategoryTheory.ShortComplex.ShortExact.singleTriangle_mor₃, CategoryTheory.ShortComplex.ShortExact.singleTriangle_mor₁, CategoryTheory.Abelian.Ext.hom_comp_singleFunctor_map_shift, instFullSingleFunctor, CochainComplex.HomComplex.CohomologyClass.equiv_toSmallShiftedHom_mk, CategoryTheory.Functor.instIsTriangulatedDerivedCategoryMapDerivedCategory, isLE_Q_obj_iff, CategoryTheory.Abelian.Ext.homAddEquiv_apply, triangleOfSES_obj₁, instAdditiveShiftFunctorInt, CochainComplex.IsKProjective.Qh_map_bijective, CategoryTheory.ShortComplex.ShortExact.singleTriangle_mor₂, isGE_Q_obj_iff, CategoryTheory.Abelian.Ext.add_hom, instEssSurjHomotopyCategoryIntUpQh, instFaithfulFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₃, isGE_iff, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₁, CategoryTheory.Abelian.Ext.zero_hom, instIsLEObjSingleFunctor, instIsGEObjCochainComplexIntQOfIsGE, exists_iso_singleFunctor_obj_of_isGE_of_isLE, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₁, CategoryTheory.instSmallHomDerivedCategoryObjSingleFunctorOfHasExt, instLinearShiftFunctorInt, exists_iso_Q_obj_of_isGE_of_isLE, instEssSurjArrowHomotopyCategoryIntUpMapArrowQh, from_singleFunctor_obj_eq_zero_of_projective, exists_iso_Q_obj_of_isGE, CategoryTheory.InjectiveResolution.extMk_hom, triangleOfSES_mor₃, right_fac_of_isStrictlyLE, CategoryTheory.Abelian.Ext.neg_hom, triangleOfSES_distinguished, instAdditiveCochainComplexIntQ, instAdditiveSingleFunctor, Qh_obj_singleFunctors_obj, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₃, exists_iso_Q_obj_of_isLE, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₂, instFullFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, CategoryTheory.hasExt_iff, triangleOfSES_obj₂, instEssSurjCochainComplexIntQ, singleFunctorsPostcompQIso_hom_hom, triangleOfSES_mor₂, instLinearSingleFunctor, CategoryTheory.ShortComplex.ShortExact.singleTriangle_distinguished, instIsHomologicalHomologyFunctor, instLinearHomotopyCategoryIntUpQh, CategoryTheory.Abelian.Ext.homLinearEquiv_symm_apply, mem_distTriang_iff, instIsLEObjCochainComplexIntQOfIsLE, Q_map_eq_of_homotopy, isIso_Q_map_iff_quasiIso, isIso_Qh_map_iff, CategoryTheory.Functor.instLinearDerivedCategoryMapDerivedCategory, left_fac_of_isStrictlyGE, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.Functor.mapDerivedCategoryFactorsh_hom_app, left_fac, instIsGEObjSingleFunctor, instIsLocalizationHomotopyCategoryIntUpQhTrWSubcategoryAcyclic, CategoryTheory.Abelian.Ext.comp_hom
instCommShiftCochainComplexIntQ 📖CompOp
16 mathmath: instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, singleFunctorsPostcompQIso_inv_hom, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₁, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.ProjectiveResolution.extMk_hom, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₂, CategoryTheory.Functor.instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₃, CochainComplex.HomComplex.CohomologyClass.equiv_toSmallShiftedHom_mk, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₁, CategoryTheory.InjectiveResolution.extMk_hom, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₂, singleFunctorsPostcompQIso_hom_hom, mem_distTriang_iff, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom
instCommShiftHomotopyCategoryIntUpQh 📖CompOp
3 mathmath: instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, CategoryTheory.Functor.instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh, instIsTriangulatedHomotopyCategoryIntUpQh
instHasShiftInt 📖CompOp
