Documentation Verification Report

Basic

📁 Source: Mathlib/Algebra/Homology/DerivedCategory/Ext/Basic.lean

Statistics

MetricCount
DefinitionsaddEquivBiprod, addEquivBiproduct, addEquiv₀, bilinearComp, biprodAddEquiv, biproductAddEquiv, chgUniv, comp, hom, hom', homAddEquiv, homEquiv, homEquiv₀, instAddCommGroup, mk₀, postcomp, precomp, extFunctor, extFunctorObj
19
TheoremsaddEquivBiprod_apply_fst, addEquivBiprod_apply_snd, addEquivBiprod_symm_apply, addEquiv₀_symm_apply, add_comp, add_hom, bilinearComp_apply_apply, biprodAddEquiv_apply_fst, biprodAddEquiv_apply_snd, biprodAddEquiv_symm_apply, biprod_ext, comp_add, comp_assoc, comp_assoc_of_second_deg_zero, comp_assoc_of_third_deg_zero, comp_hom, comp_mk₀_id, comp_neg, comp_sum, comp_zero, ext, ext_iff, homAddEquiv_apply, homEquiv_chgUniv, homEquiv₀_symm_apply, mk₀_add, mk₀_addEquiv₀_apply, mk₀_bijective, mk₀_comp_mk₀, mk₀_comp_mk₀_assoc, mk₀_eq_zero_iff, mk₀_hom, mk₀_homEquiv₀_apply, mk₀_id_comp, mk₀_neg, mk₀_sum, mk₀_zero, neg_comp, neg_hom, sum_comp, zero_comp, zero_hom, extFunctorObj_map, extFunctorObj_obj_coe, extFunctor_map_app, extFunctor_obj, instAdditiveAddCommGrpCatExtFunctorObj, instAdditiveOppositeFunctorAddCommGrpCatExtFunctor, standard, hasExt_iff, hasExt_iff_small_ext, hasExt_of_hasDerivedCategory, instSmallHomDerivedCategoryObjSingleFunctorOfHasExt
53
Total72

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
hasExt_iff 📖mathematicalHasExt
Small
Quiver.Hom
DerivedCategory
CategoryStruct.toQuiver
Category.toCategoryStruct
DerivedCategory.instCategory
Functor.obj
DerivedCategory.singleFunctor
shiftFunctor
Int.instAddMonoid
DerivedCategory.instHasShiftInt
categoryWithHomology_of_abelian
Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
Localization.hasSmallLocalizedShiftedHom_iff
DerivedCategory.instIsLocalizationCochainComplexIntQQuasiIsoUp
small_congr
le_or_gt
Functor.IsEquivalence.full
instIsEquivalenceShiftFunctor
Functor.IsEquivalence.faithful
cancel_mono
mono_of_strongMono
instStrongMonoOfIsRegularMono
instIsRegularMonoOfIsSplitMono
Functor.instIsSplitMonoApp
IsSplitMono.of_iso
Iso.isIso_inv
cancel_epi
epi_of_effectiveEpi
instEffectiveEpiOfIsIso
NatIso.hom_app_isIso
CochainComplex.isStrictlyLE_shift
CochainComplex.instIsStrictlyLEObjIntSingleFunctor
CochainComplex.isStrictlyGE_shift
CochainComplex.instIsStrictlyGEObjIntSingleFunctor
DerivedCategory.subsingleton_hom_of_isStrictlyLE_of_isStrictlyGE
Countable.toSmall
Finite.to_countable
Finite.of_subsingleton
hasExt_iff_small_ext 📖mathematicalHasExtSmall
Abelian.Ext
small_congr
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
CanLift.prf
instCanLiftIntNatCastLeOfNat
hasExt_of_hasDerivedCategory 📖mathematicalHasExthasExt_iff
instSmallHomOfLocallySmall
locallySmall_of_univLE
UnivLE.self
instSmallHomDerivedCategoryObjSingleFunctorOfHasExt 📖mathematicalHasExtSmall
Quiver.Hom
DerivedCategory
CategoryStruct.toQuiver
Category.toCategoryStruct
DerivedCategory.instCategory
Functor.obj
DerivedCategory.singleFunctor
AddRightCancelSemigroup.toIsRightCancelAdd
categoryWithHomology_of_abelian
Abelian.hasZeroObject
Localization.hasSmallLocalizedShiftedHom_iff
DerivedCategory.instIsLocalizationCochainComplexIntQQuasiIsoUp
small_of_injective
neg_add_cancel

