Documentation Verification Report

TStructure

📁 Source: Mathlib/Algebra/Homology/DerivedCategory/Ext/TStructure.lean

Statistics

MetricCount
Definitions0
TheoremshasSmallLocalizedShiftedHom_of_isLE_of_isGE, instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoOfIsGEOfIsLEOfNat
2
Total2

CategoryTheory.HasExt

Theorems

NameKindAssumesProvesValidatesDepends On
hasSmallLocalizedShiftedHom_of_isLE_of_isGE 📖mathematicalCategoryTheory.HasExtCategoryTheory.Localization.HasSmallLocalizedShiftedHom
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
HomologicalComplex.quasiIso
CategoryTheory.categoryWithHomology_of_abelian
Int.instAddMonoid
CochainComplex.instHasShiftInt
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
DerivedCategory.exists_iso_singleFunctor_obj_of_isGE_of_isLE
DerivedCategory.instIsGEObjCochainComplexIntQOfIsGE
DerivedCategory.instIsLEObjCochainComplexIntQOfIsLE
CategoryTheory.Localization.hasSmallLocalizedShiftedHom_iff
DerivedCategory.instIsLocalizationCochainComplexIntQQuasiIsoUp
small_of_injective
CategoryTheory.instSmallHomDerivedCategoryObjSingleFunctorOfHasExt
add_sub_cancel
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.NatIso.inv_app_isIso
CategoryTheory.Functor.map_epi
CategoryTheory.Functor.instPreservesEpimorphisms
DerivedCategory.instHasZeroObject
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
DerivedCategory.instAdditiveShiftFunctorInt
CategoryTheory.Functor.preservesHomologyOfExact
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
CategoryTheory.Functor.instPreservesLimitsOfSizeOfIsRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.instIsEquivalenceShiftFunctor
CategoryTheory.Limits.PreservesColimits.preservesFiniteColimits
CategoryTheory.Functor.instPreservesColimitsOfSizeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Iso.isIso_inv
CategoryTheory.mono_comp
CategoryTheory.Functor.map_mono
CategoryTheory.Functor.instPreservesMonomorphisms
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Functor.instIsSplitMonoApp
instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoOfIsGEOfIsLEOfNat 📖mathematicalCategoryTheory.HasExtCategoryTheory.Localization.HasSmallLocalizedShiftedHom
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
HomologicalComplex.quasiIso
CategoryTheory.categoryWithHomology_of_abelian
Int.instAddMonoid
CochainComplex.instHasShiftInt
hasSmallLocalizedShiftedHom_of_isLE_of_isGE

---

← Back to Index