| Name | Category | Theorems |
Q 📖 | CompOp | 45 mathmath: instIsLocalizationCochainComplexIntQQuasiIsoUp, right_fac, instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, singleFunctorsPostcompQIso_inv_hom, subsingleton_hom_of_isStrictlyLE_of_isStrictlyGE, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₁, triangleOfSES_mor₁, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, to_singleFunctor_obj_eq_zero_of_injective, right_fac_of_isStrictlyLE_of_isStrictlyGE, triangleOfSES_obj₃, instLinearCochainComplexIntQ, CategoryTheory.ProjectiveResolution.extMk_hom, instIsIsoMapCochainComplexIntQ, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₂, CategoryTheory.Functor.instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, left_fac_of_isStrictlyLE_of_isStrictlyGE, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₃, CochainComplex.HomComplex.CohomologyClass.equiv_toSmallShiftedHom_mk, isLE_Q_obj_iff, triangleOfSES_obj₁, isGE_Q_obj_iff, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₁, instIsGEObjCochainComplexIntQOfIsGE, exists_iso_Q_obj_of_isGE_of_isLE, from_singleFunctor_obj_eq_zero_of_projective, exists_iso_Q_obj_of_isGE, CategoryTheory.InjectiveResolution.extMk_hom, right_fac_of_isStrictlyLE, instAdditiveCochainComplexIntQ, exists_iso_Q_obj_of_isLE, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₂, triangleOfSES_obj₂, instEssSurjCochainComplexIntQ, singleFunctorsPostcompQIso_hom_hom, triangleOfSES_mor₂, mem_distTriang_iff, instIsLEObjCochainComplexIntQOfIsLE, Q_map_eq_of_homotopy, isIso_Q_map_iff_quasiIso, left_fac_of_isStrictlyGE, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.Functor.mapDerivedCategoryFactorsh_hom_app, left_fac
|
Qh 📖 | CompOp | 16 mathmath: instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, CochainComplex.IsKInjective.Qh_map_bijective, CategoryTheory.Functor.instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh, instIsTriangulatedHomotopyCategoryIntUpQh, instAdditiveHomotopyCategoryIntUpQh, instIsLocalizationHomotopyCategoryIntUpQhQuasiIso, CochainComplex.IsKProjective.Qh_map_bijective, instEssSurjHomotopyCategoryIntUpQh, instFaithfulFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, instEssSurjArrowHomotopyCategoryIntUpMapArrowQh, Qh_obj_singleFunctors_obj, instFullFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, instLinearHomotopyCategoryIntUpQh, isIso_Qh_map_iff, CategoryTheory.Functor.mapDerivedCategoryFactorsh_hom_app, instIsLocalizationHomotopyCategoryIntUpQhTrWSubcategoryAcyclic
|
instCategory 📖 | CompOp | 103 mathmath: instIsLocalizationCochainComplexIntQQuasiIsoUp, right_fac, CategoryTheory.Abelian.Ext.homLinearEquiv_apply, instHasZeroObject, instIsTriangulated, instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, CategoryTheory.Abelian.Ext.preadditiveYoneda_homologySequenceδ_singleTriangle_apply, isLE_iff, CategoryTheory.Abelian.Ext.smul_hom, isZero_of_isGE, singleFunctorsPostcompQIso_inv_hom, CochainComplex.IsKInjective.Qh_map_bijective, subsingleton_hom_of_isStrictlyLE_of_isStrictlyGE, instFaithfulSingleFunctor, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₁, triangleOfSES_mor₁, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.Abelian.Ext.mk₀_hom, CategoryTheory.Abelian.Ext.preadditiveCoyoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.Functor.instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh, instIsTriangulatedHomotopyCategoryIntUpQh, isZero_of_isLE, to_singleFunctor_obj_eq_zero_of_injective, right_fac_of_isStrictlyLE_of_isStrictlyGE, triangleOfSES_obj₃, instLinearCochainComplexIntQ, CategoryTheory.Abelian.Ext.singleFunctor_map_comp_hom, CategoryTheory.ProjectiveResolution.extMk_hom, CategoryTheory.Abelian.Ext.mapExactFunctor_hom, instIsIsoMapCochainComplexIntQ, CategoryTheory.Abelian.Ext.homEquiv_chgUniv, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₂, instAdditiveHomotopyCategoryIntUpQh, CategoryTheory.Functor.instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, instIsLocalizationHomotopyCategoryIntUpQhQuasiIso, left_fac_of_isStrictlyLE_of_isStrictlyGE, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₂, CategoryTheory.ShortComplex.ShortExact.singleTriangle_mor₃, CategoryTheory.ShortComplex.ShortExact.singleTriangle_mor₁, CategoryTheory.Abelian.Ext.hom_comp_singleFunctor_map_shift, instFullSingleFunctor, CochainComplex.HomComplex.CohomologyClass.equiv_toSmallShiftedHom_mk, CategoryTheory.Functor.instIsTriangulatedDerivedCategoryMapDerivedCategory, isLE_Q_obj_iff, CategoryTheory.Abelian.Ext.homAddEquiv_apply, triangleOfSES_obj₁, instAdditiveShiftFunctorInt, CochainComplex.IsKProjective.Qh_map_bijective, CategoryTheory.ShortComplex.ShortExact.singleTriangle_mor₂, isGE_Q_obj_iff, CategoryTheory.Abelian.Ext.add_hom, instEssSurjHomotopyCategoryIntUpQh, instFaithfulFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₃, isGE_iff, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₁, CategoryTheory.Abelian.Ext.zero_hom, instIsLEObjSingleFunctor, instIsGEObjCochainComplexIntQOfIsGE, exists_iso_singleFunctor_obj_of_isGE_of_isLE, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₁, CategoryTheory.instSmallHomDerivedCategoryObjSingleFunctorOfHasExt, instLinearShiftFunctorInt, exists_iso_Q_obj_of_isGE_of_isLE, instEssSurjArrowHomotopyCategoryIntUpMapArrowQh, from_singleFunctor_obj_eq_zero_of_projective, exists_iso_Q_obj_of_isGE, CategoryTheory.InjectiveResolution.extMk_hom, triangleOfSES_mor₃, right_fac_of_isStrictlyLE, CategoryTheory.Abelian.Ext.neg_hom, triangleOfSES_distinguished, instAdditiveCochainComplexIntQ, instAdditiveSingleFunctor, Qh_obj_singleFunctors_obj, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₃, exists_iso_Q_obj_of_isLE, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₂, instFullFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, CategoryTheory.hasExt_iff, triangleOfSES_obj₂, instEssSurjCochainComplexIntQ, singleFunctorsPostcompQIso_hom_hom, triangleOfSES_mor₂, instLinearSingleFunctor, CategoryTheory.ShortComplex.ShortExact.singleTriangle_distinguished, instIsHomologicalHomologyFunctor, instLinearHomotopyCategoryIntUpQh, CategoryTheory.Abelian.Ext.homLinearEquiv_symm_apply, mem_distTriang_iff, instIsLEObjCochainComplexIntQOfIsLE, Q_map_eq_of_homotopy, isIso_Q_map_iff_quasiIso, isIso_Qh_map_iff, CategoryTheory.Functor.instLinearDerivedCategoryMapDerivedCategory, left_fac_of_isStrictlyGE, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.Functor.mapDerivedCategoryFactorsh_hom_app, left_fac, instIsGEObjSingleFunctor, instIsLocalizationHomotopyCategoryIntUpQhTrWSubcategoryAcyclic, CategoryTheory.Abelian.Ext.comp_hom
|
instCommShiftCochainComplexIntQ 📖 | CompOp | 16 mathmath: instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, singleFunctorsPostcompQIso_inv_hom, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₁, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.ProjectiveResolution.extMk_hom, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₂, CategoryTheory.Functor.instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₃, CochainComplex.HomComplex.CohomologyClass.equiv_toSmallShiftedHom_mk, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₁, CategoryTheory.InjectiveResolution.extMk_hom, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₂, singleFunctorsPostcompQIso_hom_hom, mem_distTriang_iff, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom
