Documentation Verification Report

EnoughProjectives

📁 Source: Mathlib/Algebra/Homology/DerivedCategory/Ext/EnoughProjectives.lean

Statistics

MetricCount
DefinitionsEnoughProjectives
1
Theoremseq_zero_of_projective, subsingleton_of_projective, hasExt_of_enoughProjectives, isSplitEpi_to_singleFunctor_obj_of_projective, from_singleFunctor_obj_eq_zero_of_projective
5
Total6

CategoryTheory

Definitions

NameCategoryTheorems
EnoughProjectives 📖CompData
8 mathmath: Profinite.instEnoughProjectives, ModuleCat.enoughProjectives, CompHaus.instEnoughProjectives, Injective.instEnoughProjectivesOppositeOfEnoughInjectives, Rep.instEnoughProjectives, Equivalence.enoughProjectives_iff, Projective.Type.enoughProjectives, Injective.enoughProjectives_of_enoughInjectives_op

Theorems

NameKindAssumesProvesValidatesDepends On
hasExt_of_enoughProjectives 📖mathematicalHasExthasExt_of_hasDerivedCategory
hasExt_iff_small_ext
small_congr
instSmallHomOfLocallySmall
Limits.HasKernels.has_limit
Abelian.has_kernels
Limits.kernel.condition
ShortComplex.exact_of_f_is_kernel
CategoryWithHomology.hasHomology
categoryWithHomology_of_abelian
Limits.equalizer.ι_mono
Projective.π_epi
add_comm
Abelian.Ext.contravariant_sequence_exact₃
Abelian.Ext.eq_zero_of_projective
Projective.projective_over
zero_add
small_of_surjective

CategoryTheory.Abelian.Ext

Theorems

NameKindAssumesProvesValidatesDepends On
eq_zero_of_projective 📖mathematicalCategoryTheory.HasExtCategoryTheory.Abelian.Ext
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroup
Equiv.injective
zero_hom
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.Functor.instIsSplitMonoApp
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.zero_comp
DerivedCategory.from_singleFunctor_obj_eq_zero_of_projective
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Abelian.hasZeroObject
CochainComplex.instIsStrictlyLEObjIntSingleFunctor
subsingleton_of_projective 📖mathematicalCategoryTheory.HasExtCategoryTheory.Abelian.Exteq_zero_of_projective

CochainComplex

Theorems

NameKindAssumesProvesValidatesDepends On
isSplitEpi_to_singleFunctor_obj_of_projective 📖mathematicalCategoryTheory.IsSplitEpi
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
singleFunctor
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
next
CategoryTheory.Limits.IsZero.eq_of_tgt
isZero_of_isStrictlyLE
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
contravariant_lt_of_covariant_le
Int.instZeroLEOneClass
HomologicalComplex.instHasHomologyObjSingle
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
HomologicalComplex.iCyclesIso_hom_inv_id_assoc
HomologicalComplex.homologyπ_naturality_assoc
HomologicalComplex.homologyπ_singleObjHomologySelfIso_hom_assoc
HomologicalComplex.singleObjCyclesSelfIso_inv_iCycles
CategoryTheory.Iso.hom_inv_id_assoc
HomologicalComplex.cyclesMap_i
CategoryTheory.epi_comp
CategoryTheory.Iso.isIso_inv
HomologicalComplex.instEpiHomologyπ
instIsIsoHomologyMapOfQuasiIsoAt
HomologicalComplex.from_single_hom_ext
HomologicalComplex.comp_f
HomologicalComplex.mkHomFromSingle_f
HomologicalComplex.id_f
CategoryTheory.Projective.factorThru_comp_assoc
CategoryTheory.Category.id_comp
CategoryTheory.Iso.hom_inv_id

DerivedCategory

Theorems

NameKindAssumesProvesValidatesDepends On
from_singleFunctor_obj_eq_zero_of_projective 📖mathematicalQuiver.Hom
DerivedCategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
Q
CochainComplex.singleFunctor
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Limits.HasZeroMorphisms.zero
instPreadditive
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Abelian.hasZeroObject
right_fac_of_isStrictlyLE
CochainComplex.instIsStrictlyLEObjIntSingleFunctor
CochainComplex.isSplitEpi_to_singleFunctor_obj_of_projective
QuasiIso.quasiIsoAt
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
isIso_Q_map_iff_quasiIso
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.Functor.map_comp
CategoryTheory.IsSplitEpi.id
CategoryTheory.Functor.map_id
HomologicalComplex.from_single_hom_ext
CategoryTheory.Limits.IsZero.eq_of_tgt
CochainComplex.isZero_of_isStrictlyLE
CategoryTheory.Functor.map_zero
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
instAdditiveCochainComplexIntQ

---

← Back to Index