| Name | Category | Theorems |
extend ๐ | CompOp | 97 mathmath: extendSingleIso_inv_f, extend_exactAt, ComplexShape.Embedding.isIso_liftExtend_f_iff, homologyฯ_extendHomologyIso_hom, quasiIso_extendMap_iff, extend.leftHomologyData_ฯ, extend.d_comp_eq_zero_iff, extend.homologyData_left, extend_exactAt_iff, extend.homologyData'_left_H, extendHomologyIso_hom_naturality, ComplexShape.Embedding.liftExtend.comm_assoc, extendHomologyIso_hom_naturality_assoc, quasiIsoAt_extendMap_iff, extend_op_d_assoc, Homotopy.extend_hom_eq, extendSingleIso_inv_f_assoc, extendHomologyIso_hom_homologyฮน_assoc, CochainComplex.instIsStrictlyLEExtendNatIntEmbeddingDownNatOfNat, homologyฯ_extendHomologyIso_inv, extendCyclesIso_inv_iCycles_assoc, extendMap_f, extendSingleIso_hom_f_assoc, extendMap_comp_assoc, extendCyclesIso_hom_naturality_assoc, ComplexShape.Embedding.homRestrict_precomp, Homotopy.extend.hom_eq_zeroโ, ComplexShape.Embedding.epi_liftExtend_f_iff, extend_single_d, extend.hasHomology, extend_d_to_eq_zero, isZero_extend_X, extend.rightHomologyData.d_comp_desc_eq_zero_iff, ComplexShape.Embedding.homRestrict_comp_extendMap_assoc, extend.homologyData'_right_H, homologyฯ_extendHomologyIso_inv_assoc, extend_op_d, ComplexShape.Embedding.mono_liftExtend_f_iff, extend.rightHomologyData_p, extend.leftHomologyData_H, extend.homologyData'_iso, instQuasiIsoExtendMap, ComplexShape.Embedding.liftExtend.comm, Homotopy.ofExtend_hom, extend.rightHomologyData_g', extend.rightHomologyData_ฮน, extend.homologyData'_right_p, extendCyclesIso_hom_iCycles, extend.homologyData'_left_i, ComplexShape.Embedding.homEquiv_symm_apply, ComplexShape.Embedding.homEquiv_apply_coe, pOpcycles_extendOpcyclesIso_hom_assoc, pOpcycles_extendOpcyclesIso_inv, homologyฯ_extendHomologyIso_hom_assoc, extendMap_add, isZero_extend_X', extend_d_from_eq_zero, Homotopy.extend.hom_eq_zeroโ, extend.rightHomologyData_H, extend.homologyData'_right_ฮน, ComplexShape.Embedding.liftExtend_f, extendCyclesIso_hom_naturality, extend.leftHomologyData_i, extend.comp_d_eq_zero_iff, ComplexShape.Embedding.liftExtend.f_eq, extend.instHasHomologyF, extend.instHasHomology, instIsStrictlySupportedExtend, ComplexShape.Embedding.homRestrict_precomp_assoc, extend.homologyData'_right_Q, CochainComplex.instIsStrictlyGEExtendNatIntEmbeddingUpNatOfNat, extend.leftHomologyData_K, pOpcycles_extendOpcyclesIso_hom, extendCyclesIso_inv_iCycles, extendCyclesIso_hom_iCycles_assoc, ComplexShape.Embedding.homRestrict_f, extend_d_eq, extendMap_comp, extend.homologyData'_left_ฯ, ComplexShape.Embedding.homRestrict.f_eq, extendHomologyIso_inv_homologyฮน, extend.homologyData'_left_K, extend.homologyData_iso, extend.leftHomologyData.lift_d_comp_eq_zero_iff, extendMap_zero, extendMap_f_eq_zero, ComplexShape.Embedding.extendFunctor_obj, Homotopy.extend.hom_eq, extendHomologyIso_inv_homologyฮน_assoc, pOpcycles_extendOpcyclesIso_inv_assoc, extend.homologyData_right, extendSingleIso_hom_f, ComplexShape.Embedding.homRestrict_comp_extendMap, extend.rightHomologyData_Q, extendMap_id, extendHomologyIso_hom_homologyฮน, extendMap_id_f
|
extendMap ๐ | CompOp | 20 mathmath: quasiIso_extendMap_iff, extendHomologyIso_hom_naturality, extendHomologyIso_hom_naturality_assoc, quasiIsoAt_extendMap_iff, Homotopy.extend_hom_eq, extendMap_f, extendMap_comp_assoc, extendCyclesIso_hom_naturality_assoc, ComplexShape.Embedding.extendFunctor_map, ComplexShape.Embedding.homRestrict_comp_extendMap_assoc, instQuasiIsoExtendMap, Homotopy.ofExtend_hom, extendMap_add, extendCyclesIso_hom_naturality, extendMap_comp, extendMap_zero, extendMap_f_eq_zero, ComplexShape.Embedding.homRestrict_comp_extendMap, extendMap_id, extendMap_id_f
|
extendOpIso ๐ | CompOp | 2 mathmath: extend_op_d_assoc, extend_op_d
|
extendSingleIso ๐ | CompOp | 4 mathmath: extendSingleIso_inv_f, extendSingleIso_inv_f_assoc, extendSingleIso_hom_f_assoc, extendSingleIso_hom_f
|
extendXIso ๐ | CompOp | 28 mathmath: extendSingleIso_inv_f, extend.d_comp_eq_zero_iff, Homotopy.extend_hom_eq, extendSingleIso_inv_f_assoc, extendCyclesIso_inv_iCycles_assoc, extendMap_f, extendSingleIso_hom_f_assoc, extend.rightHomologyData_p, Homotopy.ofExtend_hom, extend.rightHomologyData_g', extend.homologyData'_right_p, extendCyclesIso_hom_iCycles, extend.homologyData'_left_i, pOpcycles_extendOpcyclesIso_hom_assoc, pOpcycles_extendOpcyclesIso_inv, ComplexShape.Embedding.liftExtend_f, extend.leftHomologyData_i, extend.comp_d_eq_zero_iff, ComplexShape.Embedding.liftExtend.f_eq, pOpcycles_extendOpcyclesIso_hom, extendCyclesIso_inv_iCycles, extendCyclesIso_hom_iCycles_assoc, ComplexShape.Embedding.homRestrict_f, extend_d_eq, ComplexShape.Embedding.homRestrict.f_eq, Homotopy.extend.hom_eq, pOpcycles_extendOpcyclesIso_inv_assoc, extendSingleIso_hom_f
|