CategoryTheory.Abelian

Definitions

NameCategoryTheorems
extFunctor 📖CompOp
3 mathmath: extFunctor_obj, extFunctor_map_app, instAdditiveOppositeFunctorAddCommGrpCatExtFunctor
extFunctorObj 📖CompOp
5 mathmath: extFunctorObj_obj_coe, extFunctorObj_map, instAdditiveAddCommGrpCatExtFunctorObj, extFunctor_obj, extFunctor_map_app

Theorems

NameKindAssumesProvesValidatesDepends On
extFunctorObj_map 📖mathematicalCategoryTheory.HasExtCategoryTheory.Functor.map
AddCommGrpCat
AddCommGrpCat.instCategory
extFunctorObj
AddCommGrpCat.ofHom
Ext
Ext.instAddCommGroup
Ext.postcomp
Ext.mk₀
extFunctorObj_obj_coe 📖mathematicalCategoryTheory.HasExtAddCommGrpCat.carrier
CategoryTheory.Functor.obj
AddCommGrpCat
AddCommGrpCat.instCategory
extFunctorObj
Ext
extFunctor_map_app 📖mathematicalCategoryTheory.HasExtCategoryTheory.NatTrans.app
AddCommGrpCat
AddCommGrpCat.instCategory
extFunctorObj
Opposite.unop
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
extFunctor
AddCommGrpCat.ofHom
Ext
Ext.instAddCommGroup
AddMonoidHom.mk'
AddCommGroup.toAddGroup
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Ext.comp
Ext.mk₀
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
extFunctor_obj 📖mathematicalCategoryTheory.HasExtCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Functor.category
extFunctor
extFunctorObj
Opposite.unop
instAdditiveAddCommGrpCatExtFunctorObj 📖mathematicalCategoryTheory.HasExtCategoryTheory.Functor.Additive
AddCommGrpCat
AddCommGrpCat.instCategory
toPreadditive
AddCommGrpCat.instPreadditive
extFunctorObj
Ext.postcomp.congr_simp
Ext.mk₀_add
map_add
AddMonoidHomClass.toAddHomClass
AddMonoidHom.instAddMonoidHomClass
instAdditiveOppositeFunctorAddCommGrpCatExtFunctor 📖mathematicalCategoryTheory.HasExtCategoryTheory.Functor.Additive
Opposite
CategoryTheory.Functor
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.instPreadditiveOpposite
toPreadditive
CategoryTheory.functorCategoryPreadditive
AddCommGrpCat.instPreadditive
extFunctor
CategoryTheory.NatTrans.ext'
AddCommGrpCat.hom_ext
AddMonoidHom.ext
Ext.comp.congr_simp
Ext.mk₀_add
Ext.add_comp
AddMonoidHom.mk'.congr_simp