53 mathmath: CategoryTheory.Abelian.Ext.homLinearEquiv_apply, instIsTriangulated, instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, CategoryTheory.Abelian.Ext.preadditiveYoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.Abelian.Ext.smul_hom, singleFunctorsPostcompQIso_inv_hom, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₁, triangleOfSES_mor₁, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.Abelian.Ext.mk₀_hom, CategoryTheory.Abelian.Ext.preadditiveCoyoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.Functor.instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh, instIsTriangulatedHomotopyCategoryIntUpQh, triangleOfSES_obj₃, CategoryTheory.Abelian.Ext.singleFunctor_map_comp_hom, CategoryTheory.ProjectiveResolution.extMk_hom, CategoryTheory.Abelian.Ext.mapExactFunctor_hom, CategoryTheory.Abelian.Ext.homEquiv_chgUniv, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₂, CategoryTheory.Functor.instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₂, CategoryTheory.ShortComplex.ShortExact.singleTriangle_mor₃, CategoryTheory.ShortComplex.ShortExact.singleTriangle_mor₁, CategoryTheory.Abelian.Ext.hom_comp_singleFunctor_map_shift, CochainComplex.HomComplex.CohomologyClass.equiv_toSmallShiftedHom_mk, CategoryTheory.Functor.instIsTriangulatedDerivedCategoryMapDerivedCategory, CategoryTheory.Abelian.Ext.homAddEquiv_apply, triangleOfSES_obj₁, instAdditiveShiftFunctorInt, CategoryTheory.ShortComplex.ShortExact.singleTriangle_mor₂, CategoryTheory.Abelian.Ext.add_hom, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₁, CategoryTheory.Abelian.Ext.zero_hom, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₁, instLinearShiftFunctorInt, CategoryTheory.InjectiveResolution.extMk_hom, triangleOfSES_mor₃, CategoryTheory.Abelian.Ext.neg_hom, triangleOfSES_distinguished, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₃, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₂, CategoryTheory.hasExt_iff, triangleOfSES_obj₂, singleFunctorsPostcompQIso_hom_hom, triangleOfSES_mor₂, CategoryTheory.ShortComplex.ShortExact.singleTriangle_distinguished, instIsHomologicalHomologyFunctor, CategoryTheory.Abelian.Ext.homLinearEquiv_symm_apply, mem_distTriang_iff, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.Abelian.Ext.comp_hom
instPreadditive 📖CompOp
27 mathmath: CategoryTheory.Abelian.Ext.homLinearEquiv_apply, instIsTriangulated, CategoryTheory.Abelian.Ext.preadditiveYoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.Abelian.Ext.smul_hom, CategoryTheory.Abelian.Ext.preadditiveCoyoneda_homologySequenceδ_singleTriangle_apply, instIsTriangulatedHomotopyCategoryIntUpQh, to_singleFunctor_obj_eq_zero_of_injective, instLinearCochainComplexIntQ, instAdditiveHomotopyCategoryIntUpQh, CategoryTheory.Functor.instIsTriangulatedDerivedCategoryMapDerivedCategory, CategoryTheory.Abelian.Ext.homAddEquiv_apply, instAdditiveShiftFunctorInt, CategoryTheory.Abelian.Ext.add_hom, CategoryTheory.Abelian.Ext.zero_hom, instLinearShiftFunctorInt, from_singleFunctor_obj_eq_zero_of_projective, CategoryTheory.Abelian.Ext.neg_hom, triangleOfSES_distinguished, instAdditiveCochainComplexIntQ, instAdditiveSingleFunctor, instLinearSingleFunctor, CategoryTheory.ShortComplex.ShortExact.singleTriangle_distinguished, instIsHomologicalHomologyFunctor, instLinearHomotopyCategoryIntUpQh, CategoryTheory.Abelian.Ext.homLinearEquiv_symm_apply, mem_distTriang_iff, CategoryTheory.Functor.instLinearDerivedCategoryMapDerivedCategory
instPretriangulated 📖CompOp
