Documentation Verification Report

EnoughInjectives

📁 Source: Mathlib/Algebra/Homology/DerivedCategory/Ext/EnoughInjectives.lean

Statistics

MetricCount
Definitions0
Theoremseq_zero_of_injective, subsingleton_of_injective, hasExt_of_enoughInjectives, isSplitMono_from_singleFunctor_obj_of_injective, to_singleFunctor_obj_eq_zero_of_injective
5
Total5

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
hasExt_of_enoughInjectives 📖mathematicalHasExthasExt_of_hasDerivedCategory
hasExt_iff_small_ext
small_congr
instSmallHomOfLocallySmall
Limits.HasCokernels.has_colimit
Abelian.has_cokernels
Limits.cokernel.condition
ShortComplex.exact_of_g_is_cokernel
CategoryWithHomology.hasHomology
categoryWithHomology_of_abelian
Injective.ι_mono
Limits.coequalizer.π_epi
Abelian.Ext.covariant_sequence_exact₁
Abelian.Ext.eq_zero_of_injective
Injective.injective_under
add_zero
small_of_surjective

CategoryTheory.Abelian.Ext

Theorems

NameKindAssumesProvesValidatesDepends On
eq_zero_of_injective 📖mathematicalCategoryTheory.HasExtCategoryTheory.Abelian.Ext
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Abelian.hasZeroObject
CochainComplex.isStrictlyGE_of_ge
CochainComplex.instIsStrictlyGEObjIntSingleFunctor
Equiv.injective
zero_hom
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.Functor.instIsSplitMonoApp
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.zero_comp
DerivedCategory.to_singleFunctor_obj_eq_zero_of_injective
subsingleton_of_injective 📖mathematicalCategoryTheory.HasExtCategoryTheory.Abelian.Exteq_zero_of_injective

CochainComplex

Theorems

NameKindAssumesProvesValidatesDepends On
isSplitMono_from_singleFunctor_obj_of_injective 📖mathematicalCategoryTheory.IsSplitMono
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
singleFunctor
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
prev
CategoryTheory.Limits.IsZero.eq_of_src
isZero_of_isStrictlyGE
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
Int.instZeroLEOneClass
HomologicalComplex.instHasHomologyObjSingle
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
HomologicalComplex.pOpcyclesIso_inv_hom_id
CategoryTheory.Category.comp_id
HomologicalComplex.homologyι_naturality
HomologicalComplex.singleObjHomologySelfIso_inv_homologyι_assoc
HomologicalComplex.pOpcycles_singleObjOpcyclesSelfIso_inv_assoc
CategoryTheory.Iso.inv_hom_id_assoc
HomologicalComplex.p_opcyclesMap
CategoryTheory.mono_comp
CategoryTheory.Iso.isIso_inv
instIsIsoHomologyMapOfQuasiIsoAt
HomologicalComplex.instMonoHomologyι
contravariant_lt_of_covariant_le
HomologicalComplex.to_single_hom_ext
HomologicalComplex.comp_f
HomologicalComplex.mkHomToSingle_f
HomologicalComplex.id_f
CategoryTheory.Injective.comp_factorThru_assoc
CategoryTheory.Category.id_comp
CategoryTheory.Iso.hom_inv_id

DerivedCategory

Theorems

NameKindAssumesProvesValidatesDepends On
to_singleFunctor_obj_eq_zero_of_injective 📖mathematicalQuiver.Hom
DerivedCategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
Q
CochainComplex.singleFunctor
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Limits.HasZeroMorphisms.zero
instPreadditive
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Abelian.hasZeroObject
left_fac_of_isStrictlyGE
CochainComplex.instIsStrictlyGEObjIntSingleFunctor
CochainComplex.isSplitMono_from_singleFunctor_obj_of_injective
QuasiIso.quasiIsoAt
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
isIso_Q_map_iff_quasiIso
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.Functor.map_comp
CategoryTheory.IsSplitMono.id
CategoryTheory.Functor.map_id
HomologicalComplex.to_single_hom_ext
CategoryTheory.Limits.IsZero.eq_of_src
CochainComplex.isZero_of_isStrictlyGE
CategoryTheory.Functor.map_zero
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
instAdditiveCochainComplexIntQ

---

← Back to Index