Documentation Verification Report

Extend

๐Ÿ“ Source: Mathlib/Algebra/Homology/Embedding/Extend.lean

Statistics

MetricCount
DefinitionsextendFunctor, fullyFaithfulExtendFunctor, extend, X, XIso, XOpIso, d, mapX, extendMap, extendOpIso, extendSingleIso, extendXIso
12
TheoremsextendFunctor_map, extendFunctor_obj, instAdditiveHomologicalComplexExtendFunctor, instFaithfulHomologicalComplexExtendFunctor, instFullHomologicalComplexExtendFunctor, instPreservesZeroMorphismsHomologicalComplexExtendFunctor, XOpIso_hom_d_op, XOpIso_hom_d_op_assoc, d_eq, d_none_eq_zero, d_none_eq_zero', isZero_X, mapX_none, mapX_some, extendMap_add, extendMap_comp, extendMap_comp_assoc, extendMap_f, extendMap_f_eq_zero, extendMap_id, extendMap_id_f, extendMap_zero, extendSingleIso_hom_f, extendSingleIso_hom_f_assoc, extendSingleIso_inv_f, extendSingleIso_inv_f_assoc, extend_d_eq, extend_d_from_eq_zero, extend_d_to_eq_zero, extend_op_d, extend_op_d_assoc, extend_single_d, instIsStrictlySupportedExtend, isZero_extend_X, isZero_extend_X'
35
Total47

ComplexShape.Embedding

Definitions

NameCategoryTheorems
extendFunctor ๐Ÿ“–CompOp
6 mathmath: instFaithfulHomologicalComplexExtendFunctor, extendFunctor_map, instFullHomologicalComplexExtendFunctor, instPreservesZeroMorphismsHomologicalComplexExtendFunctor, instAdditiveHomologicalComplexExtendFunctor, extendFunctor_obj
fullyFaithfulExtendFunctor ๐Ÿ“–CompOpโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
extendFunctor_map ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.map
HomologicalComplex
HomologicalComplex.instCategory
extendFunctor
HomologicalComplex.extendMap
โ€”โ€”
extendFunctor_obj ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
extendFunctor
HomologicalComplex.extend
โ€”โ€”
instAdditiveHomologicalComplexExtendFunctor ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.Additive
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomologicalComplex.instPreadditive
extendFunctor
โ€”HomologicalComplex.extendMap_add
instFaithfulHomologicalComplexExtendFunctor ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.Faithful
HomologicalComplex
HomologicalComplex.instCategory
extendFunctor
โ€”CategoryTheory.Functor.FullyFaithful.faithful
instFullHomologicalComplexExtendFunctor ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.Full
HomologicalComplex
HomologicalComplex.instCategory
extendFunctor
โ€”CategoryTheory.Functor.FullyFaithful.full
instPreservesZeroMorphismsHomologicalComplexExtendFunctor ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.PreservesZeroMorphisms
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
extendFunctor
โ€”HomologicalComplex.extendMap_zero