7 mathmath: instIsTriangulated, instIsTriangulatedHomotopyCategoryIntUpQh, CategoryTheory.Functor.instIsTriangulatedDerivedCategoryMapDerivedCategory, triangleOfSES_distinguished, CategoryTheory.ShortComplex.ShortExact.singleTriangle_distinguished, instIsHomologicalHomologyFunctor, mem_distTriang_iff
quotientCompQhIso 📖CompOp
2 mathmath: instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, CategoryTheory.Functor.mapDerivedCategoryFactorsh_hom_app
singleFunctor 📖CompOp
34 mathmath: CategoryTheory.Abelian.Ext.homLinearEquiv_apply, CategoryTheory.Abelian.Ext.preadditiveYoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.Abelian.Ext.smul_hom, instFaithfulSingleFunctor, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.Abelian.Ext.mk₀_hom, CategoryTheory.Abelian.Ext.preadditiveCoyoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.Abelian.Ext.singleFunctor_map_comp_hom, CategoryTheory.ProjectiveResolution.extMk_hom, CategoryTheory.Abelian.Ext.mapExactFunctor_hom, CategoryTheory.Abelian.Ext.homEquiv_chgUniv, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₂, CategoryTheory.ShortComplex.ShortExact.singleTriangle_mor₁, CategoryTheory.Abelian.Ext.hom_comp_singleFunctor_map_shift, instFullSingleFunctor, CategoryTheory.Abelian.Ext.homAddEquiv_apply, CategoryTheory.ShortComplex.ShortExact.singleTriangle_mor₂, CategoryTheory.Abelian.Ext.add_hom, CategoryTheory.Abelian.Ext.zero_hom, instIsLEObjSingleFunctor, exists_iso_singleFunctor_obj_of_isGE_of_isLE, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₁, CategoryTheory.instSmallHomDerivedCategoryObjSingleFunctorOfHasExt, CategoryTheory.InjectiveResolution.extMk_hom, CategoryTheory.Abelian.Ext.neg_hom, instAdditiveSingleFunctor, Qh_obj_singleFunctors_obj, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₃, CategoryTheory.hasExt_iff, instLinearSingleFunctor, CategoryTheory.Abelian.Ext.homLinearEquiv_symm_apply, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, instIsGEObjSingleFunctor, CategoryTheory.Abelian.Ext.comp_hom
singleFunctorIsoCompQ 📖CompOp
4 mathmath: CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.ProjectiveResolution.extMk_hom, CategoryTheory.InjectiveResolution.extMk_hom, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom
singleFunctors 📖CompOp
8 mathmath: singleFunctorsPostcompQIso_inv_hom, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₁, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₂, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₁, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₂, singleFunctorsPostcompQIso_hom_hom
singleFunctorsPostcompQIso 📖CompOp
8 mathmath: singleFunctorsPostcompQIso_inv_hom, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₁, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₂, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₁, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₂, singleFunctorsPostcompQIso_hom_hom
singleFunctorsPostcompQhIso 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
Q_map_eq_of_homotopy 📖mathematicalCategoryTheory.Functor.map
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
DerivedCategory
instCategory
Q
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplexUpToQuasiIso.Q_map_eq_of_homotopy
CategoryTheory.categoryWithHomology_of_abelian
instQFactorsThroughHomotopyIntUp
CategoryTheory.Abelian.hasBinaryBiproducts
Qh_obj_singleFunctors_obj 📖mathematicalCategoryTheory.Functor.obj
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
DerivedCategory
instCategory
Qh
CategoryTheory.SingleFunctors.functor
Int.instAddMonoid
HomotopyCategory.hasShift
HomotopyCategory.singleFunctors
CategoryTheory.Abelian.hasZeroObject
singleFunctor
