CochainComplex đ | CompOp | 454 mathmath: HomotopyCategory.spectralObjectMappingCone_δ'_app, DerivedCategory.instIsLocalizationCochainComplexIntQQuasiIsoUp, CochainComplex.acyclic_op, CategoryTheory.ShortComplex.ShortExact.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoXâCochainComplexMapSingleFunctorOfNatXâ, CochainComplex.triangleOfDegreewiseSplit_objâ, CochainComplex.mappingConeCompTriangleh_commâ_assoc, CochainComplex.HomComplex.Cochain.rightShiftAddEquiv_symm_apply, CochainComplex.HomComplex.Cochain.fromSingleMk_neg, CochainComplex.mappingCone.δ_inl, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_neg, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_add, DerivedCategory.right_fac, CochainComplex.HomComplex.Cocycle.fromSingleMk_add, CochainComplex.HomComplex.Cocycle.leftShiftAddEquiv_symm_apply, CochainComplex.mappingConeCompTriangle_objâ, CategoryTheory.InjectiveResolution.homotopyEquiv_inv_Κ, CochainComplex.HomComplex.Cocycle.equivHom_symm_apply, CochainComplex.isStrictlyGE_shift, CochainComplex.mappingCone.id, CochainComplex.shiftFunctorZero_eq, CategoryTheory.InjectiveResolution.Κ'_f_zero, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_map_f_f, CochainComplex.augmentTruncate_inv_f_zero, CochainComplex.HomComplex.Cochain.leftShift_smul, CochainComplex.HomComplex.Cochain.fromSingleEquiv_fromSingleMk, groupCohomology.instPreservesZeroMorphismsRepCochainComplexModuleCatNatCochainsFunctor, CochainComplex.mappingCone.triangle_morâ, CochainComplex.shiftShortComplexFunctorIso_hom_app_Ďâ, CochainComplex.shiftShortComplexFunctorIso_hom_app_Ďâ, CategoryTheory.InjectiveResolution.self_Κ, CochainComplex.exactAt_op, CochainComplex.HomComplex.Cocycle.equivHomShift_symm_postcomp, CochainComplex.instLinearIntFunctorSingleFunctors, CochainComplex.mapBifunctorShiftâIso_hom_naturalityâ_assoc, CochainComplex.HomComplex.Cochain.rightUnshift_neg, CochainComplex.HomComplex.Cochain.δ_fromSingleMk, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_p_f, CochainComplex.truncate_obj_X, CategoryTheory.Functor.commShiftIso_mapâCochainComplex_flip_hom_app, CochainComplex.ConnectData.map_comp_map, groupCohomology.cochainsMap_comp, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles, CochainComplex.mappingConeCompTriangle_morâ, CochainComplex.HomComplex.Cochain.shift_add, CategoryTheory.InjectiveResolution.of_def, CochainComplex.HomComplex.Cochain.comp_id, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_add, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_sub, CochainComplex.HomComplex.Cochain.toSingleMk_neg, CochainComplex.mappingCone.rotateHomotopyEquiv_commâ_assoc, CochainComplex.mapBifunctorShiftâIso_hom_naturalityâ_assoc, CochainComplex.shiftShortComplexFunctorIso_add'_hom_app, CochainComplex.cm5b.fac, DerivedCategory.singleFunctorsPostcompQIso_inv_hom, CochainComplex.HomComplex.Cochain.toSingleMk_v, CochainComplex.HomComplex.Cochain.leftShiftLinearEquiv_apply, CochainComplex.HomComplex.Cochain.shift_neg, CategoryTheory.InjectiveResolution.desc_commutes_zero_assoc, DerivedCategory.subsingleton_hom_of_isStrictlyLE_of_isStrictlyGE, CochainComplex.instIsIsoIntĎTruncGEOfIsStrictlyGE, CochainComplex.Κ_mapBifunctorShiftâIso_hom_f_assoc, CochainComplex.homotopyUnop_hom_eq, CochainComplex.HomComplex.Cochain.toSingleMk_add, HomologicalComplexâ.