| Name | Category | Theorems |
double 📖 | CompOp | 12 mathmath: evalCompCoyonedaCorepresentableByDoubleId_homEquiv_apply, double_d_eq_zero₀, isZero_double_X, mkHomFromDouble_f₀, mkHomFromDouble_f₁, to_double_hom_ext_iff, double_d, evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply, mkHomFromDouble_f₀_assoc, double_d_eq_zero₁, mkHomFromDouble_f₁_assoc, from_double_hom_ext_iff
|
doubleXIso₀ 📖 | CompOp | 4 mathmath: evalCompCoyonedaCorepresentableByDoubleId_homEquiv_apply, mkHomFromDouble_f₀, double_d, mkHomFromDouble_f₀_assoc
|
doubleXIso₁ 📖 | CompOp | 3 mathmath: mkHomFromDouble_f₁, double_d, mkHomFromDouble_f₁_assoc
|
evalCompCoyonedaCorepresentable 📖 | CompOp | — |
evalCompCoyonedaCorepresentableByDoubleId 📖 | CompOp | 2 mathmath: evalCompCoyonedaCorepresentableByDoubleId_homEquiv_apply, evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply
|
evalCompCoyonedaCorepresentableBySingle 📖 | CompOp | 2 mathmath: evalCompCoyonedaCorepresentableBySingle_homEquiv_symm_apply, evalCompCoyonedaCorepresentableBySingle_homEquiv_apply
|
evalCompCoyonedaCorepresentative 📖 | CompOp | — |
mkHomFromDouble 📖 | CompOp | 5 mathmath: mkHomFromDouble_f₀, mkHomFromDouble_f₁, evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply, mkHomFromDouble_f₀_assoc, mkHomFromDouble_f₁_assoc
|