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Abelian.hasZeroObject
instAdditiveCochainComplexIntQ 📖mathematicalCategoryTheory.Functor.Additive
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
DerivedCategory
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
instCategory
HomologicalComplex.instPreadditive
instPreadditive
Q
CategoryTheory.Functor.additive_of_iso
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.instAdditiveComp
HomotopyCategory.instAdditiveHomologicalComplexQuotient
instAdditiveHomotopyCategoryIntUpQh
instAdditiveHomotopyCategoryIntUpQh 📖mathematicalCategoryTheory.Functor.Additive
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
DerivedCategory
instCategoryHomotopyCategory
instCategory
HomotopyCategory.instPreadditive
instPreadditive
Qh
CategoryTheory.Localization.functor_additive
AddRightCancelSemigroup.toIsRightCancelAdd
HomotopyCategory.instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
HomotopyCategory.instAdditiveIntUpShiftFunctor
CategoryTheory.Abelian.hasBinaryBiproducts
instIsLocalizationHomotopyCategoryIntUpQhTrWSubcategoryAcyclic
CategoryTheory.ObjectProperty.instHasLeftCalculusOfFractionsTrWOfIsTriangulatedOfIsTriangulated
HomotopyCategory.instIsTriangulatedIntUp
HomotopyCategory.instIsTriangulatedIntUpSubcategoryAcyclic
instAdditiveShiftFunctorInt 📖mathematicalCategoryTheory.Functor.Additive
DerivedCategory
instCategory
instPreadditive
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Localization.functor_additive_iff
HomotopyCategory.instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
HomotopyCategory.instAdditiveIntUpShiftFunctor
CategoryTheory.Abelian.hasBinaryBiproducts
instIsLocalizationHomotopyCategoryIntUpQhTrWSubcategoryAcyclic
CategoryTheory.ObjectProperty.instHasLeftCalculusOfFractionsTrWOfIsTriangulatedOfIsTriangulated
HomotopyCategory.instIsTriangulatedIntUp
HomotopyCategory.instIsTriangulatedIntUpSubcategoryAcyclic
instAdditiveHomotopyCategoryIntUpQh
CategoryTheory.Functor.additive_of_iso
CategoryTheory.Functor.instAdditiveComp
instAdditiveSingleFunctor 📖mathematicalCategoryTheory.Functor.Additive
DerivedCategory
instCategory
CategoryTheory.Abelian.toPreadditive
instPreadditive
singleFunctor
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.instAdditiveComp
HomotopyCategory.instAdditiveIntUpSingleFunctor
instAdditiveHomotopyCategoryIntUpQh
instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso 📖mathematicalCategoryTheory.NatTrans.CommShift
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
DerivedCategory
HomologicalComplex.instCategory
instCategory
CategoryTheory.Functor.comp
HomotopyCategory
instCategoryHomotopyCategory
HomotopyCategory.quotient
Qh
Q
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
quotientCompQhIso
Int.instAddMonoid
CochainComplex.instHasShiftInt
instHasShiftInt
CategoryTheory.Functor.CommShift.comp
HomotopyCategory.hasShift
HomotopyCategory.commShiftQuotient
instCommShiftHomotopyCategoryIntUpQh
instCommShiftCochainComplexIntQ
CategoryTheory.Functor.CommShift.ofIso_compatibility
AddRightCancelSemigroup.toIsRightCancelAdd
instEssSurjArrowHomotopyCategoryIntUpMapArrowQh 📖mathematicalCategoryTheory.Functor.EssSurj
CategoryTheory.Arrow
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
DerivedCategory
instCategory
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.mapArrow
Qh
CategoryTheory.Localization.essSurj_mapArrow
AddRightCancelSemigroup.toIsRightCancelAdd
HomotopyCategory.instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
HomotopyCategory.instAdditiveIntUpShiftFunctor