CategoryTheory.Abelian.Ext

Definitions

NameCategoryTheorems
addEquivBiprod 📖CompOp
3 mathmath: addEquivBiprod_symm_apply, addEquivBiprod_apply_snd, addEquivBiprod_apply_fst
addEquivBiproduct 📖CompOp
addEquiv₀ 📖CompOp
2 mathmath: mk₀_addEquiv₀_apply, addEquiv₀_symm_apply
bilinearComp 📖CompOp
1 mathmath: bilinearComp_apply_apply
biprodAddEquiv 📖CompOp
5 mathmath: CategoryTheory.GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mk₀_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, biprodAddEquiv_apply_fst, biprodAddEquiv_symm_apply, biprodAddEquiv_apply_snd
biproductAddEquiv 📖CompOp
chgUniv 📖CompOp
1 mathmath: homEquiv_chgUniv
comp 📖CompOp
43 mathmath: comp_sum, add_comp, CategoryTheory.InjectiveResolution.extMk_comp_mk₀, zero_comp, preadditiveYoneda_homologySequenceδ_singleTriangle_apply, sum_comp, CategoryTheory.ShortComplex.ext_mk₀_f_comp_ext_mk₀_g, mk₀_id_comp, comp_zero, comp_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, comp_add, preadditiveCoyoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.ProjectiveResolution.extMk_comp_mk₀, comp_assoc_of_second_deg_zero, singleFunctor_map_comp_hom, mk₀_comp_mk₀_assoc, CategoryTheory.ProjectiveResolution.mk₀_comp_extMk, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mk₀_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, smul_comp, comp_mk₀_id, CategoryTheory.ShortComplex.ShortExact.comp_extClass_assoc, hom_comp_singleFunctor_map_shift, bilinearComp_apply_apply, neg_comp, CategoryTheory.Abelian.extFunctor_map_app, CategoryTheory.ShortComplex.ShortExact.comp_extClass, biprodAddEquiv_apply_fst, comp_smul, mk₀_comp_mk₀, bilinearCompOfLinear_apply_apply, CategoryTheory.InjectiveResolution.mk₀_comp_extMk, smul_eq_comp_mk₀, CategoryTheory.ShortComplex.ShortExact.extClass_comp_assoc, addEquivBiprod_symm_apply, addEquivBiprod_apply_snd, biprodAddEquiv_symm_apply, addEquivBiprod_apply_fst, comp_neg, biprodAddEquiv_apply_snd, CategoryTheory.ShortComplex.ShortExact.extClass_comp, comp_assoc_of_third_deg_zero, comp_hom
hom 📖CompOp
18 mathmath: preadditiveYoneda_homologySequenceδ_singleTriangle_apply, smul_hom, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, mk₀_hom, preadditiveCoyoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.ShortComplex.ShortExact.extClass_hom, singleFunctor_map_comp_hom, CategoryTheory.ProjectiveResolution.extMk_hom, mapExactFunctor_hom, hom_comp_singleFunctor_map_shift, homAddEquiv_apply, add_hom, zero_hom, CategoryTheory.InjectiveResolution.extMk_hom, ext_iff, neg_hom, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, comp_hom
hom' 📖CompOp
homAddEquiv 📖CompOp
3 mathmath: homLinearEquiv_apply, homAddEquiv_apply, homLinearEquiv_symm_apply
homEquiv 📖CompOp
1 mathmath: homEquiv_chgUniv
homEquiv₀ 📖CompOp
2 mathmath: homEquiv₀_symm_apply, mk₀_homEquiv₀_apply
instAddCommGroup 📖CompOp
102 mathmath: comp_sum, add_comp, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_neg, CategoryTheory.Functor.mapExtLinearMap_toAddMonoidHom, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_add, homLinearEquiv_apply, zero_comp, precomp_mk₀_injective_of_epi, mk₀_addEquiv₀_apply, sum_comp, contravariant_sequence_exact₁', CategoryTheory.ShortComplex.ext_mk₀_f_comp_ext_mk₀_g, smul_hom, eq_zero_of_hasInjectiveDimensionLT, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_add, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_sub, comp_zero, CategoryTheory.ProjectiveResolution.sub_extMk, mk₀_neg, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, mapExactFunctor_zero, postcomp_extClass_surjective_of_projective_X₂, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_sub, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_sub, contravariant_sequence_exact₂', CategoryTheory.InjectiveResolution.extEquivCohomologyClass_sub, comp_add, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_zero, CategoryTheory.ProjectiveResolution.extAddEquivCohomologyClass_symm_apply, CategoryTheory.Abelian.extFunctorObj_map, covariant_sequence_exact₁', mk₀_smul, covariant_sequence_exact₃', CategoryTheory.InjectiveResolution.add_extMk, CategoryTheory.Functor.mapExtLinearMap_coe, CategoryTheory.InjectiveResolution.extMk_zero, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_neg, precomp_extClass_surjective_of_projective_X₂, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mk₀_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