| Name | Category | Theorems |
X 📖 | CompOp | 12 mathmath: cochainComplex_X, d_comp_d, restrictionLEIso_inv_f, X_zero, X_ofNat, restrictionLEIso_hom_f, d_comp_d_assoc, X_negOne, X_negSucc, restrictionGEIso_inv_f, shape, restrictionGEIso_hom_f
|
cochainComplex 📖 | CompOp | 11 mathmath: map_comp_map, cochainComplex_X, map_f, restrictionLEIso_inv_f, cochainComplex_d, restrictionLEIso_hom_f, restrictionGEIso_inv_f, map_id, homologyMap_map_of_eq_succ, homologyMap_map_of_eq_neg_succ, restrictionGEIso_hom_f
|
d 📖 | CompOp | 9 mathmath: d_ofNat, d_zero_one, d_comp_d, d_negSucc, d_sub_two_sub_one, cochainComplex_d, d_comp_d_assoc, shape, d_sub_one_zero
|
d₀ 📖 | CompOp | 5 mathmath: d₀_comp, d₀_comp_assoc, comp_d₀, comp_d₀_assoc, d_sub_one_zero
|
homologyIsoNeg 📖 | CompOp | 1 mathmath: homologyMap_map_of_eq_neg_succ
|
homologyIsoPos 📖 | CompOp | 1 mathmath: homologyMap_map_of_eq_succ
|
map 📖 | CompOp | 5 mathmath: map_comp_map, map_f, map_id, homologyMap_map_of_eq_succ, homologyMap_map_of_eq_neg_succ
|
restrictionGEIso 📖 | CompOp | 2 mathmath: restrictionGEIso_inv_f, restrictionGEIso_hom_f
|
restrictionLEIso 📖 | CompOp | 2 mathmath: restrictionLEIso_inv_f, restrictionLEIso_hom_f
|