CategoryTheory.Abelian.hasBinaryBiproducts
instIsLocalizationHomotopyCategoryIntUpQhTrWSubcategoryAcyclic
CategoryTheory.ObjectProperty.instHasLeftCalculusOfFractionsTrWOfIsTriangulatedOfIsTriangulated
HomotopyCategory.instIsTriangulatedIntUp
HomotopyCategory.instIsTriangulatedIntUpSubcategoryAcyclic
instEssSurjCochainComplexIntQ 📖mathematicalCategoryTheory.Functor.EssSurj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
DerivedCategory
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
instCategory
Q
CategoryTheory.Localization.essSurj
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
instIsLocalizationCochainComplexIntQQuasiIsoUp
instEssSurjHomotopyCategoryIntUpQh 📖mathematicalCategoryTheory.Functor.EssSurj
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
DerivedCategory
instCategoryHomotopyCategory
instCategory
Qh
CategoryTheory.Localization.essSurj
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
instIsLocalizationHomotopyCategoryIntUpQhQuasiIso
instFaithfulFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Functor
DerivedCategory
instCategory
CategoryTheory.Functor.category
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
Qh
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
instIsLocalizationHomotopyCategoryIntUpQhQuasiIso
CategoryTheory.Localization.instFaithfulFunctorWhiskeringLeftFunctor'
instFullFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.Functor
DerivedCategory
instCategory
CategoryTheory.Functor.category
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
Qh
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
instIsLocalizationHomotopyCategoryIntUpQhQuasiIso
CategoryTheory.Localization.instFullFunctorWhiskeringLeftFunctor'
instHasZeroObject 📖mathematicalCategoryTheory.Limits.HasZeroObject
DerivedCategory
instCategory
CategoryTheory.Functor.hasZeroObject_of_additive
AddRightCancelSemigroup.toIsRightCancelAdd
instAdditiveCochainComplexIntQ
HomologicalComplex.instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
instIsIsoMapCochainComplexIntQ 📖mathematicalCategoryTheory.IsIso
DerivedCategory
instCategory
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
Q
CategoryTheory.Functor.map
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Localization.inverts
instIsLocalizationCochainComplexIntQQuasiIsoUp
instIsLocalizationCochainComplexIntQQuasiIsoUp 📖mathematicalCategoryTheory.Functor.IsLocalization
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
DerivedCategory
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
instCategory
Q
HomologicalComplex.quasiIso
CategoryTheory.categoryWithHomology_of_abelian
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.MorphismProperty.instIsLocalizationLocalization'Q'
instIsLocalizationHomotopyCategoryIntUpQhQuasiIso 📖mathematicalCategoryTheory.Functor.IsLocalization
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
DerivedCategory
instCategoryHomotopyCategory
instCategory
Qh
HomotopyCategory.quasiIso
CategoryTheory.categoryWithHomology_of_abelian
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplexUpToQuasiIso.instIsLocalizationHomotopyCategoryQhQuasiIso
instIsLocalizationHomologicalComplexIntUpHomotopyCategoryQuotientHomotopyEquivalences
CategoryTheory.Abelian.hasBinaryBiproducts
instIsLocalizationHomotopyCategoryIntUpQhTrWSubcategoryAcyclic 📖mathematicalCategoryTheory.Functor.IsLocalization
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
DerivedCategory
instCategoryHomotopyCategory
instCategory
Qh
CategoryTheory.ObjectProperty.trW
HomotopyCategory.instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