|
instCommShiftHomotopyCategoryIntUpQh 📖 | CompOp | 3 mathmath: instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, CategoryTheory.Functor.instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh, instIsTriangulatedHomotopyCategoryIntUpQh
|
instHasShiftInt 📖 | CompOp | 53 mathmath: CategoryTheory.Abelian.Ext.homLinearEquiv_apply, instIsTriangulated, instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, CategoryTheory.Abelian.Ext.preadditiveYoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.Abelian.Ext.smul_hom, singleFunctorsPostcompQIso_inv_hom, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₁, triangleOfSES_mor₁, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.Abelian.Ext.mk₀_hom, CategoryTheory.Abelian.Ext.preadditiveCoyoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.Functor.instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh, instIsTriangulatedHomotopyCategoryIntUpQh, triangleOfSES_obj₃, CategoryTheory.Abelian.Ext.singleFunctor_map_comp_hom, CategoryTheory.ProjectiveResolution.extMk_hom, CategoryTheory.Abelian.Ext.mapExactFunctor_hom, CategoryTheory.Abelian.Ext.homEquiv_chgUniv, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₂, CategoryTheory.Functor.instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₂, CategoryTheory.ShortComplex.ShortExact.singleTriangle_mor₃, CategoryTheory.ShortComplex.ShortExact.singleTriangle_mor₁, CategoryTheory.Abelian.Ext.hom_comp_singleFunctor_map_shift, CochainComplex.HomComplex.CohomologyClass.equiv_toSmallShiftedHom_mk, CategoryTheory.Functor.instIsTriangulatedDerivedCategoryMapDerivedCategory, CategoryTheory.Abelian.Ext.homAddEquiv_apply, triangleOfSES_obj₁, instAdditiveShiftFunctorInt, CategoryTheory.ShortComplex.ShortExact.singleTriangle_mor₂, CategoryTheory.Abelian.Ext.add_hom, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₁, CategoryTheory.Abelian.Ext.zero_hom, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₁, instLinearShiftFunctorInt, CategoryTheory.InjectiveResolution.extMk_hom, triangleOfSES_mor₃, CategoryTheory.Abelian.Ext.neg_hom, triangleOfSES_distinguished, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₃, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₂, CategoryTheory.hasExt_iff, triangleOfSES_obj₂, singleFunctorsPostcompQIso_hom_hom, triangleOfSES_mor₂, CategoryTheory.ShortComplex.ShortExact.singleTriangle_distinguished, instIsHomologicalHomologyFunctor, CategoryTheory.Abelian.Ext.homLinearEquiv_symm_apply, mem_distTriang_iff, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.Abelian.Ext.comp_hom
|
instPreadditive 📖 | CompOp | 27 mathmath: CategoryTheory.Abelian.Ext.homLinearEquiv_apply, instIsTriangulated, CategoryTheory.Abelian.Ext.preadditiveYoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.Abelian.Ext.smul_hom, CategoryTheory.Abelian.Ext.preadditiveCoyoneda_homologySequenceδ_singleTriangle_apply, instIsTriangulatedHomotopyCategoryIntUpQh, to_singleFunctor_obj_eq_zero_of_injective, instLinearCochainComplexIntQ, instAdditiveHomotopyCategoryIntUpQh, CategoryTheory.Functor.instIsTriangulatedDerivedCategoryMapDerivedCategory, CategoryTheory.Abelian.Ext.homAddEquiv_apply, instAdditiveShiftFunctorInt, CategoryTheory.Abelian.Ext.add_hom, CategoryTheory.Abelian.Ext.zero_hom, instLinearShiftFunctorInt, from_singleFunctor_obj_eq_zero_of_projective, CategoryTheory.Abelian.Ext.neg_hom, triangleOfSES_distinguished, instAdditiveCochainComplexIntQ, instAdditiveSingleFunctor, instLinearSingleFunctor, CategoryTheory.ShortComplex.ShortExact.singleTriangle_distinguished, instIsHomologicalHomologyFunctor, instLinearHomotopyCategoryIntUpQh, CategoryTheory.Abelian.Ext.homLinearEquiv_symm_apply, mem_distTriang_iff, CategoryTheory.Functor.instLinearDerivedCategoryMapDerivedCategory
