| Name | Category | Theorems |
addEquivBiprod 📖 | CompOp | 3 mathmath: addEquivBiprod_symm_apply, addEquivBiprod_apply_snd, addEquivBiprod_apply_fst
|
addEquivBiproduct 📖 | CompOp | — |
addEquiv₀ 📖 | CompOp | 2 mathmath: mk₀_addEquiv₀_apply, addEquiv₀_symm_apply
|
bilinearComp 📖 | CompOp | 1 mathmath: bilinearComp_apply_apply
|
biprodAddEquiv 📖 | CompOp | 5 mathmath: CategoryTheory.GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mk₀_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, biprodAddEquiv_apply_fst, biprodAddEquiv_symm_apply, biprodAddEquiv_apply_snd
|
biproductAddEquiv 📖 | CompOp | — |
chgUniv 📖 | CompOp | 1 mathmath: homEquiv_chgUniv
|
comp 📖 | CompOp | 43 mathmath: comp_sum, add_comp, CategoryTheory.InjectiveResolution.extMk_comp_mk₀, zero_comp, preadditiveYoneda_homologySequenceδ_singleTriangle_apply, sum_comp, CategoryTheory.ShortComplex.ext_mk₀_f_comp_ext_mk₀_g, mk₀_id_comp, comp_zero, comp_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, comp_add, preadditiveCoyoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.ProjectiveResolution.extMk_comp_mk₀, comp_assoc_of_second_deg_zero, singleFunctor_map_comp_hom, mk₀_comp_mk₀_assoc, CategoryTheory.ProjectiveResolution.mk₀_comp_extMk, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mk₀_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, smul_comp, comp_mk₀_id, CategoryTheory.ShortComplex.ShortExact.comp_extClass_assoc, hom_comp_singleFunctor_map_shift, bilinearComp_apply_apply, neg_comp, CategoryTheory.Abelian.extFunctor_map_app, CategoryTheory.ShortComplex.ShortExact.comp_extClass, biprodAddEquiv_apply_fst, comp_smul, mk₀_comp_mk₀, bilinearCompOfLinear_apply_apply, CategoryTheory.InjectiveResolution.mk₀_comp_extMk, smul_eq_comp_mk₀, CategoryTheory.ShortComplex.ShortExact.extClass_comp_assoc, addEquivBiprod_symm_apply, addEquivBiprod_apply_snd, biprodAddEquiv_symm_apply, addEquivBiprod_apply_fst, comp_neg, biprodAddEquiv_apply_snd, CategoryTheory.ShortComplex.ShortExact.extClass_comp, comp_assoc_of_third_deg_zero, comp_hom
|
hom 📖 | CompOp | 18 mathmath: preadditiveYoneda_homologySequenceδ_singleTriangle_apply, smul_hom, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, mk₀_hom, preadditiveCoyoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.ShortComplex.ShortExact.extClass_hom, singleFunctor_map_comp_hom, CategoryTheory.ProjectiveResolution.extMk_hom, mapExactFunctor_hom, hom_comp_singleFunctor_map_shift, homAddEquiv_apply, add_hom, zero_hom, CategoryTheory.InjectiveResolution.extMk_hom, ext_iff, neg_hom, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, comp_hom
|
hom' 📖 | CompOp | — |
homAddEquiv 📖 | CompOp | 3 mathmath: homLinearEquiv_apply, homAddEquiv_apply, homLinearEquiv_symm_apply
|
homEquiv 📖 | CompOp | 1 mathmath: homEquiv_chgUniv
|
homEquiv₀ 📖 | CompOp | 2 mathmath: homEquiv₀_symm_apply, mk₀_homEquiv₀_apply
|
instAddCommGroup 📖 | CompOp | 102 mathmath: comp_sum, add_comp, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_neg, CategoryTheory.Functor.mapExtLinearMap_toAddMonoidHom, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_add, homLinearEquiv_apply, zero_comp, precomp_mk₀_injective_of_epi, mk₀_addEquiv₀_apply, sum_comp, contravariant_sequence_exact₁', CategoryTheory.ShortComplex.ext_mk₀_f_comp_ext_mk₀_g, smul_hom, eq_zero_of_hasInjectiveDimensionLT, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_add, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_sub, comp_zero, CategoryTheory.ProjectiveResolution.sub_extMk, mk₀_neg, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, mapExactFunctor_zero, postcomp_extClass_surjective_of_projective_X₂, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_sub, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_sub, contravariant_sequence_exact₂', CategoryTheory.InjectiveResolution.extEquivCohomologyClass_sub, comp_add, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_zero, CategoryTheory.ProjectiveResolution.extAddEquivCohomologyClass_symm_apply, CategoryTheory.Abelian.extFunctorObj_map, covariant_sequence_exact₁', mk₀_smul, covariant_sequence_exact₃', CategoryTheory.InjectiveResolution.add_extMk, CategoryTheory.Functor.mapExtLinearMap_coe, CategoryTheory.InjectiveResolution.extMk_zero, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_neg, precomp_extClass_surjective_of_projective_X₂, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mk₀_