, smul_comp, mk₀_add, CategoryTheory.ProjectiveResolution.add_extMk, CategoryTheory.ShortComplex.ShortExact.comp_extClass_assoc, bilinearComp_apply_apply, CategoryTheory.InjectiveResolution.extMk_eq_zero_iff, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_zero, CategoryTheory.Functor.mapExactFunctor_smul, neg_comp, CategoryTheory.Abelian.extFunctor_map_app, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_zero, CategoryTheory.Functor.mapExtAddHom_apply, homAddEquiv_apply, mk₀_sum, CategoryTheory.ShortComplex.ShortExact.comp_extClass, biprodAddEquiv_apply_fst, add_hom, comp_smul, covariant_sequence_exact₂', zero_hom, mono_postcomp_mk₀_of_mono, mk₀_zero, CategoryTheory.ProjectiveResolution.extMk_zero, CategoryTheory.InjectiveResolution.sub_extMk, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_add, CategoryTheory.ProjectiveResolution.extAddEquivCohomologyClass_apply, bilinearCompOfLinear_apply_apply, CategoryTheory.ProjectiveResolution.extMk_eq_zero_iff, mono_precomp_mk₀_of_epi, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_zero, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_neg, mapExactFunctor_add, smul_eq_comp_mk₀, addEquiv₀_symm_apply, neg_hom, ModuleCat.finite_ext, eq_zero_of_projective, mk₀_eq_zero_iff, postcomp_mk₀_injective_of_mono, eq_zero_of_hasProjectiveDimensionLT, CategoryTheory.InjectiveResolution.neg_extMk, mk₀_linearEquiv₀_apply, CategoryTheory.ShortComplex.ShortExact.extClass_comp_assoc, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_add, addEquivBiprod_symm_apply, CategoryTheory.Functor.mapExtAddHom_coe, contravariant_sequence_exact₃', linearEquiv₀_symm_apply, addEquivBiprod_apply_snd, CategoryTheory.hasProjectiveDimensionLT_iff, homLinearEquiv_symm_apply, biprodAddEquiv_symm_apply, CategoryTheory.ProjectiveResolution.neg_extMk, addEquivBiprod_apply_fst, comp_neg, biprodAddEquiv_apply_snd, CategoryTheory.InjectiveResolution.extAddEquivCohomologyClass_symm_apply, CategoryTheory.ShortComplex.ShortExact.extClass_comp, CategoryTheory.InjectiveResolution.extAddEquivCohomologyClass_apply, CategoryTheory.hasInjectiveDimensionLT_iff, eq_zero_of_injective, CategoryTheory.Functor.mapExtLinearMap_apply, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_neg
mk₀ 📖CompOp
52 mathmath: CategoryTheory.InjectiveResolution.extMk_comp_mk₀, precomp_mk₀_injective_of_epi, mk₀_addEquiv₀_apply, contravariant_sequence_exact₁', CategoryTheory.ShortComplex.ext_mk₀_f_comp_ext_mk₀_g, mk₀_id_comp, mk₀_neg, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, mk₀_hom, contravariant_sequence_exact₂', CategoryTheory.Abelian.extFunctorObj_map, covariant_sequence_exact₁', mk₀_smul, CategoryTheory.ProjectiveResolution.extMk_comp_mk₀, covariant_sequence_exact₃', singleFunctor_map_comp_hom, mk₀_comp_mk₀_assoc, CategoryTheory.ProjectiveResolution.mk₀_comp_extMk, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mk₀_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, mk₀_add, comp_mk₀_id, CategoryTheory.ShortComplex.ShortExact.comp_extClass_assoc, hom_comp_singleFunctor_map_shift, CategoryTheory.Abelian.extFunctor_map_app, covariant_sequence_exact₃, mk₀_sum, CategoryTheory.ShortComplex.ShortExact.comp_extClass, biprodAddEquiv_apply_fst, covariant_sequence_exact₂', mono_postcomp_mk₀_of_mono, mk₀_zero, mk₀_comp_mk₀, CategoryTheory.InjectiveResolution.mk₀_comp_extMk, mono_precomp_mk₀_of_epi, smul_eq_comp_mk₀, addEquiv₀_symm_apply, mk₀_eq_zero_iff, postcomp_mk₀_injective_of_mono, mk₀_linearEquiv₀_apply, CategoryTheory.ShortComplex.ShortExact.extClass_comp_assoc, mk₀_bijective, addEquivBiprod_symm_apply, contravariant_sequence_exact₃', linearEquiv₀_symm_apply, contravariant_sequence_exact₁, homEquiv₀_symm_apply, addEquivBiprod_apply_snd, biprodAddEquiv_symm_apply, addEquivBiprod_apply_fst, mk₀_homEquiv₀_apply, biprodAddEquiv_apply_snd, CategoryTheory.ShortComplex.ShortExact.extClass_comp
postcomp 📖CompOp
7 mathmath: postcomp_extClass_surjective_of_projective_X₂, CategoryTheory.Abelian.extFunctorObj_map, covariant_sequence_exact₁', covariant_sequence_exact₃', covariant_sequence_exact₂', mono_postcomp_mk₀_of_mono, postcomp_mk₀_injective_of_mono
precomp 📖CompOp
6 mathmath: precomp_mk₀_injective_of_epi, contravariant_sequence_exact₁', contravariant_sequence_exact₂', precomp_extClass_surjective_of_projective_X₂, mono_precomp_mk₀_of_epi, contravariant_sequence_exact₃'

