Documentation Verification Report

ExactFunctor

📁 Source: Mathlib/Algebra/Homology/DerivedCategory/ExactFunctor.lean

Statistics

MetricCount
DefinitionsinstCommShiftDerivedCategoryMapDerivedCategoryInt, instCommShiftHomologicalComplexIntUpFunctorQuasiIsoMapHomologicalComplexUpToQuasiIsoLocalizerMorphism, instLiftingCochainComplexIntDerivedCategoryQQuasiIsoUpCompHomologicalComplexMapHomologicalComplexMapDerivedCategory, instLiftingHomotopyCategoryIntUpDerivedCategoryQhQuasiIsoCompMapHomotopyCategoryMapDerivedCategory, mapDerivedCategory, mapDerivedCategoryFactors, mapDerivedCategoryFactorsh, mapDerivedCategorySingleFunctor
8
TheoremsinstCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh, instIsTriangulatedDerivedCategoryMapDerivedCategory, instLinearDerivedCategoryMapDerivedCategory, mapDerivedCategoryFactorsh_hom_app
5
Total13

CategoryTheory.Functor

Definitions

NameCategoryTheorems
instCommShiftDerivedCategoryMapDerivedCategoryInt 📖CompOp
4 mathmath: instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh, CategoryTheory.Abelian.Ext.mapExactFunctor_hom, instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, instIsTriangulatedDerivedCategoryMapDerivedCategory
instCommShiftHomologicalComplexIntUpFunctorQuasiIsoMapHomologicalComplexUpToQuasiIsoLocalizerMorphism 📖CompOp
instLiftingCochainComplexIntDerivedCategoryQQuasiIsoUpCompHomologicalComplexMapHomologicalComplexMapDerivedCategory 📖CompOp
instLiftingHomotopyCategoryIntUpDerivedCategoryQhQuasiIsoCompMapHomotopyCategoryMapDerivedCategory 📖CompOp
mapDerivedCategory 📖CompOp
6 mathmath: instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh, CategoryTheory.Abelian.Ext.mapExactFunctor_hom, instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, instIsTriangulatedDerivedCategoryMapDerivedCategory, instLinearDerivedCategoryMapDerivedCategory, mapDerivedCategoryFactorsh_hom_app
mapDerivedCategoryFactors 📖CompOp
2 mathmath: instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, mapDerivedCategoryFactorsh_hom_app
mapDerivedCategoryFactorsh 📖CompOp
2 mathmath: instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh, mapDerivedCategoryFactorsh_hom_app
mapDerivedCategorySingleFunctor 📖CompOp
1 mathmath: CategoryTheory.Abelian.Ext.mapExactFunctor_hom

Theorems

NameKindAssumesProvesValidatesDepends On
instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors 📖mathematicalCategoryTheory.NatTrans.CommShift
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
DerivedCategory
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
DerivedCategory.instCategory
comp
DerivedCategory.Q
mapDerivedCategory
HomologicalComplex
mapHomologicalComplex
preservesZeroMorphisms_of_additive
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
mapDerivedCategoryFactors
Int.instAddMonoid
CochainComplex.instHasShiftInt
DerivedCategory.instHasShiftInt
CommShift.comp
DerivedCategory.instCommShiftCochainComplexIntQ
instCommShiftDerivedCategoryMapDerivedCategoryInt
commShiftMapCochainComplex
CategoryTheory.NatTrans.CommShift.verticalComposition
AddRightCancelSemigroup.toIsRightCancelAdd
preservesZeroMorphisms_of_additive
CategoryTheory.NatTrans.CommShift.of_iso_inv
DerivedCategory.instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso
HomotopyCategory.instCommShiftHomologicalComplexIntUpHomFunctorMapHomotopyCategoryFactors
instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh
CategoryTheory.NatTrans.ext'
mapDerivedCategoryFactorsh_hom_app
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_app
map_id
CategoryTheory.Category.comp_id
instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh 📖mathematicalCategoryTheory.NatTrans.CommShift
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
DerivedCategory
instCategoryHomotopyCategory
DerivedCategory.instCategory
comp
DerivedCategory.Qh
mapDerivedCategory
mapHomotopyCategory
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
mapDerivedCategoryFactorsh
Int.instAddMonoid
HomotopyCategory.hasShift
DerivedCategory.instHasShiftInt
CommShift.comp
DerivedCategory.instCommShiftHomotopyCategoryIntUpQh
instCommShiftDerivedCategoryMapDerivedCategoryInt
HomotopyCategory.instCommShiftIntUpMapHomotopyCategory
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.NatTrans.commShift_iso_hom_of_localization
DerivedCategory.instIsLocalizationHomotopyCategoryIntUpQhQuasiIso
instIsTriangulatedDerivedCategoryMapDerivedCategory 📖mathematicalIsTriangulated
DerivedCategory
DerivedCategory.instCategory
DerivedCategory.instHasShiftInt
mapDerivedCategory
instCommShiftDerivedCategoryMapDerivedCategoryInt
DerivedCategory.instHasZeroObject
DerivedCategory.instPreadditive
DerivedCategory.instAdditiveShiftFunctorInt
DerivedCategory.instPretriangulated
isTriangulated_of_precomp_iso
AddRightCancelSemigroup.toIsRightCancelAdd
HomotopyCategory.instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
DerivedCategory.instHasZeroObject
HomotopyCategory.instAdditiveIntUpShiftFunctor
DerivedCategory.instAdditiveShiftFunctorInt
CategoryTheory.Abelian.hasBinaryBiproducts
IsTriangulated.instComp
HomotopyCategory.instIsTriangulatedIntUpMapHomotopyCategory
DerivedCategory.instIsTriangulatedHomotopyCategoryIntUpQh
DerivedCategory.instEssSurjArrowHomotopyCategoryIntUpMapArrowQh
instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh
instLinearDerivedCategoryMapDerivedCategory 📖mathematicalLinear
Ring.toSemiring
DerivedCategory
DerivedCategory.instCategory
DerivedCategory.instPreadditive
DerivedCategory.instLinear
mapDerivedCategory
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Localization.functor_linear_iff
CategoryTheory.categoryWithHomology_of_abelian
DerivedCategory.instIsLocalizationHomotopyCategoryIntUpQhQuasiIso
DerivedCategory.instLinearHomotopyCategoryIntUpQh
instLinearComp
CategoryTheory.instLinearHomotopyCategoryMapHomotopyCategory
mapDerivedCategoryFactorsh_hom_app 📖mathematicalCategoryTheory.NatTrans.app
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
DerivedCategory
DerivedCategory.instCategory
comp
DerivedCategory.Qh
mapDerivedCategory
mapHomotopyCategory
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
mapDerivedCategoryFactorsh
obj
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomotopyCategory.quotient
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
DerivedCategory.Q
map
DerivedCategory.quotientCompQhIso
CochainComplex
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
mapHomologicalComplex
preservesZeroMorphisms_of_additive
mapDerivedCategoryFactors
CategoryTheory.Iso.inv
mapHomotopyCategoryFactors
mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
preservesHomologyOfExact
preservesZeroMorphisms_of_additive
instQFactorsThroughHomotopyIntUp
CategoryTheory.Abelian.hasBinaryBiproducts
instIsLocalizationHomologicalComplexIntUpHomotopyCategoryQuotientHomotopyEquivalences

---

← Back to Index