Documentation Verification Report

Fractions

📁 Source: Mathlib/Algebra/Homology/DerivedCategory/Fractions.lean

Statistics

MetricCount
Definitions0
TheoremsinstHasLeftCalculusOfFractionsHomotopyCategoryIntUpQuasiIso, instHasRightCalculusOfFractionsHomotopyCategoryIntUpQuasiIso, left_fac, left_fac_of_isStrictlyGE, left_fac_of_isStrictlyLE_of_isStrictlyGE, right_fac, right_fac_of_isStrictlyLE, right_fac_of_isStrictlyLE_of_isStrictlyGE, subsingleton_hom_of_isStrictlyLE_of_isStrictlyGE
9
Total9

DerivedCategory

Theorems

NameKindAssumesProvesValidatesDepends On
instHasLeftCalculusOfFractionsHomotopyCategoryIntUpQuasiIso 📖mathematical—CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
HomotopyCategory.quasiIso
CategoryTheory.categoryWithHomology_of_abelian
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
HomotopyCategory.instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
HomotopyCategory.instAdditiveIntUpShiftFunctor
CategoryTheory.Abelian.hasBinaryBiproducts
HomotopyCategory.quasiIso_eq_subcategoryAcyclic_W
CategoryTheory.ObjectProperty.instHasLeftCalculusOfFractionsTrWOfIsTriangulatedOfIsTriangulated
HomotopyCategory.instIsTriangulatedIntUp
HomotopyCategory.instIsTriangulatedIntUpSubcategoryAcyclic
instHasRightCalculusOfFractionsHomotopyCategoryIntUpQuasiIso 📖mathematical—CategoryTheory.MorphismProperty.HasRightCalculusOfFractions
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
HomotopyCategory.quasiIso
CategoryTheory.categoryWithHomology_of_abelian
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
HomotopyCategory.instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
HomotopyCategory.instAdditiveIntUpShiftFunctor
CategoryTheory.Abelian.hasBinaryBiproducts
HomotopyCategory.quasiIso_eq_subcategoryAcyclic_W
CategoryTheory.ObjectProperty.instHasRightCalculusOfFractionsTrWOfIsTriangulatedOfIsTriangulated
HomotopyCategory.instIsTriangulatedIntUp
HomotopyCategory.instIsTriangulatedIntUpSubcategoryAcyclic
left_fac 📖mathematical—CategoryTheory.CategoryStruct.comp
DerivedCategory
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
Q
CategoryTheory.Functor.map
CategoryTheory.inv
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Localization.inverts
instIsLocalizationHomotopyCategoryIntUpQhQuasiIso
CategoryTheory.Localization.exists_leftFraction
instHasLeftCalculusOfFractionsHomotopyCategoryIntUpQuasiIso
CategoryTheory.MorphismProperty.LeftFraction.cases
HomotopyCategory.quotient_obj_surjective
CategoryTheory.Functor.map_surjective
HomotopyCategory.instFullHomologicalComplexQuotient
isIso_Qh_map_iff
left_fac_of_isStrictlyGE 📖mathematical—CategoryTheory.CategoryStruct.comp
DerivedCategory
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
Q
CategoryTheory.Functor.map
CategoryTheory.inv
—AddRightCancelSemigroup.toIsRightCancelAdd
left_fac
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
isIso_Q_map_iff_quasiIso
HomologicalComplex.truncGE.instHasHomology
ComplexShape.instIsTruncGENatIntEmbeddingUpIntGE
CochainComplex.quasiIso_truncGEMap_iff
QuasiIso.quasiIsoAt
HomologicalComplex.instIsStrictlySupportedTruncGE
CategoryTheory.Functor.map_comp
CategoryTheory.IsIso.comp_isIso
instIsIsoMapCochainComplexIntQ
CochainComplex.instQuasiIsoIntπTruncGEOfIsGE
HomologicalComplex.instIsSupportedOfIsStrictlySupported
CategoryTheory.Functor.congr_map
CochainComplex.πTruncGE_naturality
CategoryTheory.inv.congr_simp
CategoryTheory.Category.assoc
CategoryTheory.cancel_mono
CategoryTheory.mono_comp
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.instIsSplitMonoMap
CategoryTheory.IsSplitMono.of_iso
CochainComplex.instIsIsoIntπTruncGEOfIsStrictlyGE
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.IsIso.inv_hom_id_assoc
left_fac_of_isStrictlyLE_of_isStrictlyGE 📖mathematical—CategoryTheory.CategoryStruct.comp
DerivedCategory
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
Q
CategoryTheory.Functor.map
CategoryTheory.inv
—AddRightCancelSemigroup.toIsRightCancelAdd
left_fac_of_isStrictlyGE
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
