| Name | Category | Theorems |
dgoEquivHomologicalComplex 📖 | CompOp | 4 mathmath: dgoEquivHomologicalComplex_unitIso, dgoEquivHomologicalComplex_functor, dgoEquivHomologicalComplex_counitIso, dgoEquivHomologicalComplex_inverse
|
dgoEquivHomologicalComplexCounitIso 📖 | CompOp | 3 mathmath: dgoEquivHomologicalComplex_counitIso, dgoEquivHomologicalComplexCounitIso_hom_app_f, dgoEquivHomologicalComplexCounitIso_inv_app_f
|
dgoEquivHomologicalComplexUnitIso 📖 | CompOp | 3 mathmath: dgoEquivHomologicalComplex_unitIso, dgoEquivHomologicalComplexUnitIso_hom_app_f, dgoEquivHomologicalComplexUnitIso_inv_app_f
|
dgoToHomologicalComplex 📖 | CompOp | 8 mathmath: dgoToHomologicalComplex_obj_d, dgoEquivHomologicalComplexUnitIso_hom_app_f, dgoEquivHomologicalComplex_functor, dgoToHomologicalComplex_obj_X, dgoToHomologicalComplex_map_f, dgoEquivHomologicalComplexCounitIso_hom_app_f, dgoEquivHomologicalComplexUnitIso_inv_app_f, dgoEquivHomologicalComplexCounitIso_inv_app_f
|
homologicalComplexToDGO 📖 | CompOp | 8 mathmath: dgoEquivHomologicalComplexUnitIso_hom_app_f, homologicalComplexToDGO_map_f, dgoEquivHomologicalComplexCounitIso_hom_app_f, homologicalComplexToDGO_obj_d, homologicalComplexToDGO_obj_obj, dgoEquivHomologicalComplex_inverse, dgoEquivHomologicalComplexUnitIso_inv_app_f, dgoEquivHomologicalComplexCounitIso_inv_app_f
|