Documentation Verification Report

Double

📁 Source: Mathlib/Algebra/Homology/Double.lean

Statistics

MetricCount
Definitionsdouble, doubleXIso₀, doubleXIso₁, evalCompCoyonedaCorepresentable, evalCompCoyonedaCorepresentableByDoubleId, evalCompCoyonedaCorepresentableBySingle, evalCompCoyonedaCorepresentative, mkHomFromDouble
8
Theoremsdouble_d, double_d_eq_zero₀, double_d_eq_zero₁, evalCompCoyonedaCorepresentableByDoubleId_homEquiv_apply, evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply, evalCompCoyonedaCorepresentableBySingle_homEquiv_apply, evalCompCoyonedaCorepresentableBySingle_homEquiv_symm_apply, from_double_hom_ext, from_double_hom_ext_iff, instIsCorepresentableCompEvalObjOppositeFunctorTypeCoyonedaOp, isZero_double_X, mkHomFromDouble_f₀, mkHomFromDouble_f₀_assoc, mkHomFromDouble_f₁, mkHomFromDouble_f₁_assoc, to_double_hom_ext, to_double_hom_ext_iff
17
Total25

HomologicalComplex

Definitions

NameCategoryTheorems
double 📖CompOp
12 mathmath: evalCompCoyonedaCorepresentableByDoubleId_homEquiv_apply, double_d_eq_zero₀, isZero_double_X, mkHomFromDouble_f₀, mkHomFromDouble_f₁, to_double_hom_ext_iff, double_d, evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply, mkHomFromDouble_f₀_assoc, double_d_eq_zero₁, mkHomFromDouble_f₁_assoc, from_double_hom_ext_iff
doubleXIso₀ 📖CompOp
4 mathmath: evalCompCoyonedaCorepresentableByDoubleId_homEquiv_apply, mkHomFromDouble_f₀, double_d, mkHomFromDouble_f₀_assoc
doubleXIso₁ 📖CompOp
3 mathmath: mkHomFromDouble_f₁, double_d, mkHomFromDouble_f₁_assoc
evalCompCoyonedaCorepresentable 📖CompOp
evalCompCoyonedaCorepresentableByDoubleId 📖CompOp
2 mathmath: evalCompCoyonedaCorepresentableByDoubleId_homEquiv_apply, evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply
evalCompCoyonedaCorepresentableBySingle 📖CompOp
2 mathmath: evalCompCoyonedaCorepresentableBySingle_homEquiv_symm_apply, evalCompCoyonedaCorepresentableBySingle_homEquiv_apply
evalCompCoyonedaCorepresentative 📖CompOp
mkHomFromDouble 📖CompOp
5 mathmath: mkHomFromDouble_f₀, mkHomFromDouble_f₁, evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply, mkHomFromDouble_f₀_assoc, mkHomFromDouble_f₁_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
double_d 📖mathematicalComplexShape.Reld
double
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
doubleXIso₀
CategoryTheory.Iso.inv
doubleXIso₁
double_d_eq_zero₀ 📖mathematicalComplexShape.Reld
double
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
double_d_eq_zero₁ 📖mathematicalComplexShape.Reld
double
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
evalCompCoyonedaCorepresentableByDoubleId_homEquiv_apply 📖mathematicalComplexShape.RelDFunLike.coe
Equiv
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
double
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Functor.comp
eval
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Functor.CorepresentableBy.homEquiv
evalCompCoyonedaCorepresentableByDoubleId
CategoryTheory.CategoryStruct.comp
Opposite.unop
X
CategoryTheory.Iso.inv
doubleXIso₀
Hom.f
evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply 📖mathematicalComplexShape.RelDFunLike.coe
Equiv
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.types
CategoryTheory.Functor.comp
eval
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
double
CategoryTheory.CategoryStruct.id
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Functor.CorepresentableBy.homEquiv
evalCompCoyonedaCorepresentableByDoubleId
mkHomFromDouble
CategoryTheory.CategoryStruct.comp
X
d
evalCompCoyonedaCorepresentableBySingle_homEquiv_apply 📖mathematicalComplexShape.RelDFunLike.coe
Equiv
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor.obj
single
CategoryTheory.types
CategoryTheory.Functor.comp
eval
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Functor.CorepresentableBy.homEquiv
evalCompCoyonedaCorepresentableBySingle
CategoryTheory.CategoryStruct.comp
Opposite.unop
X
CategoryTheory.Iso.inv
singleObjXSelf
Hom.f
evalCompCoyonedaCorepresentableBySingle_homEquiv_symm_apply 📖mathematicalComplexShape.RelDFunLike.coe
Equiv
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.types
CategoryTheory.Functor.comp
eval
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
single
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Functor.CorepresentableBy.homEquiv
evalCompCoyonedaCorepresentableBySingle
mkHomFromSingle
from_double_hom_ext 📖ComplexShape.Rel
Hom.f
double
hom_ext
CategoryTheory.Limits.IsZero.eq_of_src
isZero_double_X
from_double_hom_ext_iff 📖mathematicalComplexShape.RelHom.f
double
from_double_hom_ext
instIsCorepresentableCompEvalObjOppositeFunctorTypeCoyonedaOp 📖mathematicalCategoryTheory.Functor.IsCorepresentable
HomologicalComplex
instCategory
CategoryTheory.Functor.comp
CategoryTheory.types
eval
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op
isZero_double_X 📖mathematicalComplexShape.RelCategoryTheory.Limits.IsZero
X
double
CategoryTheory.Limits.isZero_zero
mkHomFromDouble_f₀ 📖mathematicalComplexShape.Rel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
Hom.f
double
mkHomFromDouble
CategoryTheory.Iso.hom
doubleXIso₀
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
mkHomFromDouble_f₀_assoc 📖mathematicalComplexShape.Rel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
double
Hom.f
mkHomFromDouble
CategoryTheory.Iso.hom
doubleXIso₀
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mkHomFromDouble_f₀
mkHomFromDouble_f₁ 📖mathematicalComplexShape.Rel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
Hom.f
double
mkHomFromDouble
CategoryTheory.Iso.hom
doubleXIso₁
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
mkHomFromDouble_f₁_assoc 📖mathematicalComplexShape.Rel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
double
Hom.f
mkHomFromDouble
CategoryTheory.Iso.hom
doubleXIso₁
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mkHomFromDouble_f₁
to_double_hom_ext 📖ComplexShape.Rel
Hom.f
double
hom_ext
CategoryTheory.Limits.IsZero.eq_of_tgt
isZero_double_X
to_double_hom_ext_iff 📖mathematicalComplexShape.RelHom.f
double
to_double_hom_ext

---

← Back to Index