isIso_Q_map_iff_quasiIso
HomologicalComplex.instHasHomologyTruncLE
ComplexShape.instIsTruncLENatIntEmbeddingUpIntLE
CochainComplex.quasiIso_truncLEMap_iff
QuasiIso.quasiIsoAt
HomologicalComplex.instIsStrictlySupportedTruncLE_1
HomologicalComplex.instIsStrictlySupportedTruncLE
CochainComplex.instIsIsoIntιTruncLEOfIsStrictlyLE
CategoryTheory.Functor.map_comp
CategoryTheory.IsIso.comp_isIso
instIsIsoMapCochainComplexIntQ
quasiIso_of_isIso
CategoryTheory.IsIso.inv_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Functor.map_inv
CategoryTheory.inv.congr_simp
CategoryTheory.IsIso.inv_comp
CategoryTheory.IsIso.inv_inv
CategoryTheory.Category.assoc
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.Category.comp_id
CochainComplex.ιTruncLE_naturality
CategoryTheory.IsIso.inv_hom_id_assoc
right_fac 📖mathematical—CategoryTheory.CategoryStruct.comp
DerivedCategory
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
Q
CategoryTheory.inv
CategoryTheory.Functor.map
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Localization.inverts
instIsLocalizationHomotopyCategoryIntUpQhQuasiIso
CategoryTheory.Localization.exists_rightFraction
instHasRightCalculusOfFractionsHomotopyCategoryIntUpQuasiIso
CategoryTheory.MorphismProperty.RightFraction.cases
HomotopyCategory.quotient_obj_surjective
CategoryTheory.Functor.map_surjective
HomotopyCategory.instFullHomologicalComplexQuotient
isIso_Qh_map_iff
right_fac_of_isStrictlyLE 📖mathematical—CategoryTheory.CategoryStruct.comp
DerivedCategory
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
Q
CategoryTheory.inv
CategoryTheory.Functor.map
—AddRightCancelSemigroup.toIsRightCancelAdd
right_fac
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
isIso_Q_map_iff_quasiIso
HomologicalComplex.instHasHomologyTruncLE
ComplexShape.instIsTruncLENatIntEmbeddingUpIntLE
CochainComplex.quasiIso_truncLEMap_iff
QuasiIso.quasiIsoAt
HomologicalComplex.instIsStrictlySupportedTruncLE
CategoryTheory.Functor.map_comp
CategoryTheory.IsIso.comp_isIso
instIsIsoMapCochainComplexIntQ
CochainComplex.instQuasiIsoIntιTruncLEOfIsLE
HomologicalComplex.instIsSupportedOfIsStrictlySupported
CochainComplex.ιTruncLE_naturality
CategoryTheory.inv.congr_simp
CategoryTheory.Category.assoc
CategoryTheory.IsIso.hom_inv_id_assoc
right_fac_of_isStrictlyLE_of_isStrictlyGE 📖mathematical—CategoryTheory.CategoryStruct.comp
DerivedCategory
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
Q
CategoryTheory.inv
CategoryTheory.Functor.map
—AddRightCancelSemigroup.toIsRightCancelAdd
right_fac_of_isStrictlyLE
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
isIso_Q_map_iff_quasiIso
HomologicalComplex.truncGE.instHasHomology
ComplexShape.instIsTruncGENatIntEmbeddingUpIntGE
CochainComplex.quasiIso_truncGEMap_iff
QuasiIso.quasiIsoAt
HomologicalComplex.instIsStrictlySupportedTruncGE
HomologicalComplex.instIsStrictlySupportedTruncGE_1
CochainComplex.instIsIsoIntπTruncGEOfIsStrictlyGE
CategoryTheory.Functor.map_comp
CategoryTheory.IsIso.comp_isIso
instIsIsoMapCochainComplexIntQ
quasiIso_of_isIso
CategoryTheory.IsIso.inv_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Functor.map_inv
CategoryTheory.inv.congr_simp
CategoryTheory.IsIso.inv_comp
CategoryTheory.IsIso.inv_inv
CategoryTheory.Category.assoc
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.IsIso.hom_inv_id_assoc
CategoryTheory.Functor.map_comp_assoc
CochainComplex.πTruncGE_naturality
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.Category.comp_id
subsingleton_hom_of_isStrictlyLE_of_isStrictlyGE 📖mathematical—Quiver.Hom
DerivedCategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
Q
—AddRightCancelSemigroup.toIsRightCancelAdd
right_fac_of_isStrictlyLE
HomologicalComplex.hom_ext
CategoryTheory.Limits.IsZero.eq_of_src
CochainComplex.isZero_of_isStrictlyLE
CategoryTheory.Limits.IsZero.eq_of_tgt
CochainComplex.isZero_of_isStrictlyGE
CategoryTheory.Functor.map_zero
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
instAdditiveCochainComplexIntQ
CategoryTheory.Limits.comp_zero

---

← Back to Index