HomotopyCategory.hasShift
HomotopyCategory.instPreadditive
HomotopyCategory.instAdditiveIntUpShiftFunctor
HomotopyCategory.instPretriangulatedIntUp
CategoryTheory.Abelian.hasBinaryBiproducts
HomotopyCategory.subcategoryAcyclic
AddRightCancelSemigroup.toIsRightCancelAdd
HomotopyCategory.instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
HomotopyCategory.instAdditiveIntUpShiftFunctor
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.categoryWithHomology_of_abelian
HomotopyCategory.quasiIso_eq_subcategoryAcyclic_W
instIsLocalizationHomotopyCategoryIntUpQhQuasiIso
instIsTriangulated 📖mathematicalCategoryTheory.IsTriangulated
DerivedCategory
instCategory
instPreadditive
instHasZeroObject
instHasShiftInt
instAdditiveShiftFunctorInt
instPretriangulated
CategoryTheory.Triangulated.Localization.isTriangulated
AddRightCancelSemigroup.toIsRightCancelAdd
HomotopyCategory.instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
HomotopyCategory.instAdditiveIntUpShiftFunctor
CategoryTheory.Abelian.hasBinaryBiproducts
instIsLocalizationHomotopyCategoryIntUpQhTrWSubcategoryAcyclic
CategoryTheory.ObjectProperty.instHasLeftCalculusOfFractionsTrWOfIsTriangulatedOfIsTriangulated
HomotopyCategory.instIsTriangulatedIntUp
HomotopyCategory.instIsTriangulatedIntUpSubcategoryAcyclic
instHasZeroObject
instAdditiveShiftFunctorInt
instIsTriangulatedHomotopyCategoryIntUpQh
instIsTriangulatedHomotopyCategoryIntUpQh 📖mathematicalCategoryTheory.Functor.IsTriangulated
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
DerivedCategory
instCategoryHomotopyCategory
instCategory
HomotopyCategory.hasShift
instHasShiftInt
Qh
instCommShiftHomotopyCategoryIntUpQh
HomotopyCategory.instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
instHasZeroObject
HomotopyCategory.instPreadditive
instPreadditive
HomotopyCategory.instAdditiveIntUpShiftFunctor
instAdditiveShiftFunctorInt
HomotopyCategory.instPretriangulatedIntUp
CategoryTheory.Abelian.hasBinaryBiproducts
instPretriangulated
CategoryTheory.Triangulated.Localization.isTriangulated_functor
AddRightCancelSemigroup.toIsRightCancelAdd
HomotopyCategory.instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
HomotopyCategory.instAdditiveIntUpShiftFunctor
CategoryTheory.Abelian.hasBinaryBiproducts
instIsLocalizationHomotopyCategoryIntUpQhTrWSubcategoryAcyclic
CategoryTheory.ObjectProperty.instHasLeftCalculusOfFractionsTrWOfIsTriangulatedOfIsTriangulated
HomotopyCategory.instIsTriangulatedIntUp
HomotopyCategory.instIsTriangulatedIntUpSubcategoryAcyclic
CategoryTheory.ObjectProperty.instIsCompatibleWithTriangulationTrWOfIsTriangulatedOfIsTriangulated
instHasZeroObject
instAdditiveShiftFunctorInt
instAdditiveHomotopyCategoryIntUpQh
isIso_Q_map_iff_quasiIso 📖mathematicalCategoryTheory.IsIso
DerivedCategory
instCategory
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
Q
CategoryTheory.Functor.map
QuasiIso
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplexUpToQuasiIso.isIso_Q_map_iff_mem_quasiIso
CategoryTheory.categoryWithHomology_of_abelian
mem_distTriang_iff 📖mathematicalCategoryTheory.Pretriangulated.Triangle
DerivedCategory
instCategory
instHasShiftInt
Set
Set.instMembership
CategoryTheory.Pretriangulated.distinguishedTriangles
instHasZeroObject
instPreadditive
instAdditiveShiftFunctorInt
instPretriangulated
CategoryTheory.Iso
CategoryTheory.Pretriangulated.triangleCategory
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.instHasShiftInt
CategoryTheory.Functor.mapTriangle
Q
instCommShiftCochainComplexIntQ
CochainComplex.mappingCone.triangle
CategoryTheory.Abelian.hasBinaryBiproducts