Κ_totalShiftâIso_hom_f_assoc, CochainComplex.fromSingleâEquiv_apply_coe, CochainComplex.mappingCone.inr_f_descShortComplex_f_assoc, CochainComplex.HomComplex.Cocycle.equivHomShift'_symm_apply, CochainComplex.mappingCone.inl_v_triangle_morâ_f, CochainComplex.XIsoOfEq_shift, HomologicalComplexâ.Κ_totalShiftâIso_inv_f, CochainComplex.ΚTruncLE_naturality_assoc, CochainComplex.HomComplex.Cochain.rightUnshift_comp, CochainComplex.HomComplex.Cochain.rightUnshift_units_smul, CochainComplex.mappingCone.inr_triangleδ, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_map_f, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_sub, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_homâ, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_sub, CochainComplex.ĎTruncGE_naturality, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CochainComplex.mappingCone.inr_descShortComplex_assoc, CochainComplex.mappingConeCompHomotopyEquiv_commâ_assoc, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_sub, CochainComplex.mappingConeCompHomotopyEquiv_hom_inv_id, CochainComplex.HomComplex.CohomologyClass.toSmallShiftedHom_mk, CochainComplex.HomComplex.Cochain.fromSingleMk_postcomp, CochainComplex.HomComplex.Cochain.shift_zero, CochainComplex.shiftFunctorZero_inv_app_f, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_zero, HomologicalComplexâ.Κ_totalShiftâIso_inv_f_assoc, CochainComplex.HomComplex.Cochain.leftShift_comp, CategoryTheory.ProjectiveResolution.extAddEquivCohomologyClass_symm_apply, CochainComplex.triangleOfDegreewiseSplit_objâ, CochainComplex.MappingConeCompHomotopyEquiv.hom_inv_id_assoc, CochainComplex.g_shortComplexTruncLEXâToTruncGE, CochainComplex.HomComplex.Cochain.toSingleMk_v_eq_zero, CategoryTheory.InjectiveResolution.Hom.Κ_comp_hom_assoc, CategoryTheory.InjectiveResolution.Κ_f_succ, CochainComplex.isKInjective_shift_iff, CochainComplex.HomComplex.Cochain.leftShift_rightShift_eq_negOnePow_rightShift_leftShift, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_hom_app_f_f, CategoryTheory.InjectiveResolution.Κ_f_zero_comp_complex_d_assoc, DerivedCategory.to_singleFunctor_obj_eq_zero_of_injective, DerivedCategory.right_fac_of_isStrictlyLE_of_isStrictlyGE, CochainComplex.HomComplex.Cochain.leftShift_rightShift, CochainComplex.HomComplex.Cochain.ofHom_neg, CochainComplex.isSplitEpi_to_singleFunctor_obj_of_projective, CochainComplex.HomComplex.Cocycle.toSingleMk_add, DerivedCategory.instLinearCochainComplexIntQ, groupCohomology.cochainsMap_zero, CochainComplex.instAdditiveIntFunctorSingleFunctors, CochainComplex.shiftFunctor_obj_X, CochainComplex.mappingConeCompHomotopyEquiv_commâ, CochainComplex.exactAt_succ_single_obj, CochainComplex.mappingCone.rotateHomotopyEquiv_commâ, CochainComplex.HomComplex.Cocycle.toSingleMk_mem_coboundaries_iff, CochainComplex.mappingCone.triangleMapOfHomotopy_commâ, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc, CategoryTheory.ProjectiveResolution.extMk_hom, CochainComplex.mappingCone.triangleRotateShortComplex_Xâ, CochainComplex.HomComplex.Cochain.fromSingleMk_v, CochainComplex.HomComplex.Cochain.fromSingleMk_add, CochainComplex.singleâ_map_f_zero, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_neg, CochainComplex.HomComplex.Cochain.shift_smul, CochainComplex.HomComplex.Cochain.leftShiftAddEquiv_apply, CochainComplex.shiftShortComplexFunctor'_hom_app_Ďâ, groupCohomology.cochainsMap_id_comp, DerivedCategory.instIsIsoMapCochainComplexIntQ, CochainComplex.HomComplex.Cocycle.toSingleMk_zero, CochainComplex.HomComplex.Cochain.rightShiftAddEquiv_apply, CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv, CochainComplex.isIso_ĎTruncGE_iff, CochainComplex.HomComplex.Cochain.leftUnshift_v, CochainComplex.mappingConeCompHomotopyEquiv_commâ_assoc, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_homâ, groupCohomology.cochainsMap_comp_assoc, CochainComplex.mappingCone.triangleRotateShortComplex_Xâ, CochainComplex.HomComplex.Cochain.rightShift_leftShift, HomologicalComplexâ.totalShiftâIso_hom_totalShiftâIso_hom, CochainComplex.HomComplex.Cochain.ofHom_sub, CochainComplex.HomComplex.Cochain.leftUnshift_smul, CochainComplex.instIsKInjectiveObjIntShiftFunctor, CochainComplex.mappingConeCompTriangle_morâ_naturality, CategoryTheory.Functor.instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, CochainComplex.HomComplex.Cochain.shiftLinearMap_apply, CategoryTheory.ProjectiveResolution.Ď'_f_zero_assoc, CochainComplex.HomComplex.Cocycle.toSingleMk_coe, CochainComplex.mappingCone.triangleRotateShortComplex_Xâ, DerivedCategory.left_fac_of_isStrictlyLE_of_isStrictlyGE, CochainComplex.shiftFunctor_map_f', CategoryTheory.ProjectiveResolution.Hom.hom'_comp_Ď', CochainComplex.HomComplex.Cochain.rightShift_zero, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_homâ, CochainComplex.singleFunctor_obj_d, CochainComplex.HomComplex.Cochain.rightUnshift_v, HomotopyCategory.composableArrowsFunctor_obj, CochainComplex.shiftShortComplexFunctor'_hom_app_Ďâ, CochainComplex.shiftFunctorAdd'_inv_app_f', CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_zero, CochainComplex.shiftFunctorAdd'_eq, CochainComplex.shiftFunctorAdd'_inv_app_f, CategoryTheory.InjectiveResolution.Κ_f_zero_comp_complex_d, CochainComplex.HomComplex.CohomologyClass.equiv_toSmallShiftedHom_mk, CochainComplex.truncateAugment_inv_f, CochainComplex.mapBifunctorShiftâIso_hom_naturalityâ, CochainComplex.HomComplex.Cochain.fromSingleMk_zero, CochainComplex.mappingCone.inl_v_triangle_morâ_f_assoc, CochainComplex.mappingConeCompTriangle_morâ, CochainComplex.mappingCone.inr_triangleδ_assoc, CochainComplex.cm5b.instIsStrictlyGEBiprodIntMappingConeIdIOfHAddOfNat, CochainComplex.HomComplex.Cochain.leftShift_zero, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_zero, CategoryTheory.ProjectiveResolution.Hom.hom'_comp_Ď'_assoc, CochainComplex.instLinearIntShiftFunctor, CochainComplex.triangleOfDegreewiseSplit_morâ, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_obj_d, CochainComplex.mappingCone.inr_f_triangle_morâ_f, CochainComplex.HomComplex.Cocycle.fromSingleMk_coe, DerivedCategory.isLE_Q_obj_iff, CochainComplex.cm5b.fac_assoc, CochainComplex.triangleOfDegreewiseSplit_objâ, CochainComplex.shiftFunctorZero'_hom_app_f, CategoryTheory.InjectiveResolution.self_cocomplex, CochainComplex.mappingCone.triangle_morâ, HomologicalComplexâ.Κ_totalShiftâIso_inv_f_assoc, CochainComplex.HomComplex.Cocycle.leftUnshift_coe, CochainComplex.MappingConeCompHomotopyEquiv.hom_inv_id, CochainComplex.instAdditiveIntShiftFunctor, CochainComplex.shiftFunctor_map_f, CochainComplex.HomComplex.Cocycle.equivHomShift_symm_apply, CochainComplex.instIsKProjectiveObjIntShiftFunctor, CochainComplex.HomComplex.Cochain.rightShift_smul, CochainComplex.homotopyOp_hom_eq, CochainComplex.homOfDegreewiseSplit_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_counitIso_hom, CochainComplex.shiftFunctorAdd_inv_app_f, DerivedCategory.isGE_Q_obj_iff, CochainComplex.truncate_map_f, HomologicalComplexâ.