HomologicalComplex

Definitions

NameCategoryTheorems
extend ๐Ÿ“–CompOp
97 mathmath: extendSingleIso_inv_f, extend_exactAt, ComplexShape.Embedding.isIso_liftExtend_f_iff, homologyฯ€_extendHomologyIso_hom, quasiIso_extendMap_iff, extend.leftHomologyData_ฯ€, extend.d_comp_eq_zero_iff, extend.homologyData_left, extend_exactAt_iff, extend.homologyData'_left_H, extendHomologyIso_hom_naturality, ComplexShape.Embedding.liftExtend.comm_assoc, extendHomologyIso_hom_naturality_assoc, quasiIsoAt_extendMap_iff, extend_op_d_assoc, Homotopy.extend_hom_eq, extendSingleIso_inv_f_assoc, extendHomologyIso_hom_homologyฮน_assoc, CochainComplex.instIsStrictlyLEExtendNatIntEmbeddingDownNatOfNat, homologyฯ€_extendHomologyIso_inv, extendCyclesIso_inv_iCycles_assoc, extendMap_f, extendSingleIso_hom_f_assoc, extendMap_comp_assoc, extendCyclesIso_hom_naturality_assoc, ComplexShape.Embedding.homRestrict_precomp, Homotopy.extend.hom_eq_zeroโ‚, ComplexShape.Embedding.epi_liftExtend_f_iff, extend_single_d, extend.hasHomology, extend_d_to_eq_zero, isZero_extend_X, extend.rightHomologyData.d_comp_desc_eq_zero_iff, ComplexShape.Embedding.homRestrict_comp_extendMap_assoc, extend.homologyData'_right_H, homologyฯ€_extendHomologyIso_inv_assoc, extend_op_d, ComplexShape.Embedding.mono_liftExtend_f_iff, extend.rightHomologyData_p, extend.leftHomologyData_H, extend.homologyData'_iso, instQuasiIsoExtendMap, ComplexShape.Embedding.liftExtend.comm, Homotopy.ofExtend_hom, extend.rightHomologyData_g', extend.rightHomologyData_ฮน, extend.homologyData'_right_p, extendCyclesIso_hom_iCycles, extend.homologyData'_left_i, ComplexShape.Embedding.homEquiv_symm_apply, ComplexShape.Embedding.homEquiv_apply_coe, pOpcycles_extendOpcyclesIso_hom_assoc, pOpcycles_extendOpcyclesIso_inv, homologyฯ€_extendHomologyIso_hom_assoc, extendMap_add, isZero_extend_X', extend_d_from_eq_zero, Homotopy.extend.hom_eq_zeroโ‚‚, extend.rightHomologyData_H, extend.homologyData'_right_ฮน, ComplexShape.Embedding.liftExtend_f, extendCyclesIso_hom_naturality, extend.leftHomologyData_i, extend.comp_d_eq_zero_iff, ComplexShape.Embedding.liftExtend.f_eq, extend.instHasHomologyF, extend.instHasHomology, instIsStrictlySupportedExtend, ComplexShape.Embedding.homRestrict_precomp_assoc, extend.homologyData'_right_Q, CochainComplex.instIsStrictlyGEExtendNatIntEmbeddingUpNatOfNat, extend.leftHomologyData_K, pOpcycles_extendOpcyclesIso_hom, extendCyclesIso_inv_iCycles, extendCyclesIso_hom_iCycles_assoc, ComplexShape.Embedding.homRestrict_f, extend_d_eq, extendMap_comp, extend.homologyData'_left_ฯ€, ComplexShape.Embedding.homRestrict.f_eq, extendHomologyIso_inv_homologyฮน, extend.homologyData'_left_K, extend.homologyData_iso, extend.leftHomologyData.lift_d_comp_eq_zero_iff, extendMap_zero, extendMap_f_eq_zero, ComplexShape.Embedding.extendFunctor_obj, Homotopy.extend.hom_eq, extendHomologyIso_inv_homologyฮน_assoc, pOpcycles_extendOpcyclesIso_inv_assoc, extend.homologyData_right, extendSingleIso_hom_f, ComplexShape.Embedding.homRestrict_comp_extendMap, extend.rightHomologyData_Q, extendMap_id, extendHomologyIso_hom_homologyฮน, extendMap_id_f
extendMap ๐Ÿ“–CompOp
20 mathmath: quasiIso_extendMap_iff, extendHomologyIso_hom_naturality, extendHomologyIso_hom_naturality_assoc, quasiIsoAt_extendMap_iff, Homotopy.extend_hom_eq, extendMap_f, extendMap_comp_assoc, extendCyclesIso_hom_naturality_assoc, ComplexShape.Embedding.extendFunctor_map, ComplexShape.Embedding.homRestrict_comp_extendMap_assoc, instQuasiIsoExtendMap, Homotopy.ofExtend_hom, extendMap_add, extendCyclesIso_hom_naturality, extendMap_comp, extendMap_zero, extendMap_f_eq_zero, ComplexShape.Embedding.homRestrict_comp_extendMap, extendMap_id, extendMap_id_f
extendOpIso ๐Ÿ“–CompOp
2 mathmath: extend_op_d_assoc, extend_op_d
extendSingleIso ๐Ÿ“–CompOp
4 mathmath: extendSingleIso_inv_f, extendSingleIso_inv_f_assoc, extendSingleIso_hom_f_assoc, extendSingleIso_hom_f
extendXIso ๐Ÿ“–CompOp
28 mathmath: extendSingleIso_inv_f, extend.d_comp_eq_zero_iff, Homotopy.extend_hom_eq, extendSingleIso_inv_f_assoc, extendCyclesIso_inv_iCycles_assoc, extendMap_f, extendSingleIso_hom_f_assoc, extend.rightHomologyData_p, Homotopy.ofExtend_hom, extend.rightHomologyData_g', extend.homologyData'_right_p, extendCyclesIso_hom_iCycles, extend.homologyData'_left_i, pOpcycles_extendOpcyclesIso_hom_assoc, pOpcycles_extendOpcyclesIso_inv, ComplexShape.Embedding.liftExtend_f, extend.leftHomologyData_i, extend.comp_d_eq_zero_iff, ComplexShape.Embedding.liftExtend.f_eq, pOpcycles_extendOpcyclesIso_hom, extendCyclesIso_inv_iCycles, extendCyclesIso_hom_iCycles_assoc, ComplexShape.Embedding.homRestrict_f, extend_d_eq, ComplexShape.Embedding.homRestrict.f_eq, Homotopy.extend.hom_eq, pOpcycles_extendOpcyclesIso_inv_assoc, extendSingleIso_hom_f