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, smul_comp, mk₀_add, CategoryTheory.ProjectiveResolution.add_extMk, CategoryTheory.ShortComplex.ShortExact.comp_extClass_assoc, bilinearComp_apply_apply, CategoryTheory.InjectiveResolution.extMk_eq_zero_iff, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_zero, CategoryTheory.Functor.mapExactFunctor_smul, neg_comp, CategoryTheory.Abelian.extFunctor_map_app, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_zero, CategoryTheory.Functor.mapExtAddHom_apply, homAddEquiv_apply, mk₀_sum, CategoryTheory.ShortComplex.ShortExact.comp_extClass, biprodAddEquiv_apply_fst, add_hom, comp_smul, covariant_sequence_exact₂', zero_hom, mono_postcomp_mk₀_of_mono, mk₀_zero, CategoryTheory.ProjectiveResolution.extMk_zero, CategoryTheory.InjectiveResolution.sub_extMk, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_add, CategoryTheory.ProjectiveResolution.extAddEquivCohomologyClass_apply, bilinearCompOfLinear_apply_apply, CategoryTheory.ProjectiveResolution.extMk_eq_zero_iff, mono_precomp_mk₀_of_epi, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_zero, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_neg, mapExactFunctor_add, smul_eq_comp_mk₀, addEquiv₀_symm_apply, neg_hom, ModuleCat.finite_ext, eq_zero_of_projective, mk₀_eq_zero_iff, postcomp_mk₀_injective_of_mono, eq_zero_of_hasProjectiveDimensionLT, CategoryTheory.InjectiveResolution.neg_extMk, mk₀_linearEquiv₀_apply, CategoryTheory.ShortComplex.ShortExact.extClass_comp_assoc, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_add, addEquivBiprod_symm_apply, CategoryTheory.Functor.mapExtAddHom_coe, contravariant_sequence_exact₃', linearEquiv₀_symm_apply, addEquivBiprod_apply_snd, CategoryTheory.hasProjectiveDimensionLT_iff, homLinearEquiv_symm_apply, biprodAddEquiv_symm_apply, CategoryTheory.ProjectiveResolution.neg_extMk, addEquivBiprod_apply_fst, comp_neg, biprodAddEquiv_apply_snd, CategoryTheory.InjectiveResolution.extAddEquivCohomologyClass_symm_apply, CategoryTheory.ShortComplex.ShortExact.extClass_comp, CategoryTheory.InjectiveResolution.extAddEquivCohomologyClass_apply, CategoryTheory.hasInjectiveDimensionLT_iff, eq_zero_of_injective, CategoryTheory.Functor.mapExtLinearMap_apply, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_neg
|
mk₀ 📖 | CompOp | 52 mathmath: CategoryTheory.InjectiveResolution.extMk_comp_mk₀, precomp_mk₀_injective_of_epi, mk₀_addEquiv₀_apply, contravariant_sequence_exact₁', CategoryTheory.ShortComplex.ext_mk₀_f_comp_ext_mk₀_g, mk₀_id_comp, mk₀_neg, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, mk₀_hom, contravariant_sequence_exact₂', CategoryTheory.Abelian.extFunctorObj_map, covariant_sequence_exact₁', mk₀_smul, CategoryTheory.ProjectiveResolution.extMk_comp_mk₀, covariant_sequence_exact₃', singleFunctor_map_comp_hom, mk₀_comp_mk₀_assoc, CategoryTheory.ProjectiveResolution.mk₀_comp_extMk, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mk₀_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, mk₀_add, comp_mk₀_id, CategoryTheory.ShortComplex.ShortExact.comp_extClass_assoc, hom_comp_singleFunctor_map_shift, CategoryTheory.Abelian.extFunctor_map_app, covariant_sequence_exact₃, mk₀_sum, CategoryTheory.ShortComplex.ShortExact.comp_extClass, biprodAddEquiv_apply_fst, covariant_sequence_exact₂', mono_postcomp_mk₀_of_mono, mk₀_zero, mk₀_comp_mk₀, CategoryTheory.InjectiveResolution.mk₀_comp_extMk, mono_precomp_mk₀_of_epi, smul_eq_comp_mk₀, addEquiv₀_symm_apply, mk₀_eq_zero_iff, postcomp_mk₀_injective_of_mono, mk₀_linearEquiv₀_apply, CategoryTheory.ShortComplex.ShortExact.extClass_comp_assoc, mk₀_bijective, addEquivBiprod_symm_apply, contravariant_sequence_exact₃', linearEquiv₀_symm_apply, contravariant_sequence_exact₁, homEquiv₀_symm_apply, addEquivBiprod_apply_snd, biprodAddEquiv_symm_apply, addEquivBiprod_apply_fst, mk₀_homEquiv₀_apply, biprodAddEquiv_apply_snd, CategoryTheory.ShortComplex.ShortExact.extClass_comp
|
postcomp 📖 | CompOp | 7 mathmath: postcomp_extClass_surjective_of_projective_X₂, CategoryTheory.Abelian.extFunctorObj_map, covariant_sequence_exact₁', covariant_sequence_exact₃', covariant_sequence_exact₂', mono_postcomp_mk₀_of_mono, postcomp_mk₀_injective_of_mono
|
precomp 📖 | CompOp | 6 mathmath: precomp_mk₀_injective_of_epi, contravariant_sequence_exact₁', contravariant_sequence_exact₂', precomp_extClass_surjective_of_projective_X₂, mono_precomp_mk₀_of_epi, contravariant_sequence_exact₃'
|