Κ_totalShiftâIso_hom_f_assoc, CochainComplex.mappingCone.map_id, CochainComplex.shiftShortComplexFunctorIso_hom_app_Ďâ, CochainComplex.shiftShortComplexFunctorIso_inv_app_Ďâ, CategoryTheory.Functor.commShiftIso_mapâCochainComplex_inv_app, CochainComplex.mappingConeCompTriangle_objâ, CategoryTheory.ProjectiveResolution.Ď'_f_zero, CategoryTheory.InjectiveResolution.desc_commutes, CochainComplex.HomComplex.Cocycle.fromSingleMk_neg, CategoryTheory.InjectiveResolution.desc_commutes_assoc, CochainComplex.exists_iso_single, CochainComplex.HomComplex.Cocycle.rightShiftAddEquiv_symm_apply, CochainComplex.HomComplex.Cochain.shift_units_smul, CochainComplex.shiftFunctorAdd_eq, CochainComplex.HomComplex.Cochain.leftShiftLinearEquiv_symm_apply, CochainComplex.Κ_mapBifunctorShiftâIso_hom_f, CochainComplex.cm5b.instQuasiIsoIntP, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_homâ, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_p, CochainComplex.mappingCone.triangleMapOfHomotopy_commâ_assoc, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_homâ, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_map_f_f, CategoryTheory.InjectiveResolution.Hom.Κ_f_zero_comp_hom_f_zero, DerivedCategory.instIsGEObjCochainComplexIntQOfIsGE, CochainComplex.mappingConeCompHomotopyEquiv_commâ, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_obj_X, CochainComplex.HomComplex.Cochain.δ_toSingleMk, CochainComplex.cm5b.instMonoFIntI, CochainComplex.HomComplex.Cochain.fromSingleMk_precomp, CochainComplex.HomComplex.Cochain.leftUnshift_add, CochainComplex.HomComplex.Cocycle.fromSingleMk_zero, CochainComplex.mappingCone.rotateHomotopyEquiv_commâ_assoc, CochainComplex.instIsIsoIntΚTruncLEOfIsStrictlyLE, CategoryTheory.InjectiveResolution.Κ'_f_zero_assoc, CochainComplex.shiftFunctorZero'_inv_app_f, CochainComplex.mappingCone.cocycleOfDegreewiseSplit_triangleRotateShortComplexSplitting_v, CochainComplex.HomComplex.Cochain.rightShift_units_smul, AlgebraicTopology.alternatingCofaceMapComplex_obj, CategoryTheory.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoObjCochainComplexCompSingleFunctorOfNatOfHasExt, DerivedCategory.exists_iso_Q_obj_of_isGE_of_isLE, CochainComplex.HomComplex.Cochain.rightUnshift_smul, HomotopyCategory.composableArrowsFunctor_map, CochainComplex.HomComplex.Cocycle.equivHomShift'_apply, CategoryTheory.InjectiveResolution.Hom.Κ'_comp_hom'_assoc, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_morâ_assoc, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_add, CochainComplex.isSplitMono_from_singleFunctor_obj_of_injective, CochainComplex.mappingCone.triangleRotateShortComplexSplitting_r, CochainComplex.HomComplex.Cochain.