Theorems

NameKindAssumesProvesValidatesDepends On
extendMap_add ๐Ÿ“–mathematicalโ€”extendMap
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
instAddHom
extend
โ€”hom_ext
extendMap_f
CategoryTheory.Preadditive.add_comp
CategoryTheory.Preadditive.comp_add
CategoryTheory.Limits.IsZero.eq_of_src
isZero_extend_X
extendMap_comp ๐Ÿ“–mathematicalโ€”extendMap
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
extend
โ€”hom_ext
extendMap_f
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
extendMap_f_eq_zero
CategoryTheory.Limits.comp_zero
extendMap_comp_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
extend
extendMap
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
extendMap_comp
extendMap_f ๐Ÿ“–mathematicalComplexShape.Embedding.fHom.f
extend
extendMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
extendXIso
CategoryTheory.Iso.inv
โ€”ComplexShape.Embedding.r_eq_some
extend.mapX_some
extendMap_f_eq_zero ๐Ÿ“–mathematicalโ€”Hom.f
extend
extendMap
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
โ€”extend.mapX_none
ComplexShape.Embedding.r_eq_none
extendMap_id ๐Ÿ“–mathematicalโ€”extendMap
CategoryTheory.CategoryStruct.id
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
extend
โ€”hom_ext
extendMap_id_f
extendMap_id_f ๐Ÿ“–mathematicalโ€”Hom.f
extend
extendMap
CategoryTheory.CategoryStruct.id
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
X
โ€”extendMap_f
CategoryTheory.Category.id_comp
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Limits.IsZero.eq_of_src
isZero_extend_X
extendMap_zero ๐Ÿ“–mathematicalโ€”extendMap
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
instZeroHom
extend
โ€”hom_ext
extendMap_f
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.IsZero.eq_of_src
isZero_extend_X
extendSingleIso_hom_f ๐Ÿ“–mathematicalComplexShape.Embedding.fHom.f
extend
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
CategoryTheory.Iso.hom
extendSingleIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
extendXIso
singleObjXSelf
CategoryTheory.Iso.inv
โ€”mkHomToSingle_f
CategoryTheory.Category.assoc
extendSingleIso_hom_f_assoc ๐Ÿ“–mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
extend
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
Hom.f
CategoryTheory.Iso.hom
extendSingleIso
extendXIso
singleObjXSelf
CategoryTheory.Iso.inv
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
extendSingleIso_hom_f
extendSingleIso_inv_f ๐Ÿ“–mathematicalComplexShape.Embedding.fHom.f
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
extend
CategoryTheory.Iso.inv
extendSingleIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
singleObjXSelf
extendXIso
โ€”mkHomFromSingle_f
extendSingleIso_inv_f_assoc ๐Ÿ“–mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
extend
Hom.f
CategoryTheory.Iso.inv
extendSingleIso
CategoryTheory.Iso.hom
singleObjXSelf
extendXIso
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
extendSingleIso_inv_f
extend_d_eq ๐Ÿ“–mathematicalComplexShape.Embedding.fd
extend
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
extendXIso
CategoryTheory.Iso.inv
โ€”extend.d_eq
ComplexShape.Embedding.r_eq_some
extend_d_from_eq_zero ๐Ÿ“–mathematicalComplexShape.Embedding.f
ComplexShape.Rel
ComplexShape.next
d
extend
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
โ€”extend.d_none_eq_zero'
ComplexShape.Embedding.f_eq_of_r_eq_some
extend_d_eq
shape
ComplexShape.next_eq'
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.comp_zero
extend_d_to_eq_zero ๐Ÿ“–mathematicalComplexShape.Embedding.f
ComplexShape.Rel
ComplexShape.prev
d
extend
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
โ€”extend.d_none_eq_zero
ComplexShape.Embedding.f_eq_of_r_eq_some
extend_d_eq
shape
ComplexShape.prev_eq'
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.comp_zero
extend_op_d ๐Ÿ“–mathematicalโ€”d
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
extend
CategoryTheory.Limits.hasZeroObject_op
op
ComplexShape.Embedding.op
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
X
Hom.f
CategoryTheory.Iso.hom
HomologicalComplex
instCategory
extendOpIso
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Iso.inv
โ€”CategoryTheory.Limits.hasZeroObject_op
Hom.comm
comp_f_assoc
CategoryTheory.Iso.hom_inv_id
id_f
CategoryTheory.Category.id_comp
extend_op_d_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
X
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
extend
CategoryTheory.Limits.hasZeroObject_op
op
ComplexShape.Embedding.op
d
Hom.f
CategoryTheory.Iso.hom
HomologicalComplex
instCategory
extendOpIso
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Iso.inv
โ€”CategoryTheory.Limits.hasZeroObject_op
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
extend_op_d
extend_single_d ๐Ÿ“–mathematicalโ€”d
extend
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
โ€”extend_d_eq
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.IsZero.eq_of_tgt
isZero_extend_X
CategoryTheory.Limits.IsZero.eq_of_src
instIsStrictlySupportedExtend ๐Ÿ“–mathematicalโ€”IsStrictlySupported
extend
โ€”isZero_extend_X
isZero_extend_X ๐Ÿ“–mathematicalโ€”CategoryTheory.Limits.IsZero
X
extend
โ€”isZero_extend_X'
ComplexShape.Embedding.r_eq_none
isZero_extend_X' ๐Ÿ“–mathematicalComplexShape.Embedding.rCategoryTheory.Limits.IsZero
X
extend
โ€”extend.isZero_X

