ð Source: Mathlib/Algebra/Homology/DerivedCategory/Fractions.lean
instHasLeftCalculusOfFractionsHomotopyCategoryIntUpQuasiIso
instHasRightCalculusOfFractionsHomotopyCategoryIntUpQuasiIso
left_fac
left_fac_of_isStrictlyGE
left_fac_of_isStrictlyLE_of_isStrictlyGE
right_fac
right_fac_of_isStrictlyLE
right_fac_of_isStrictlyLE_of_isStrictlyGE
subsingleton_hom_of_isStrictlyLE_of_isStrictlyGE
CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
HomotopyCategory.quasiIso
CategoryTheory.categoryWithHomology_of_abelian
HomotopyCategory.instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
HomotopyCategory.instAdditiveIntUpShiftFunctor
CategoryTheory.Abelian.hasBinaryBiproducts
HomotopyCategory.quasiIso_eq_subcategoryAcyclic_W
CategoryTheory.ObjectProperty.instHasLeftCalculusOfFractionsTrWOfIsTriangulatedOfIsTriangulated
HomotopyCategory.instIsTriangulatedIntUp
HomotopyCategory.instIsTriangulatedIntUpSubcategoryAcyclic
CategoryTheory.MorphismProperty.HasRightCalculusOfFractions
CategoryTheory.ObjectProperty.instHasRightCalculusOfFractionsTrWOfIsTriangulatedOfIsTriangulated
CategoryTheory.CategoryStruct.comp
DerivedCategory
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
Q
CategoryTheory.Functor.map
CategoryTheory.inv
CategoryTheory.Localization.inverts
instIsLocalizationHomotopyCategoryIntUpQhQuasiIso
CategoryTheory.Localization.exists_leftFraction
CategoryTheory.MorphismProperty.LeftFraction.cases
HomotopyCategory.quotient_obj_surjective
CategoryTheory.Functor.map_surjective
HomotopyCategory.instFullHomologicalComplexQuotient
isIso_Qh_map_iff
CategoryTheory.CategoryWithHomology.hasHomology
isIso_Q_map_iff_quasiIso
HomologicalComplex.truncGE.instHasHomology
ComplexShape.instIsTruncGENatIntEmbeddingUpIntGE
CochainComplex.quasiIso_truncGEMap_iff
QuasiIso.quasiIsoAt
HomologicalComplex.instIsStrictlySupportedTruncGE
CategoryTheory.Functor.map_comp
CategoryTheory.IsIso.comp_isIso
instIsIsoMapCochainComplexIntQ
CochainComplex.instQuasiIsoIntÏTruncGEOfIsGE
HomologicalComplex.instIsSupportedOfIsStrictlySupported
CategoryTheory.Functor.congr_map
CochainComplex.ÏTruncGE_naturality
CategoryTheory.inv.congr_simp
CategoryTheory.Category.assoc
CategoryTheory.cancel_mono
CategoryTheory.mono_comp
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.instIsSplitMonoMap
CategoryTheory.IsSplitMono.of_iso
CochainComplex.instIsIsoIntÏTruncGEOfIsStrictlyGE
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.IsIso.inv_hom_id_assoc
HomologicalComplex.instHasHomologyTruncLE
ComplexShape.instIsTruncLENatIntEmbeddingUpIntLE
CochainComplex.quasiIso_truncLEMap_iff
HomologicalComplex.instIsStrictlySupportedTruncLE_1
HomologicalComplex.instIsStrictlySupportedTruncLE
CochainComplex.instIsIsoIntιTruncLEOfIsStrictlyLE
quasiIso_of_isIso
CategoryTheory.IsIso.inv_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Functor.map_inv
CategoryTheory.IsIso.inv_comp
CategoryTheory.IsIso.inv_inv
CochainComplex.ιTruncLE_naturality
CategoryTheory.Localization.exists_rightFraction
CategoryTheory.MorphismProperty.RightFraction.cases
CochainComplex.instQuasiIsoIntιTruncLEOfIsLE
CategoryTheory.IsIso.hom_inv_id_assoc
HomologicalComplex.instIsStrictlySupportedTruncGE_1
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.IsIso.hom_inv_id
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.hom_ext
CategoryTheory.Limits.IsZero.eq_of_src
CochainComplex.isZero_of_isStrictlyLE
CategoryTheory.Limits.IsZero.eq_of_tgt
CochainComplex.isZero_of_isStrictlyGE
CategoryTheory.Functor.map_zero
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
instAdditiveCochainComplexIntQ
CategoryTheory.Limits.comp_zero
---
â Back to Index