|
instPretriangulated 📖 | CompOp | 7 mathmath: instIsTriangulated, instIsTriangulatedHomotopyCategoryIntUpQh, CategoryTheory.Functor.instIsTriangulatedDerivedCategoryMapDerivedCategory, triangleOfSES_distinguished, CategoryTheory.ShortComplex.ShortExact.singleTriangle_distinguished, instIsHomologicalHomologyFunctor, mem_distTriang_iff
|
quotientCompQhIso 📖 | CompOp | 2 mathmath: instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, CategoryTheory.Functor.mapDerivedCategoryFactorsh_hom_app
|
singleFunctor 📖 | CompOp | 34 mathmath: CategoryTheory.Abelian.Ext.homLinearEquiv_apply, CategoryTheory.Abelian.Ext.preadditiveYoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.Abelian.Ext.smul_hom, instFaithfulSingleFunctor, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.Abelian.Ext.mk₀_hom, CategoryTheory.Abelian.Ext.preadditiveCoyoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.Abelian.Ext.singleFunctor_map_comp_hom, CategoryTheory.ProjectiveResolution.extMk_hom, CategoryTheory.Abelian.Ext.mapExactFunctor_hom, CategoryTheory.Abelian.Ext.homEquiv_chgUniv, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₂, CategoryTheory.ShortComplex.ShortExact.singleTriangle_mor₁, CategoryTheory.Abelian.Ext.hom_comp_singleFunctor_map_shift, instFullSingleFunctor, CategoryTheory.Abelian.Ext.homAddEquiv_apply, CategoryTheory.ShortComplex.ShortExact.singleTriangle_mor₂, CategoryTheory.Abelian.Ext.add_hom, CategoryTheory.Abelian.Ext.zero_hom, instIsLEObjSingleFunctor, exists_iso_singleFunctor_obj_of_isGE_of_isLE, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₁, CategoryTheory.instSmallHomDerivedCategoryObjSingleFunctorOfHasExt, CategoryTheory.InjectiveResolution.extMk_hom, CategoryTheory.Abelian.Ext.neg_hom, instAdditiveSingleFunctor, Qh_obj_singleFunctors_obj, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₃, CategoryTheory.hasExt_iff, instLinearSingleFunctor, CategoryTheory.Abelian.Ext.homLinearEquiv_symm_apply, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, instIsGEObjSingleFunctor, CategoryTheory.Abelian.Ext.comp_hom
|
singleFunctorIsoCompQ 📖 | CompOp | 4 mathmath: CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.ProjectiveResolution.extMk_hom, CategoryTheory.InjectiveResolution.extMk_hom, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom
|
singleFunctors 📖 | CompOp | 8 mathmath: singleFunctorsPostcompQIso_inv_hom, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₁, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₂, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₁, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₂, singleFunctorsPostcompQIso_hom_hom
|
singleFunctorsPostcompQIso 📖 | CompOp | 8 mathmath: singleFunctorsPostcompQIso_inv_hom, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₁, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₂, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₁, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₂, singleFunctorsPostcompQIso_hom_hom
|
singleFunctorsPostcompQhIso 📖 | CompOp | — |