Documentation Verification Report

KProjective

📁 Source: Mathlib/Algebra/Homology/DerivedCategory/KProjective.lean

Statistics

MetricCount
DefinitionsequivOfIsKProjective
1
Theoremsbijective_toSmallShiftedHom_of_isKProjective, equivOfIsKProjective_apply, equivOfIsKProjective_symm_apply, Qh_map_bijective
4
Total5

CochainComplex.HomComplex.CohomologyClass

Definitions

NameCategoryTheorems
equivOfIsKProjective 📖CompOp
2 mathmath: equivOfIsKProjective_symm_apply, equivOfIsKProjective_apply

Theorems

NameKindAssumesProvesValidatesDepends On
bijective_toSmallShiftedHom_of_isKProjective 📖mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHom
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
HomologicalComplex.quasiIso
CategoryTheory.categoryWithHomology_of_abelian
Int.instAddMonoid
CochainComplex.instHasShiftInt
Function.Bijective
CochainComplex.HomComplex.CohomologyClass
CategoryTheory.Localization.SmallShiftedHom
toSmallShiftedHom
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
DerivedCategory.instIsLocalizationCochainComplexIntQQuasiIsoUp
Function.Bijective.of_comp_iff'
Equiv.bijective
mk_surjective
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_app_assoc
CategoryTheory.NatTrans.naturality
Function.Bijective.comp
CochainComplex.IsKProjective.Qh_map_bijective
toHom_bijective
equivOfIsKProjective_apply 📖mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHom
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
HomologicalComplex.quasiIso
CategoryTheory.categoryWithHomology_of_abelian
Int.instAddMonoid
CochainComplex.instHasShiftInt
DFunLike.coe
Equiv
CochainComplex.HomComplex.CohomologyClass
CategoryTheory.Localization.SmallShiftedHom
EquivLike.toFunLike
Equiv.instEquivLike
equivOfIsKProjective
toSmallShiftedHom
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Localization.HasSmallLocalizedHom.small
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
equivOfIsKProjective_symm_apply 📖mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHom
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
HomologicalComplex.quasiIso
CategoryTheory.categoryWithHomology_of_abelian
Int.instAddMonoid
CochainComplex.instHasShiftInt
DFunLike.coe
Equiv
CategoryTheory.Localization.SmallShiftedHom
CochainComplex.HomComplex.CohomologyClass
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivOfIsKProjective
Function.surjInv
toSmallShiftedHom
Function.Bijective.surjective
bijective_toSmallShiftedHom_of_isKProjective
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian

CochainComplex.IsKProjective

Theorems

NameKindAssumesProvesValidatesDepends On
Qh_map_bijective 📖mathematicalFunction.Bijective
Quiver.Hom
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategoryHomotopyCategory
CategoryTheory.Functor.obj
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
HomologicalComplex.instCategory
HomotopyCategory.quotient
DerivedCategory
DerivedCategory.instCategory
DerivedCategory.Qh
CategoryTheory.Functor.map
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.ObjectProperty.leftOrthogonal.map_bijective_of_isTriangulated
HomotopyCategory.instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
HomotopyCategory.instAdditiveIntUpShiftFunctor
CategoryTheory.Abelian.hasBinaryBiproducts
HomotopyCategory.instIsTriangulatedIntUpSubcategoryAcyclic
HomotopyCategory.instIsTriangulatedIntUp
leftOrthogonal
DerivedCategory.instIsLocalizationHomotopyCategoryIntUpQhTrWSubcategoryAcyclic

---

← Back to Index