HomologicalComplex.extend

Definitions

NameCategoryTheorems
X ๐Ÿ“–CompOp
9 mathmath: d_none_eq_zero', XOpIso_hom_d_op, XOpIso_hom_d_op_assoc, d_none_eq_zero, mapX_some, isZero_X, Homotopy.extend.homAux_eq, d_eq, mapX_none
XIso ๐Ÿ“–CompOp
3 mathmath: mapX_some, Homotopy.extend.homAux_eq, d_eq
XOpIso ๐Ÿ“–CompOp
2 mathmath: XOpIso_hom_d_op, XOpIso_hom_d_op_assoc
d ๐Ÿ“–CompOp
5 mathmath: d_none_eq_zero', XOpIso_hom_d_op, XOpIso_hom_d_op_assoc, d_none_eq_zero, d_eq
mapX ๐Ÿ“–CompOp
2 mathmath: mapX_some, mapX_none

Theorems

NameKindAssumesProvesValidatesDepends On
XOpIso_hom_d_op ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
X
ComplexShape.symm
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroObject_op
CategoryTheory.Limits.hasZeroMorphismsOpposite
HomologicalComplex.op
Opposite.op
CategoryTheory.Iso.hom
XOpIso
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
d
โ€”CategoryTheory.Limits.hasZeroObject_op
d_none_eq_zero'
CategoryTheory.Limits.comp_zero
d_none_eq_zero
CategoryTheory.Limits.zero_comp
d_eq
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
XOpIso_hom_d_op_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
X
ComplexShape.symm
CategoryTheory.Limits.hasZeroObject_op
CategoryTheory.Limits.hasZeroMorphismsOpposite
HomologicalComplex.op
Opposite.op
CategoryTheory.Iso.hom
XOpIso
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
d
โ€”CategoryTheory.Limits.hasZeroObject_op
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
XOpIso_hom_d_op
d_eq ๐Ÿ“–mathematicalโ€”d
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
HomologicalComplex.X
CategoryTheory.Iso.hom
XIso
HomologicalComplex.d
CategoryTheory.Iso.inv
โ€”CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
d_none_eq_zero ๐Ÿ“–mathematicalโ€”d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
โ€”โ€”
d_none_eq_zero' ๐Ÿ“–mathematicalโ€”d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
โ€”โ€”
isZero_X ๐Ÿ“–mathematicalโ€”CategoryTheory.Limits.IsZero
X
โ€”CategoryTheory.Limits.isZero_zero
mapX_none ๐Ÿ“–mathematicalโ€”mapX
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
โ€”โ€”
mapX_some ๐Ÿ“–mathematicalโ€”mapX
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
HomologicalComplex.X
CategoryTheory.Iso.hom
XIso
HomologicalComplex.Hom.f
CategoryTheory.Iso.inv
โ€”CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id

---

โ† Back to Index