Documentation Verification Report

ExtendHomology

📁 Source: Mathlib/Algebra/Homology/Embedding/ExtendHomology.lean

Statistics

MetricCount
DefinitionshomologyData, homologyData', leftHomologyData, cokernelCofork, isColimitCokernelCofork, isLimitKernelFork, kernelFork, rightHomologyData, cokernelCofork, isColimitCokernelCofork, isLimitKernelFork, kernelFork, extendCyclesIso, extendHomologyIso, extendOpcyclesIso
15
Theoremscomp_d_eq_zero_iff, d_comp_eq_zero_iff, hasHomology, homologyData'_iso, homologyData'_left_H, homologyData'_left_K, homologyData'_left_i, homologyData'_left_π, homologyData'_right_H, homologyData'_right_Q, homologyData'_right_p, homologyData'_right_ι, homologyData_iso, homologyData_left, homologyData_right, instHasHomology, instHasHomologyF, lift_d_comp_eq_zero_iff, lift_d_comp_eq_zero_iff', leftHomologyData_H, leftHomologyData_K, leftHomologyData_i, leftHomologyData_π, d_comp_desc_eq_zero_iff, d_comp_desc_eq_zero_iff', rightHomologyData_H, rightHomologyData_Q, rightHomologyData_g', rightHomologyData_p, rightHomologyData_ι, extendCyclesIso_hom_iCycles, extendCyclesIso_hom_iCycles_assoc, extendCyclesIso_hom_naturality, extendCyclesIso_hom_naturality_assoc, extendCyclesIso_inv_iCycles, extendCyclesIso_inv_iCycles_assoc, extendHomologyIso_hom_homologyι, extendHomologyIso_hom_homologyι_assoc, extendHomologyIso_hom_naturality, extendHomologyIso_hom_naturality_assoc, extendHomologyIso_inv_homologyι, extendHomologyIso_inv_homologyι_assoc, extend_exactAt, extend_exactAt_iff, homologyπ_extendHomologyIso_hom, homologyπ_extendHomologyIso_hom_assoc, homologyπ_extendHomologyIso_inv, homologyπ_extendHomologyIso_inv_assoc, instQuasiIsoExtendMap, pOpcycles_extendOpcyclesIso_hom, pOpcycles_extendOpcyclesIso_hom_assoc, pOpcycles_extendOpcyclesIso_inv, pOpcycles_extendOpcyclesIso_inv_assoc, quasiIsoAt_extendMap_iff, quasiIso_extendMap_iff
55
Total70

HomologicalComplex

Definitions

NameCategoryTheorems
extendCyclesIso 📖CompOp
10 mathmath: homologyπ_extendHomologyIso_hom, homologyπ_extendHomologyIso_inv, extendCyclesIso_inv_iCycles_assoc, extendCyclesIso_hom_naturality_assoc, homologyπ_extendHomologyIso_inv_assoc, extendCyclesIso_hom_iCycles, homologyπ_extendHomologyIso_hom_assoc, extendCyclesIso_hom_naturality, extendCyclesIso_inv_iCycles, extendCyclesIso_hom_iCycles_assoc
extendHomologyIso 📖CompOp
10 mathmath: homologyπ_extendHomologyIso_hom, extendHomologyIso_hom_naturality, extendHomologyIso_hom_naturality_assoc, extendHomologyIso_hom_homologyι_assoc, homologyπ_extendHomologyIso_inv, homologyπ_extendHomologyIso_inv_assoc, homologyπ_extendHomologyIso_hom_assoc, extendHomologyIso_inv_homologyι, extendHomologyIso_inv_homologyι_assoc, extendHomologyIso_hom_homologyι
extendOpcyclesIso 📖CompOp
8 mathmath: extendHomologyIso_hom_homologyι_assoc, pOpcycles_extendOpcyclesIso_hom_assoc, pOpcycles_extendOpcyclesIso_inv, pOpcycles_extendOpcyclesIso_hom, extendHomologyIso_inv_homologyι, extendHomologyIso_inv_homologyι_assoc, pOpcycles_extendOpcyclesIso_inv_assoc, extendHomologyIso_hom_homologyι