Theorems

NameKindAssumesProvesValidatesDepends On
addEquivBiprod_apply_fst 📖mathematicalCategoryTheory.HasExtCategoryTheory.Abelian.Ext
DFunLike.coe
AddEquiv
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
instAddCommGroup
Prod.instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
addEquivBiprod
comp
mk₀
CategoryTheory.Limits.biprod.fst
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Localization.HasSmallLocalizedHom.small
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
addEquivBiprod_apply_snd 📖mathematicalCategoryTheory.HasExtCategoryTheory.Abelian.Ext
DFunLike.coe
AddEquiv
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
instAddCommGroup
Prod.instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
addEquivBiprod
comp
mk₀
CategoryTheory.Limits.biprod.snd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Localization.HasSmallLocalizedHom.small
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
addEquivBiprod_symm_apply 📖mathematicalCategoryTheory.HasExtDFunLike.coe
AddEquiv
CategoryTheory.Abelian.Ext
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
Prod.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
instAddCommGroup
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
addEquivBiprod
comp
mk₀
CategoryTheory.Limits.biprod.inl
CategoryTheory.Limits.biprod.inr
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Localization.HasSmallLocalizedHom.small
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
addEquiv₀_symm_apply 📖mathematicalCategoryTheory.HasExtDFunLike.coe
AddEquiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Abelian.Ext
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
CategoryTheory.Abelian.toPreadditive
instAddCommGroup
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
addEquiv₀
mk₀
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Localization.HasSmallLocalizedHom.small
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
add_comp 📖mathematicalCategoryTheory.HasExtcomp
CategoryTheory.Abelian.Ext
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
instAddCommGroup
ext
comp_hom
CategoryTheory.ShiftedHom.comp.congr_simp
CategoryTheory.ShiftedHom.add_comp
add_hom 📖mathematicalCategoryTheory.HasExthom
CategoryTheory.Abelian.Ext
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
instAddCommGroup
CategoryTheory.ShiftedHom
DerivedCategory
DerivedCategory.instCategory
Int.instAddMonoid
DerivedCategory.instHasShiftInt
CategoryTheory.Functor.obj
DerivedCategory.singleFunctor
CategoryTheory.Preadditive.homGroup
DerivedCategory.instPreadditive
CategoryTheory.shiftFunctor
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
zero_add
comp_add
mk₀_comp_mk₀_assoc
comp.congr_simp
CategoryTheory.Limits.biprod.lift_fst
mk₀_id_comp
CategoryTheory.Limits.biprod.lift_snd
biprod_ext
ext
CategoryTheory.Limits.BinaryBicone.inl_fst
CategoryTheory.Limits.BinaryBicone.inl_snd
mk₀_zero
zero_comp
add_zero
comp_hom
CategoryTheory.ShiftedHom.comp.congr_simp
mk₀_hom
Equiv.apply_symm_apply
CategoryTheory.ShiftedHom.comp_add
DerivedCategory.instAdditiveShiftFunctorInt
CategoryTheory.ShiftedHom.mk₀_comp_mk₀_assoc
CategoryTheory.ShiftedHom.mk₀.congr_simp
CategoryTheory.Functor.map_id
CategoryTheory.ShiftedHom.mk₀_id_comp
CategoryTheory.Functor.map_zero
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
DerivedCategory.instAdditiveSingleFunctor
CategoryTheory.ShiftedHom.mk₀_zero
CategoryTheory.ShiftedHom.zero_comp
CategoryTheory.Limits.BinaryBicone.inr_fst
CategoryTheory.Limits.BinaryBicone.inr_snd
CategoryTheory.Functor.map_comp
bilinearComp_apply_apply 📖mathematicalCategoryTheory.HasExtDFunLike.coe
AddMonoidHom
CategoryTheory.Abelian.Ext
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
instAddCommGroup
AddMonoidHom.instFunLike
AddMonoidHom.instAddCommGroup
bilinearComp
comp
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Localization.HasSmallLocalizedHom.small
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