δ_shift, CochainComplex.shiftShortComplexFunctor'_hom_app_Ďâ, CochainComplex.HomComplex.Cochain.fromSingleMk_sub, CochainComplex.toSingleâEquiv_symm_apply_f_succ, CochainComplex.mappingCone.inl_v_descShortComplex_f_assoc, DerivedCategory.from_singleFunctor_obj_eq_zero_of_projective, HomologicalComplexâ.totalShiftâIso_trans_totalShiftâIso, DerivedCategory.exists_iso_Q_obj_of_isGE, CategoryTheory.Functor.commShiftIso_mapâCochainComplex_flip_inv_app, CochainComplex.cm5b.instMonoIntI, CategoryTheory.ProjectiveResolution.extAddEquivCohomologyClass_apply, CochainComplex.HomComplex.Cocycle.toSingleMk_sub, CategoryTheory.InjectiveResolution.extMk_hom, CochainComplex.HomComplex.Cocycle.fromSingleMk_sub, CochainComplex.shortComplexTruncLE_shortExact, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_zero, CochainComplex.cm5b.i_f_comp, CochainComplex.HomComplex.Cochain.δ_rightUnshift, CochainComplex.mappingCone.inr_snd, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_neg, CochainComplex.HomComplex.Cochain.leftUnshift_units_smul, CochainComplex.mappingCone.inl_fst, CochainComplex.HomComplex.Cochain.rightShiftLinearEquiv_apply, CochainComplex.HomComplex.Cocycle.shift_coe, CochainComplex.isStrictlyLE_shift, CochainComplex.instFullIntSingleFunctor, CochainComplex.HomComplex.Cochain.δ_rightShift, DerivedCategory.right_fac_of_isStrictlyLE, HomologicalComplexâ.Κ_totalShiftâIso_inv_f, CochainComplex.ConnectData.map_id, CochainComplex.HomComplex.Cochain.leftShift_v, CochainComplex.HomComplex.Cochain.rightUnshift_add, CochainComplex.HomComplex.Cochain.toSingleMk_zero, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj, HomotopyCategory.homologyFunctor_shiftMap_assoc, CochainComplex.augmentTruncate_inv_f_succ, CochainComplex.shiftFunctor_obj_X', CochainComplex.HomComplex.Cochain.shift_v, CochainComplex.shiftFunctorZero_hom_app_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_d_f, CochainComplex.triangleOfDegreewiseSplit_morâ, CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv_assoc, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_extMk, CochainComplex.HomComplex.Cochain.shiftAddHom_apply, groupCohomology.instAdditiveRepCochainComplexModuleCatNatCochainsFunctor, CategoryTheory.InjectiveResolution.instQuasiIsoIntΚ', CochainComplex.HomComplex.Cochain.δ_leftUnshift, HomotopyCategory.spectralObjectMappingCone_Ďâ, CochainComplex.HomComplex.Cocycle.toSingleMk_neg, CategoryTheory.InjectiveResolution.desc_commutes_zero, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, CochainComplex.shiftFunctorAdd'_hom_app_f', CochainComplex.HomComplex.Cochain.leftShift_add, CochainComplex.HomComplex.Cochain.leftShift_comp_zero_cochain, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, CochainComplex.mappingCone.triangleMapOfHomotopy_commâ_assoc, CochainComplex.augmentTruncate_hom_f_succ, CochainComplex.shiftEval_hom_app, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_morâ, CochainComplex.instHasMapBifunctorObjIntShiftFunctor_1, CochainComplex.HomComplex.Cocycle.equivHomShift_comp, CochainComplex.cm5b.i_f_comp_assoc, AlgebraicTopology.alternatingCofaceMapComplex_map, CochainComplex.mappingCone.triangleRotateShortComplex_g, CochainComplex.shiftFunctor_obj_d', CochainComplex.instHasMapBifunctorObjIntShiftFunctor, CochainComplex.ΚTruncLE_naturality, CochainComplex.HomComplex.Cocycle.equivHom_apply, CochainComplex.mappingCone.inr_descShortComplex, DerivedCategory.instAdditiveCochainComplexIntQ, HomologicalComplexâ.totalShiftâIso_hom_totalShiftâIso_hom_assoc, CochainComplex.HomComplex.Cocycle.fromSingleMk_precomp, CochainComplex.