Documentation Verification Report

TStructure

📁 Source: Mathlib/Algebra/Homology/DerivedCategory/TStructure.lean

Statistics

MetricCount
DefinitionsTStructure, IsGE, IsLE, t
4
Theoremsexists_iso_Q_obj_of_isGE, exists_iso_Q_obj_of_isGE_of_isLE, exists_iso_Q_obj_of_isLE, exists_iso_singleFunctor_obj_of_isGE_of_isLE, instIsGEObjCochainComplexIntQOfIsGE, instIsGEObjSingleFunctor, instIsLEObjCochainComplexIntQOfIsLE, instIsLEObjSingleFunctor, isGE_Q_obj_iff, isGE_iff, isLE_Q_obj_iff, isLE_iff, isZero_of_isGE, isZero_of_isLE
14
Total18

CategoryTheory.Triangulated

Definitions

NameCategoryTheorems
TStructure 📖CompData

DerivedCategory

Definitions

NameCategoryTheorems
IsGE 📖MathDef
4 mathmath: isGE_Q_obj_iff, isGE_iff, instIsGEObjCochainComplexIntQOfIsGE, instIsGEObjSingleFunctor
IsLE 📖MathDef
4 mathmath: isLE_iff, isLE_Q_obj_iff, instIsLEObjSingleFunctor, instIsLEObjCochainComplexIntQOfIsLE

Theorems

NameKindAssumesProvesValidatesDepends On
exists_iso_Q_obj_of_isGE 📖mathematicalCategoryTheory.Iso
DerivedCategory
instCategory
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
Q
instHasZeroObject
instAdditiveShiftFunctorInt
AddRightCancelSemigroup.toIsRightCancelAdd
exists_iso_Q_obj_of_isGE_of_isLE 📖mathematicalCategoryTheory.Iso
DerivedCategory
instCategory
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
Q
AddRightCancelSemigroup.toIsRightCancelAdd
exists_iso_Q_obj_of_isLE
isGE_Q_obj_iff
CategoryTheory.Triangulated.TStructure.isGE_of_iso
instHasZeroObject
instAdditiveShiftFunctorInt
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.instIsStrictlySupportedTruncGE
ComplexShape.instIsTruncGENatIntEmbeddingUpIntGE
HomologicalComplex.instIsStrictlySupportedTruncGE_1
instIsIsoMapCochainComplexIntQ
CochainComplex.instQuasiIsoIntπTruncGEOfIsGE
exists_iso_Q_obj_of_isLE 📖mathematicalCategoryTheory.Iso
DerivedCategory
instCategory
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
Q
instHasZeroObject
instAdditiveShiftFunctorInt
AddRightCancelSemigroup.toIsRightCancelAdd
exists_iso_singleFunctor_obj_of_isGE_of_isLE 📖mathematicalCategoryTheory.Iso
DerivedCategory
instCategory
CategoryTheory.Functor.obj
singleFunctor
AddRightCancelSemigroup.toIsRightCancelAdd
exists_iso_Q_obj_of_isGE_of_isLE
CategoryTheory.Abelian.hasZeroObject
CochainComplex.exists_iso_single
instIsGEObjCochainComplexIntQOfIsGE 📖mathematicalIsGE
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
DerivedCategory
instCategory
Q
AddRightCancelSemigroup.toIsRightCancelAdd
isGE_Q_obj_iff
instIsGEObjSingleFunctor 📖mathematicalIsGE
CategoryTheory.Functor.obj
DerivedCategory
instCategory
singleFunctor
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Triangulated.TStructure.isGE_of_iso
instHasZeroObject
instAdditiveShiftFunctorInt
instIsGEObjCochainComplexIntQOfIsGE
HomologicalComplex.instIsSupportedOfIsStrictlySupported
CochainComplex.instIsStrictlyGEObjIntSingleFunctor
instIsLEObjCochainComplexIntQOfIsLE 📖mathematicalIsLE
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
DerivedCategory
instCategory
Q
AddRightCancelSemigroup.toIsRightCancelAdd
isLE_Q_obj_iff
instIsLEObjSingleFunctor 📖mathematicalIsLE
CategoryTheory.Functor.obj
DerivedCategory
instCategory
singleFunctor
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Triangulated.TStructure.isLE_of_iso
instHasZeroObject
instAdditiveShiftFunctorInt
instIsLEObjCochainComplexIntQOfIsLE
HomologicalComplex.instIsSupportedOfIsStrictlySupported
CochainComplex.instIsStrictlyLEObjIntSingleFunctor
isGE_Q_obj_iff 📖mathematicalIsGE
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
DerivedCategory
instCategory
Q
CochainComplex.IsGE
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Iso.isZero_iff
CategoryTheory.CategoryWithHomology.hasHomology
isGE_iff 📖mathematicalIsGE
CategoryTheory.Limits.IsZero
CategoryTheory.Functor.obj
DerivedCategory
instCategory
homologyFunctor
instHasZeroObject
instAdditiveShiftFunctorInt
CategoryTheory.Limits.IsZero.of_iso
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.ExactAt.isZero_homology
CochainComplex.exactAt_of_isGE
HomologicalComplex.instIsSupportedOfIsStrictlySupported
instEssSurjCochainComplexIntQ
CochainComplex.isGE_iff
HomologicalComplex.exactAt_iff_isZero_homology
CategoryTheory.Abelian.hasZeroObject
instIsIsoMapCochainComplexIntQ
CochainComplex.instQuasiIsoIntπTruncGEOfIsGE
HomologicalComplex.instIsStrictlySupportedTruncGE
ComplexShape.instIsTruncGENatIntEmbeddingUpIntGE
isLE_Q_obj_iff 📖mathematicalIsLE
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
DerivedCategory
instCategory
Q
CochainComplex.IsLE
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Iso.isZero_iff
CategoryTheory.CategoryWithHomology.hasHomology
isLE_iff 📖mathematicalIsLE
CategoryTheory.Limits.IsZero
CategoryTheory.Functor.obj
DerivedCategory
instCategory
homologyFunctor
instHasZeroObject
instAdditiveShiftFunctorInt
CategoryTheory.Limits.IsZero.of_iso
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.ExactAt.isZero_homology
CochainComplex.exactAt_of_isLE
HomologicalComplex.instIsSupportedOfIsStrictlySupported
instEssSurjCochainComplexIntQ
CochainComplex.isLE_iff
HomologicalComplex.exactAt_iff_isZero_homology
CategoryTheory.Abelian.hasZeroObject
instIsIsoMapCochainComplexIntQ
CochainComplex.instQuasiIsoIntιTruncLEOfIsLE
HomologicalComplex.instIsStrictlySupportedTruncLE
ComplexShape.instIsTruncLENatIntEmbeddingUpIntLE
isZero_of_isGE 📖mathematicalCategoryTheory.Limits.IsZero
CategoryTheory.Functor.obj
DerivedCategory
instCategory
homologyFunctor
isGE_iff
isZero_of_isLE 📖mathematicalCategoryTheory.Limits.IsZero
CategoryTheory.Functor.obj
DerivedCategory
instCategory
homologyFunctor
isLE_iff

DerivedCategory.TStructure

Definitions

NameCategoryTheorems
t 📖CompOp

---

← Back to Index