biprodAddEquiv_apply_fst 📖mathematicalCategoryTheory.HasExtCategoryTheory.Abelian.Ext
DFunLike.coe
AddEquiv
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
instAddCommGroup
Prod.instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
biprodAddEquiv
comp
mk₀
CategoryTheory.Limits.biprod.inl
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Localization.HasSmallLocalizedHom.small
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
biprodAddEquiv_apply_snd 📖mathematicalCategoryTheory.HasExtCategoryTheory.Abelian.Ext
DFunLike.coe
AddEquiv
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
instAddCommGroup
Prod.instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
biprodAddEquiv
comp
mk₀
CategoryTheory.Limits.biprod.inr
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Localization.HasSmallLocalizedHom.small
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
biprodAddEquiv_symm_apply 📖mathematicalCategoryTheory.HasExtDFunLike.coe
AddEquiv
CategoryTheory.Abelian.Ext
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
Prod.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
instAddCommGroup
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
biprodAddEquiv
comp
mk₀
CategoryTheory.Limits.biprod.fst
CategoryTheory.Limits.biprod.snd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Localization.HasSmallLocalizedHom.small
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
biprod_ext 📖CategoryTheory.HasExt
comp
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
mk₀
CategoryTheory.Limits.biprod.inl
zero_add
AddMonoid.toAddZeroClass
Nat.instAddMonoid
CategoryTheory.Limits.biprod.inr
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
zero_add
ext_iff
CategoryTheory.Limits.BinaryCofan.IsColimit.hom_ext
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
DerivedCategory.instAdditiveSingleFunctor
CategoryTheory.Limits.PreservesBinaryBiproducts.preserves
CategoryTheory.Limits.preservesBinaryBiproducts_of_preservesBiproducts
CategoryTheory.Limits.PreservesFiniteBiproducts.preserves
CategoryTheory.Functor.preservesFiniteBiproductsOfAdditive
Finite.of_fintype
comp_hom
CategoryTheory.ShiftedHom.comp.congr_simp
mk₀_hom
CategoryTheory.ShiftedHom.mk₀_comp
comp_add 📖mathematicalCategoryTheory.HasExtcomp
CategoryTheory.Abelian.Ext
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
instAddCommGroup
ext
comp_hom
CategoryTheory.ShiftedHom.comp.congr_simp
CategoryTheory.ShiftedHom.comp_add
DerivedCategory.instAdditiveShiftFunctorInt
comp_assoc 📖mathematicalCategoryTheory.HasExtcompCategoryTheory.Localization.SmallShiftedHom.comp_assoc
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Abelian.hasZeroObject
comp_assoc_of_second_deg_zero 📖mathematicalCategoryTheory.HasExtcomp
add_zero
AddMonoid.toAddZeroClass
Nat.instAddMonoid
zero_add
comp_assoc
add_zero
zero_add
comp_assoc_of_third_deg_zero 📖mathematicalCategoryTheory.HasExtcomp
add_zero
AddMonoid.toAddZeroClass
Nat.instAddMonoid
comp_assoc
add_zero
comp_hom 📖mathematicalCategoryTheory.HasExthom
comp
CategoryTheory.ShiftedHom.comp
DerivedCategory
DerivedCategory.instCategory
Int.instAddMonoid
DerivedCategory.instHasShiftInt
CategoryTheory.Functor.obj
DerivedCategory.singleFunctor
CategoryTheory.Localization.SmallShiftedHom.equiv_comp
CategoryTheory.categoryWithHomology_of_abelian
DerivedCategory.instIsLocalizationCochainComplexIntQQuasiIsoUp
CategoryTheory.Abelian.hasZeroObject
comp_mk₀_id 📖mathematicalCategoryTheory.HasExtcomp
mk₀
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
add_zero
AddMonoid.toAddZeroClass
Nat.instAddMonoid
ext
add_zero
comp_hom
CategoryTheory.ShiftedHom.comp.congr_simp
mk₀_hom
CategoryTheory.ShiftedHom.mk₀.congr_simp
CategoryTheory.Functor.map_id
CategoryTheory.ShiftedHom.comp_mk₀_id
comp_neg 📖mathematicalCategoryTheory.HasExtcomp
CategoryTheory.Abelian.Ext
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroup
ext
comp_hom
CategoryTheory.ShiftedHom.comp.congr_simp
CategoryTheory.ShiftedHom.comp_neg
