Documentation Verification Report

AreComplementary

📁 Source: Mathlib/Algebra/Homology/Embedding/AreComplementary.lean

Statistics

MetricCount
DefinitionsAreComplementary, equiv, indexOfBoundaryGE, indexOfBoundaryLE, desc, desc', aux, equiv, fromSum, shortComplexTruncLEX₃ToTruncGE
10
Theoremsexists₁, exists₂, fst, fst_inj, of_boundaryGE, of_boundaryLE, snd, snd_inj, desc'_inl, desc'_inr, aux_trans, desc_inl, desc_inr, disjoint, equiv_inl, equiv_inr, exists_i₁, exists_i₂, fromSum_bijective, hom_ext, hom_ext', isStrictlySupportedOutside₁_iff, isStrictlySupportedOutside₂_iff, isSupportedOutside₁_iff, isSupportedOutside₂_iff, union, embeddingUpInt_areComplementary, g_shortComplexTruncLEX₃ToTruncGE, g_shortComplexTruncLEX₃ToTruncGE_assoc, instQuasiIsoShortComplexTruncLEX₃ToTruncGE
30
Total40

ComplexShape.Embedding

Definitions

NameCategoryTheorems
AreComplementary 📖CompData
1 mathmath: embeddingUpInt_areComplementary

Theorems

NameKindAssumesProvesValidatesDepends On
embeddingUpInt_areComplementary 📖mathematical—AreComplementary
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
ComplexShape.down
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
ComplexShape.embeddingUpIntLE
ComplexShape.embeddingUpIntGE
—AddRightCancelSemigroup.toIsRightCancelAdd

ComplexShape.Embedding.AreComplementary

Definitions

NameCategoryTheorems
desc 📖CompOp
2 mathmath: desc_inr, desc_inl
desc' 📖CompOp
2 mathmath: desc'_inl, desc'_inr
equiv 📖CompOp
4 mathmath: desc'_inl, equiv_inl, equiv_inr, desc'_inr
fromSum 📖CompOp
1 mathmath: fromSum_bijective

Theorems

NameKindAssumesProvesValidatesDepends On
desc'_inl 📖mathematicalComplexShape.Embedding.AreComplementarydesc'
DFunLike.coe
Equiv
ComplexShape.Embedding.f
EquivLike.toFunLike
Equiv.instEquivLike
equiv
desc.aux
——
desc'_inr 📖mathematicalComplexShape.Embedding.AreComplementarydesc'
DFunLike.coe
Equiv
ComplexShape.Embedding.f
EquivLike.toFunLike
Equiv.instEquivLike
equiv
desc.aux
——
desc_inl 📖mathematicalComplexShape.Embedding.AreComplementarydesc
ComplexShape.Embedding.f
—Equiv.injective
Equiv.apply_symm_apply
desc'_inl
desc.aux_trans
desc_inr 📖mathematicalComplexShape.Embedding.AreComplementarydesc
ComplexShape.Embedding.f
—Equiv.injective
Equiv.apply_symm_apply
desc'_inr
desc.aux_trans
disjoint 📖—ComplexShape.Embedding.AreComplementary———
equiv_inl 📖mathematicalComplexShape.Embedding.AreComplementaryDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equiv
ComplexShape.Embedding.f
——
equiv_inr 📖mathematicalComplexShape.Embedding.AreComplementaryDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equiv
ComplexShape.Embedding.f
——
exists_i₁ 📖mathematicalComplexShape.Embedding.AreComplementaryComplexShape.Embedding.f—union
exists_i₂ 📖mathematicalComplexShape.Embedding.AreComplementaryComplexShape.Embedding.f—exists_i₁
symm
fromSum_bijective 📖mathematicalComplexShape.Embedding.AreComplementaryFunction.Bijective
fromSum
—ComplexShape.Embedding.injective_f
disjoint
union
hom_ext 📖mathematicalComplexShape.Embedding.AreComplementaryQuiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.instZeroHom
—hom_ext'
isStrictlySupportedOutside₂_iff
isStrictlySupportedOutside₁_iff
hom_ext' 📖mathematicalComplexShape.Embedding.AreComplementary
HomologicalComplex.IsStrictlySupportedOutside
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.instZeroHom
—HomologicalComplex.hom_ext
union
CategoryTheory.Limits.IsZero.eq_of_tgt
HomologicalComplex.IsStrictlySupportedOutside.isZero
CategoryTheory.Limits.IsZero.eq_of_src
isStrictlySupportedOutside₁_iff 📖mathematicalComplexShape.Embedding.AreComplementaryHomologicalComplex.IsStrictlySupportedOutside
HomologicalComplex.IsStrictlySupported
—exists_i₁
HomologicalComplex.IsStrictlySupportedOutside.isZero
HomologicalComplex.isZero_X_of_isStrictlySupported
disjoint
isStrictlySupportedOutside₂_iff 📖mathematicalComplexShape.Embedding.AreComplementaryHomologicalComplex.IsStrictlySupportedOutside
HomologicalComplex.IsStrictlySupported
—isStrictlySupportedOutside₁_iff
symm
isSupportedOutside₁_iff 📖mathematicalComplexShape.Embedding.AreComplementaryHomologicalComplex.IsSupportedOutside
HomologicalComplex.IsSupported
—exists_i₁
HomologicalComplex.IsSupportedOutside.exactAt
HomologicalComplex.exactAt_of_isSupported
disjoint
isSupportedOutside₂_iff 📖mathematicalComplexShape.Embedding.AreComplementaryHomologicalComplex.IsSupportedOutside
HomologicalComplex.IsSupported
—isSupportedOutside₁_iff
symm
union 📖mathematicalComplexShape.Embedding.AreComplementaryComplexShape.Embedding.f——