instHasZeroObject
instAdditiveShiftFunctorInt
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Abelian.hasZeroObject
instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso
CategoryTheory.Pretriangulated.isomorphic_distinguished
CategoryTheory.Functor.map_distinguished
HomotopyCategory.instHasZeroObject
HomotopyCategory.instAdditiveIntUpShiftFunctor
instIsTriangulatedHomotopyCategoryIntUpQh
singleFunctorsPostcompQIso_hom_hom 📖mathematicalCategoryTheory.SingleFunctors.Hom.hom
DerivedCategory
instCategory
Int.instAddMonoid
instHasShiftInt
singleFunctors
CategoryTheory.SingleFunctors.postcomp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.instHasShiftInt
CochainComplex.singleFunctors
CategoryTheory.Abelian.hasZeroObject
Q
instCommShiftCochainComplexIntQ
CategoryTheory.Iso.hom
CategoryTheory.SingleFunctors
CategoryTheory.SingleFunctors.instCategory
singleFunctorsPostcompQIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.SingleFunctors.functor
CategoryTheory.NatTrans.ext'
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
singleFunctorsPostcompQIso_inv_hom 📖mathematicalCategoryTheory.SingleFunctors.Hom.hom
DerivedCategory
instCategory
Int.instAddMonoid
instHasShiftInt
CategoryTheory.SingleFunctors.postcomp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.instHasShiftInt
CochainComplex.singleFunctors
CategoryTheory.Abelian.hasZeroObject
Q
instCommShiftCochainComplexIntQ
singleFunctors
CategoryTheory.Iso.inv
CategoryTheory.SingleFunctors
CategoryTheory.SingleFunctors.instCategory
singleFunctorsPostcompQIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.SingleFunctors.functor
CategoryTheory.NatTrans.ext'
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Abelian.hasZeroObject
instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso
CategoryTheory.Functor.mapIso_refl
CategoryTheory.Category.assoc
CategoryTheory.Category.comp_id

HasDerivedCategory

Definitions

NameCategoryTheorems
standard 📖CompOp

(root)

Definitions

NameCategoryTheorems
DerivedCategory 📖CompOp
103 mathmath: DerivedCategory.instIsLocalizationCochainComplexIntQQuasiIsoUp, DerivedCategory.right_fac, CategoryTheory.Abelian.Ext.homLinearEquiv_apply, DerivedCategory.instHasZeroObject, DerivedCategory.instIsTriangulated, DerivedCategory.instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, CategoryTheory.Abelian.Ext.preadditiveYoneda_homologySequenceδ_singleTriangle_apply, DerivedCategory.isLE_iff, CategoryTheory.Abelian.Ext.smul_hom, DerivedCategory.isZero_of_isGE, DerivedCategory.singleFunctorsPostcompQIso_inv_hom, CochainComplex.IsKInjective.Qh_map_bijective, DerivedCategory.subsingleton_hom_of_isStrictlyLE_of_isStrictlyGE, DerivedCategory.instFaithfulSingleFunctor, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₁, DerivedCategory.triangleOfSES_mor₁, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.Abelian.Ext.mk₀_hom, CategoryTheory.Abelian.Ext.preadditiveCoyoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.Functor.instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh, DerivedCategory.instIsTriangulatedHomotopyCategoryIntUpQh, DerivedCategory.isZero_of_isLE, DerivedCategory.to_singleFunctor_obj_eq_zero_of_injective, DerivedCategory.right_fac_of_isStrictlyLE_of_isStrictlyGE, DerivedCategory.triangleOfSES_obj₃, DerivedCategory.instLinearCochainComplexIntQ, CategoryTheory.Abelian.Ext.singleFunctor_map_comp_hom, CategoryTheory.ProjectiveResolution.extMk_hom, CategoryTheory.Abelian.Ext.mapExactFunctor_hom, DerivedCategory.instIsIsoMapCochainComplexIntQ, CategoryTheory.Abelian