DerivedCategory.instAdditiveShiftFunctorInt
comp_sum 📖mathematicalCategoryTheory.HasExtcomp
Finset.sum
CategoryTheory.Abelian.Ext
AddCommGroup.toAddCommMonoid
instAddCommGroup
Finset.univ
map_sum
AddMonoidHom.instAddMonoidHomClass
comp_zero 📖mathematicalCategoryTheory.HasExtcomp
CategoryTheory.Abelian.Ext
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroup
ext
comp_hom
CategoryTheory.ShiftedHom.comp.congr_simp
CategoryTheory.ShiftedHom.comp_zero
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
DerivedCategory.instAdditiveShiftFunctorInt
ext 📖CategoryTheory.HasExt
hom
Equiv.injective
ext_iff 📖mathematicalCategoryTheory.HasExthomext
homAddEquiv_apply 📖mathematicalCategoryTheory.HasExtDFunLike.coe
AddEquiv
CategoryTheory.Abelian.Ext
CategoryTheory.ShiftedHom
DerivedCategory
DerivedCategory.instCategory
Int.instAddMonoid
DerivedCategory.instHasShiftInt
CategoryTheory.Functor.obj
DerivedCategory.singleFunctor
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
instAddCommGroup
CategoryTheory.Preadditive.homGroup
DerivedCategory.instPreadditive
CategoryTheory.shiftFunctor
EquivLike.toFunLike
AddEquiv.instEquivLike
homAddEquiv
hom
homEquiv_chgUniv 📖mathematicalCategoryTheory.HasExtDFunLike.coe
Equiv
CategoryTheory.Abelian.Ext
CategoryTheory.ShiftedHom
DerivedCategory
DerivedCategory.instCategory
Int.instAddMonoid
DerivedCategory.instHasShiftInt
CategoryTheory.Functor.obj
DerivedCategory.singleFunctor
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
chgUniv
CategoryTheory.Localization.SmallShiftedHom.equiv_chgUniv
CategoryTheory.categoryWithHomology_of_abelian
DerivedCategory.instIsLocalizationCochainComplexIntQQuasiIsoUp
CategoryTheory.Abelian.hasZeroObject
homEquiv₀_symm_apply 📖mathematicalCategoryTheory.HasExtDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Abelian.Ext
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv₀
mk₀
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Localization.HasSmallLocalizedHom.small
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
mk₀_add 📖mathematicalCategoryTheory.HasExtmk₀
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Abelian.Ext
instAddCommGroup
ext
mk₀_hom
CategoryTheory.Functor.map_add
DerivedCategory.instAdditiveSingleFunctor
CategoryTheory.Preadditive.add_comp
mk₀_addEquiv₀_apply 📖mathematicalCategoryTheory.HasExtmk₀
DFunLike.coe
AddEquiv
CategoryTheory.Abelian.Ext
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
instAddCommGroup
CategoryTheory.Preadditive.homGroup
CategoryTheory.Abelian.toPreadditive
EquivLike.toFunLike
AddEquiv.instEquivLike
addEquiv₀
Equiv.left_inv
mk₀_bijective 📖mathematicalCategoryTheory.HasExtFunction.Bijective
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Abelian.Ext
mk₀
DerivedCategory.instFullSingleFunctor
DerivedCategory.instFaithfulSingleFunctor
CharP.cast_eq_zero
CharP.ofCharZero
Int.instCharZero
Equiv.injective
Equiv.apply_symm_apply
CategoryTheory.Localization.SmallShiftedHom.equiv_mk₀
CategoryTheory.categoryWithHomology_of_abelian
DerivedCategory.instIsLocalizationCochainComplexIntQQuasiIsoUp
CategoryTheory.Abelian.hasZeroObject
Equiv.bijective
mk₀_comp_mk₀ 📖mathematicalCategoryTheory.HasExtcomp
mk₀
zero_add
AddMonoid.toAddZeroClass
Nat.instAddMonoid
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
ext
zero_add
comp_hom
CategoryTheory.ShiftedHom.comp.congr_simp
mk₀_hom
CategoryTheory.ShiftedHom.mk₀_comp_mk₀
CategoryTheory.ShiftedHom.mk₀.congr_simp
CategoryTheory.Functor.map_comp
mk₀_comp_mk₀_assoc 📖mathematicalCategoryTheory.HasExtcomp
mk₀
zero_add
AddMonoid.toAddZeroClass
Nat.instAddMonoid
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
zero_add
mk₀_comp_mk₀
comp_assoc
mk₀_eq_zero_iff 📖mathematicalCategoryTheory.HasExtmk₀
CategoryTheory.Abelian.Ext
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroup
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddEquiv.map_eq_zero_iff
mk₀_hom 📖mathematicalCategoryTheory.HasExthom
mk₀
CategoryTheory.ShiftedHom.mk₀
DerivedCategory