ComplexShape.Embedding.AreComplementary.Boundary

Definitions

NameCategoryTheorems
equiv 📖CompOp—
indexOfBoundaryGE 📖CompOp
1 mathmath: of_boundaryGE
indexOfBoundaryLE 📖CompOp
1 mathmath: of_boundaryLE

Theorems

NameKindAssumesProvesValidatesDepends On
exists₁ 📖mathematicalComplexShape.Embedding.AreComplementary
ComplexShape.Embedding.BoundaryLE
ComplexShape.Embedding.AreComplementary.Boundary—ComplexShape.Embedding.AreComplementary.exists_i₂
exists₂ 📖mathematicalComplexShape.Embedding.AreComplementary
ComplexShape.Embedding.BoundaryGE
ComplexShape.Embedding.AreComplementary.Boundary—ComplexShape.Embedding.AreComplementary.exists_i₁
fst 📖mathematicalComplexShape.Embedding.AreComplementary
ComplexShape.Embedding.AreComplementary.Boundary
ComplexShape.Embedding.BoundaryLE—ComplexShape.Embedding.boundaryLE
ComplexShape.Embedding.AreComplementary.disjoint
fst_inj 📖—ComplexShape.Embedding.AreComplementary
ComplexShape.Embedding.AreComplementary.Boundary
——ComplexShape.Embedding.injective_f
ComplexShape.prev_eq
of_boundaryGE 📖mathematicalComplexShape.Embedding.AreComplementary
ComplexShape.Embedding.BoundaryGE
ComplexShape.Embedding.AreComplementary.Boundary
indexOfBoundaryGE
—exists₂
of_boundaryLE 📖mathematicalComplexShape.Embedding.AreComplementary
ComplexShape.Embedding.BoundaryLE
ComplexShape.Embedding.AreComplementary.Boundary
indexOfBoundaryLE
—exists₁
snd 📖mathematicalComplexShape.Embedding.AreComplementary
ComplexShape.Embedding.AreComplementary.Boundary
ComplexShape.Embedding.BoundaryGE—ComplexShape.Embedding.boundaryGE
ComplexShape.Embedding.AreComplementary.disjoint
ComplexShape.Embedding.AreComplementary.symm
snd_inj 📖—ComplexShape.Embedding.AreComplementary
ComplexShape.Embedding.AreComplementary.Boundary
——ComplexShape.Embedding.injective_f
ComplexShape.next_eq

ComplexShape.Embedding.AreComplementary.desc

Definitions

NameCategoryTheorems
aux 📖CompOp
3 mathmath: ComplexShape.Embedding.AreComplementary.desc'_inl, aux_trans, ComplexShape.Embedding.AreComplementary.desc'_inr

Theorems

NameKindAssumesProvesValidatesDepends On
aux_trans 📖mathematical—DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
aux
——

HomologicalComplex

Definitions

NameCategoryTheorems
shortComplexTruncLEX₃ToTruncGE 📖CompOp
3 mathmath: g_shortComplexTruncLEX₃ToTruncGE, instQuasiIsoShortComplexTruncLEX₃ToTruncGE, g_shortComplexTruncLEX₃ToTruncGE_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
g_shortComplexTruncLEX₃ToTruncGE 📖mathematicalComplexShape.Embedding.AreComplementaryCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.ShortComplex.X₂
instHasZeroMorphisms
shortComplexTruncLE
CategoryTheory.ShortComplex.X₃
truncGE
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
sc
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.ShortComplex.g
shortComplexTruncLEX₃ToTruncGE
πTruncGE
—CategoryTheory.Limits.cokernel.π_desc
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
g_shortComplexTruncLEX₃ToTruncGE_assoc 📖mathematicalComplexShape.Embedding.AreComplementaryCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.ShortComplex.X₂
instHasZeroMorphisms
shortComplexTruncLE
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
truncGE
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
sc
CategoryTheory.Abelian.hasZeroObject
shortComplexTruncLEX₃ToTruncGE
πTruncGE
—CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
g_shortComplexTruncLEX₃ToTruncGE
instQuasiIsoShortComplexTruncLEX₃ToTruncGE 📖mathematicalComplexShape.Embedding.AreComplementaryQuasiIso
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.X₃
HomologicalComplex
instCategory
instHasZeroMorphisms
shortComplexTruncLE
truncGE
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
sc
CategoryTheory.Abelian.hasZeroObject
shortComplexTruncLEX₃ToTruncGE
truncGE.instHasHomology
—CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Abelian.hasZeroObject
truncGE.instHasHomology
ComplexShape.Embedding.AreComplementary.union
IsSupportedOutside.exactAt
ComplexShape.Embedding.AreComplementary.isSupportedOutside₁_iff
instIsSupportedOfIsStrictlySupported
instIsStrictlySupportedTruncGE
shortComplexTruncLE_X₃_isSupportedOutside
quasiIsoAt_iff_exactAt
quasiIsoAt_shortComplexTruncLE_g
ComplexShape.Embedding.AreComplementary.disjoint
quasiIsoAt_iff_comp_left
g_shortComplexTruncLEX₃ToTruncGE
instQuasiIsoAtπTruncGEF

---

← Back to Index