Κ_mapBifunctorShiftâIso_hom_f_assoc, CochainComplex.triangleOfDegreewiseSplit_morâ, CochainComplex.fromSingleâEquiv_symm_apply_f_zero, CochainComplex.HomComplex.Cochain.leftShift_units_smul, CochainComplex.shiftFunctorAdd_hom_app_f, CochainComplex.truncateAugment_hom_f, CochainComplex.mapBifunctorShiftâIso_trans_mapBifunctorShiftâIso, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_X, CochainComplex.mappingCone.inl_v_descShortComplex_f, CochainComplex.isIso_ΚTruncLE_iff, CochainComplex.HomComplex.Cochain.toSingleMk_postcomp, CochainComplex.HomComplex.Cochain.ofHom_add, CochainComplex.mappingCone.triangleRotateShortComplexSplitting_s, CochainComplex.mappingCone.inr_f_descShortComplex_f, CochainComplex.toSingleâEquiv_apply, CochainComplex.HomComplex.Cochain.id_comp, CategoryTheory.ProjectiveResolution.instQuasiIsoIntĎ', DerivedCategory.exists_iso_Q_obj_of_isLE, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_homâ, CochainComplex.shiftShortComplexFunctor'_inv_app_Ďâ, CochainComplex.shiftFunctorAdd'_hom_app_f, CochainComplex.HomComplex.Cochain.ofHom_zero, CochainComplex.g_shortComplexTruncLEXâToTruncGE_assoc, CochainComplex.mappingCone.inr_f_triangle_morâ_f_assoc, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_add, HomologicalComplexâ.Κ_totalShiftâIso_hom_f, CategoryTheory.InjectiveResolution.Hom.Κ_f_zero_comp_hom_f_zero_assoc, CochainComplex.shiftFunctorComm_hom_app_f, groupCohomology.map_cochainsFunctor_shortExact, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_f, CochainComplex.HomComplex.Cochain.leftShiftAddEquiv_symm_apply, CochainComplex.HomComplex.Cochain.rightShift_neg, CochainComplex.mappingConeCompTriangle_morâ_naturality_assoc, HomotopyCategory.quotient_obj_singleFunctors_obj, CategoryTheory.InjectiveResolution.instMonoFNatΚ, CochainComplex.mappingCone.triangleMapOfHomotopy_commâ, DerivedCategory.instEssSurjCochainComplexIntQ, CochainComplex.HomComplex.Cochain.fromSingleMk_v_eq_zero, DerivedCategory.singleFunctorsPostcompQIso_hom_hom, CochainComplex.shiftShortComplexFunctor'_inv_app_Ďâ, CochainComplex.HomComplex.Cocycle.equivHomShift_symm_precomp, CochainComplex.shiftEval_inv_app, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles_assoc, CochainComplex.mapBifunctorShiftâIso_hom_naturalityâ, CategoryTheory.InjectiveResolution.homotopyEquiv_hom_Κ_assoc, CategoryTheory.InjectiveResolution.homotopyEquiv_hom_Κ, CochainComplex.HomComplex.Cocycle.rightShiftAddEquiv_apply, CochainComplex.HomComplex.Cocycle.fromSingleMk_mem_coboundaries_iff, groupCohomology.cochainsFunctor_map, CategoryTheory.InjectiveResolution.exactâ, CochainComplex.HomComplex.Cocycle.equivHomShift_comp_shift, HomotopyCategory.homologyFunctor_shiftMap, CochainComplex.HomComplex.Cochain.rightShiftLinearEquiv_symm_apply, CochainComplex.shiftShortComplexFunctor'_inv_app_Ďâ, CochainComplex.shiftShortComplexFunctorIso_zero_add_hom_app, CochainComplex.isKProjective_shift_iff, CochainComplex.instIsStrictlyLEObjIntSingleFunctor, CochainComplex.mappingCone.triangle_objâ, CochainComplex.instIsStrictlyGEObjIntSingleFunctor, CochainComplex.shiftShortComplexFunctorIso_inv_app_Ďâ, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_counitIso_inv, CochainComplex.mappingConeCompTriangle_morâ, CochainComplex.cm5b.degreewiseEpiWithInjectiveKernel_p, CochainComplex.HomComplex.Cochain.rightShift_v, CochainComplex.HomComplex.Cochain.rightUnshift_zero, CochainComplex.mappingConeCompTriangleh_commâ, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_extMk, CochainComplex.HomComplex.Cocycle.toSingleMk_postcomp, CochainComplex.HomComplex.Cocycle.leftShift_coe, CategoryTheory.InjectiveResolution.homotopyEquiv_inv_Κ_assoc, CochainComplex.singleâ_obj_zero, CochainComplex.HomComplex.Cochain.shift_v', CochainComplex.cm5b.instInjectiveXIntMappingConeIdI, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_inv_app_f_f, DerivedCategory.mem_distTriang_iff, CategoryTheory.Functor.instCommShiftCochainComplexIntMapMapâCochainComplex, CochainComplex.HomComplex.Cochain.rightShift_add, CochainComplex.ShiftSequence.shiftIso_inv_app, groupCohomology.cochainsMap_id_comp_assoc, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_X, DerivedCategory.instIsLEObjCochainComplexIntQOfIsLE, CategoryTheory.Functor.instCommShiftCochainComplexIntMapFlipMapâCochainComplex, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_d, CochainComplex.HomComplex.Cochain.toSingleEquiv_toSingleMk, CochainComplex.isGE_shift, CochainComplex.truncate_obj_d, DerivedCategory.Q_map_eq_of_homotopy, CategoryTheory.Functor.commShiftIso_mapâCochainComplex_hom_app, CochainComplex.mappingCone.triangleRotateShortComplex_f, CochainComplex.HomComplex.Cocycle.fromSingleMk_postcomp, CochainComplex.HomComplex.Cocycle.rightUnshift_coe, CochainComplex.mappingCone.rotateHomotopyEquiv_commâ, CochainComplex.HomComplex.Cochain.δ_leftShift, DerivedCategory.isIso_Q_map_iff_quasiIso, CochainComplex.HomComplex.Cocycle.toSingleMk_precomp, CochainComplex.HomComplex.CohomologyClass.toHom_mk, CochainComplex.ĎTruncGE_naturality_assoc, CochainComplex.HomComplex.Cocycle.leftShiftAddEquiv_apply, CochainComplex.instIsMultiplicativeIntDegreewiseEpiWithInjectiveKernel, CochainComplex.toSingleâEquiv_symm_apply_f_zero, DerivedCategory.left_fac_of_isStrictlyGE, CochainComplex.mappingConeHomOfDegreewiseSplitIso_hom_f, CochainComplex.augmentTruncate_hom_f_zero, CategoryTheory.InjectiveResolution.quasiIso, CochainComplex.HomComplex.Cochain.leftShift_neg, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.Functor.mapDerivedCategoryFactorsh_hom_app, CochainComplex.HomComplex.Cochain.toSingleMk_sub, CategoryTheory.InjectiveResolution.Hom.Κ_comp_hom, CochainComplex.HomComplex.Cocycle.equivHomShift_apply, CochainComplex.shiftShortComplexFunctorIso_inv_app_Ďâ, CochainComplex.HomComplex.Cochain.leftUnshift_neg, CochainComplex.isLE_shift, CochainComplex.mappingCone.triangle_objâ, CochainComplex.cm5b, groupCohomology.cochainsFunctor_obj, CategoryTheory.InjectiveResolution.Hom.Κ'_comp_hom', CategoryTheory.InjectiveResolution.extAddEquivCohomologyClass_symm_apply, CochainComplex.shiftFunctor_obj_d, CochainComplex.HomComplex.Cochain.toSingleMk_precomp, CochainComplex.HomComplex.Cocycle.rightShift_coe, CochainComplex.mappingConeCompHomotopyEquiv_hom_inv_id_assoc, CochainComplex.HomComplex.Cochain.leftUnshift_zero, DerivedCategory.left_fac, CochainComplex.mappingCone.triangle_objâ, CochainComplex.instFaithfulIntSingleFunctor, CochainComplex.mappingConeCompTriangle_objâ, CategoryTheory.InjectiveResolution.extAddEquivCohomologyClass_apply, HomologicalComplexâ.Κ_totalShiftâIso_hom_f, CochainComplex.Κ_mapBifunctorShiftâIso_hom_f, CochainComplex.ShiftSequence.shiftIso_hom_app, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_neg, groupCohomology.cochainsMap_id, CochainComplex.mappingCone.map_δ, CochainComplex.HomComplex.Cochain.ofHom_comp
|