DerivedCategory.instCategory
Int.instAddMonoid
DerivedCategory.instHasShiftInt
CategoryTheory.Functor.obj
DerivedCategory.singleFunctor
CategoryTheory.Functor.map
CategoryTheory.Localization.SmallShiftedHom.equiv_mk₀
CategoryTheory.categoryWithHomology_of_abelian
DerivedCategory.instIsLocalizationCochainComplexIntQQuasiIsoUp
CategoryTheory.Abelian.hasZeroObject
mk₀_homEquiv₀_apply 📖mathematicalCategoryTheory.HasExtmk₀
DFunLike.coe
Equiv
CategoryTheory.Abelian.Ext
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv₀
Equiv.left_inv
mk₀_id_comp 📖mathematicalCategoryTheory.HasExtcomp
mk₀
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
zero_add
AddMonoid.toAddZeroClass
Nat.instAddMonoid
ext
zero_add
comp_hom
CategoryTheory.ShiftedHom.comp.congr_simp
mk₀_hom
CategoryTheory.ShiftedHom.mk₀.congr_simp
CategoryTheory.Functor.map_id
CategoryTheory.ShiftedHom.mk₀_id_comp
mk₀_neg 📖mathematicalCategoryTheory.HasExtmk₀
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.Preadditive.homGroup
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Abelian.Ext
instAddCommGroup
ext
mk₀_hom
CategoryTheory.ShiftedHom.mk₀.congr_simp
CategoryTheory.Functor.map_neg
DerivedCategory.instAdditiveSingleFunctor
CategoryTheory.ShiftedHom.mk₀_neg
mk₀_sum 📖mathematicalCategoryTheory.HasExtmk₀
Finset.sum
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
CategoryTheory.Abelian.toPreadditive
Finset.univ
CategoryTheory.Abelian.Ext
instAddCommGroup
map_sum
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
mk₀_zero 📖mathematicalCategoryTheory.HasExtmk₀
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Abelian.Ext
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroup
ext
mk₀_hom
CategoryTheory.ShiftedHom.mk₀.congr_simp
CategoryTheory.Functor.map_zero
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
DerivedCategory.instAdditiveSingleFunctor
CategoryTheory.ShiftedHom.mk₀_zero
neg_comp 📖mathematicalCategoryTheory.HasExtcomp
CategoryTheory.Abelian.Ext
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroup
ext
comp_hom
CategoryTheory.ShiftedHom.comp.congr_simp
CategoryTheory.ShiftedHom.neg_comp
neg_hom 📖mathematicalCategoryTheory.HasExthom
CategoryTheory.Abelian.Ext
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroup
CategoryTheory.ShiftedHom
DerivedCategory
DerivedCategory.instCategory
Int.instAddMonoid
DerivedCategory.instHasShiftInt
CategoryTheory.Functor.obj
DerivedCategory.singleFunctor
CategoryTheory.Preadditive.homGroup
DerivedCategory.instPreadditive
CategoryTheory.shiftFunctor
AddLeftCancelSemigroup.toIsLeftCancelAdd
add_hom
add_neg_cancel
zero_hom
sum_comp 📖mathematicalCategoryTheory.HasExtcomp
Finset.sum
CategoryTheory.Abelian.Ext
AddCommGroup.toAddCommMonoid
instAddCommGroup
Finset.univ
map_sum
AddMonoidHom.instAddMonoidHomClass
zero_comp 📖mathematicalCategoryTheory.HasExtcomp
CategoryTheory.Abelian.Ext
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroup
ext
comp_hom
CategoryTheory.ShiftedHom.comp.congr_simp
CategoryTheory.ShiftedHom.zero_comp
zero_hom 📖mathematicalCategoryTheory.HasExthom
CategoryTheory.Abelian.Ext
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroup
CategoryTheory.ShiftedHom
DerivedCategory
DerivedCategory.instCategory
Int.instAddMonoid
DerivedCategory.instHasShiftInt
CategoryTheory.Functor.obj
DerivedCategory.singleFunctor
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
DerivedCategory.instPreadditive
CategoryTheory.shiftFunctor
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Limits.IsZero.eq_of_src
CategoryTheory.Functor.map_isZero
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
DerivedCategory.instAdditiveSingleFunctor
CategoryTheory.Limits.isZero_zero
zero_add
comp_zero
comp_hom
CategoryTheory.ShiftedHom.comp_zero
DerivedCategory.instAdditiveShiftFunctorInt

CategoryTheory.HasExt

Theorems

NameKindAssumesProvesValidatesDepends On
standard 📖mathematicalCategoryTheory.HasExtCategoryTheory.hasExt_of_hasDerivedCategory

---

← Back to Index