.Ext.homEquiv_chgUniv, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₂, DerivedCategory.instAdditiveHomotopyCategoryIntUpQh, CategoryTheory.Functor.instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, DerivedCategory.instIsLocalizationHomotopyCategoryIntUpQhQuasiIso, DerivedCategory.left_fac_of_isStrictlyLE_of_isStrictlyGE, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₂, CategoryTheory.ShortComplex.ShortExact.singleTriangle_mor₃, CategoryTheory.ShortComplex.ShortExact.singleTriangle_mor₁, CategoryTheory.Abelian.Ext.hom_comp_singleFunctor_map_shift, DerivedCategory.instFullSingleFunctor, CochainComplex.HomComplex.CohomologyClass.equiv_toSmallShiftedHom_mk, CategoryTheory.Functor.instIsTriangulatedDerivedCategoryMapDerivedCategory, DerivedCategory.isLE_Q_obj_iff, CategoryTheory.Abelian.Ext.homAddEquiv_apply, DerivedCategory.triangleOfSES_obj₁, DerivedCategory.instAdditiveShiftFunctorInt, CochainComplex.IsKProjective.Qh_map_bijective, CategoryTheory.ShortComplex.ShortExact.singleTriangle_mor₂, DerivedCategory.isGE_Q_obj_iff, CategoryTheory.Abelian.Ext.add_hom, DerivedCategory.instEssSurjHomotopyCategoryIntUpQh, DerivedCategory.instFaithfulFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₃, DerivedCategory.isGE_iff, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₁, CategoryTheory.Abelian.Ext.zero_hom, DerivedCategory.instIsLEObjSingleFunctor, DerivedCategory.instIsGEObjCochainComplexIntQOfIsGE, DerivedCategory.exists_iso_singleFunctor_obj_of_isGE_of_isLE, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₁, CategoryTheory.instSmallHomDerivedCategoryObjSingleFunctorOfHasExt, DerivedCategory.instLinearShiftFunctorInt, DerivedCategory.exists_iso_Q_obj_of_isGE_of_isLE, DerivedCategory.instEssSurjArrowHomotopyCategoryIntUpMapArrowQh, DerivedCategory.from_singleFunctor_obj_eq_zero_of_projective, DerivedCategory.exists_iso_Q_obj_of_isGE, CategoryTheory.InjectiveResolution.extMk_hom, DerivedCategory.triangleOfSES_mor₃, DerivedCategory.right_fac_of_isStrictlyLE, CategoryTheory.Abelian.Ext.neg_hom, DerivedCategory.triangleOfSES_distinguished, DerivedCategory.instAdditiveCochainComplexIntQ, DerivedCategory.instAdditiveSingleFunctor, DerivedCategory.Qh_obj_singleFunctors_obj, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₃, DerivedCategory.exists_iso_Q_obj_of_isLE, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₂, DerivedCategory.instFullFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, CategoryTheory.hasExt_iff, DerivedCategory.triangleOfSES_obj₂, DerivedCategory.instEssSurjCochainComplexIntQ, DerivedCategory.singleFunctorsPostcompQIso_hom_hom, DerivedCategory.triangleOfSES_mor₂, DerivedCategory.instLinearSingleFunctor, CategoryTheory.ShortComplex.ShortExact.singleTriangle_distinguished, DerivedCategory.instIsHomologicalHomologyFunctor, DerivedCategory.instLinearHomotopyCategoryIntUpQh, CategoryTheory.Abelian.Ext.homLinearEquiv_symm_apply, DerivedCategory.mem_distTriang_iff, DerivedCategory.instIsLEObjCochainComplexIntQOfIsLE, DerivedCategory.Q_map_eq_of_homotopy, DerivedCategory.isIso_Q_map_iff_quasiIso, DerivedCategory.isIso_Qh_map_iff, CategoryTheory.Functor.instLinearDerivedCategoryMapDerivedCategory, DerivedCategory.left_fac_of_isStrictlyGE, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.Functor.mapDerivedCategoryFactorsh_hom_app, DerivedCategory.left_fac, DerivedCategory.instIsGEObjSingleFunctor, DerivedCategory.instIsLocalizationHomotopyCategoryIntUpQhTrWSubcategoryAcyclic, CategoryTheory.Abelian.Ext.comp_hom
HasDerivedCategory 📖CompOp

---

← Back to Index