Theorems

NameKindAssumesProvesValidatesDepends On
extendCyclesIso_hom_iCycles 📖mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
extend
X
CategoryTheory.Iso.hom
extendCyclesIso
iCycles
extendXIso
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Category.assoc
CategoryTheory.ShortComplex.LeftHomologyData.cyclesIso_inv_comp_iCycles_assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.ShortComplex.LeftHomologyData.cyclesIso_hom_comp_i
extendCyclesIso_hom_iCycles_assoc 📖mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
extend
CategoryTheory.Iso.hom
extendCyclesIso
X
iCycles
extendXIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
extendCyclesIso_hom_iCycles
extendCyclesIso_hom_naturality 📖mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
extend
cyclesMap
extendMap
CategoryTheory.Iso.hom
extendCyclesIso
CategoryTheory.cancel_mono
instMonoICycles
CategoryTheory.Category.assoc
extendCyclesIso_hom_iCycles
cyclesMap_i_assoc
extendMap_f
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
cyclesMap_i
extendCyclesIso_hom_iCycles_assoc
extendCyclesIso_hom_naturality_assoc 📖mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
extend
cyclesMap
extendMap
CategoryTheory.Iso.hom
extendCyclesIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
extendCyclesIso_hom_naturality
extendCyclesIso_inv_iCycles 📖mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
extend
X
CategoryTheory.Iso.inv
extendCyclesIso
iCycles
extendXIso
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.hom_inv_id_assoc
extendCyclesIso_hom_iCycles_assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
extendCyclesIso_inv_iCycles_assoc 📖mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
extend
CategoryTheory.Iso.inv
extendCyclesIso
X
iCycles
extendXIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
extendCyclesIso_inv_iCycles
extendHomologyIso_hom_homologyι 📖mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
extend
opcycles
CategoryTheory.Iso.hom
extendHomologyIso
homologyι
extendOpcyclesIso
CategoryTheory.cancel_epi
instEpiHomologyπ
homologyπ_extendHomologyIso_hom_assoc
homology_π_ι
extendCyclesIso_hom_iCycles_assoc
homology_π_ι_assoc
pOpcycles_extendOpcyclesIso_hom
extendHomologyIso_hom_homologyι_assoc 📖mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
extend
CategoryTheory.Iso.hom
extendHomologyIso
opcycles
homologyι
extendOpcyclesIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
extendHomologyIso_hom_homologyι
extendHomologyIso_hom_naturality 📖mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
extend
homologyMap
extendMap
CategoryTheory.Iso.hom
extendHomologyIso
CategoryTheory.cancel_epi
instEpiHomologyπ
homologyπ_naturality_assoc
homologyπ_extendHomologyIso_hom
extendCyclesIso_hom_naturality_assoc
homologyπ_extendHomologyIso_hom_assoc
homologyπ_naturality
extendHomologyIso_hom_naturality_assoc 📖mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
extend
homologyMap
extendMap
CategoryTheory.Iso.hom
extendHomologyIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
extendHomologyIso_hom_naturality
extendHomologyIso_inv_homologyι 📖mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
extend
opcycles
CategoryTheory.Iso.inv
extendHomologyIso
homologyι
extendOpcyclesIso
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.hom_inv_id_assoc
extendHomologyIso_hom_homologyι_assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
extendHomologyIso_inv_homologyι_assoc 📖mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
extend
CategoryTheory.Iso.inv
extendHomologyIso
opcycles
homologyι
extendOpcyclesIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
extendHomologyIso_inv_homologyι
extend_exactAt 📖mathematicalExactAt
extend
exactAt_of_isSupported
instIsSupportedOfIsStrictlySupported
instIsStrictlySupportedExtend
extend_exactAt_iff 📖mathematicalComplexShape.Embedding.fExactAt
extend
CategoryTheory.Iso.isZero_iff
homologyπ_extendHomologyIso_hom 📖mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
extend
homology
homologyπ
CategoryTheory.Iso.hom
extendHomologyIso
extendCyclesIso
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.ShortComplex.LeftHomologyData.homologyπ_comp_homologyIso_hom_assoc
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.ShortComplex.LeftHomologyData.homologyπ_comp_homologyIso_hom
CategoryTheory.Iso.inv_hom_id_assoc
homologyπ_extendHomologyIso_hom_assoc 📖mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
extend
homology
homologyπ
CategoryTheory.Iso.hom
extendHomologyIso
extendCyclesIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyπ_extendHomologyIso_hom
homologyπ_extendHomologyIso_inv 📖mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
homology
extend
homologyπ
CategoryTheory.Iso.inv
extendHomologyIso
extendCyclesIso
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
homologyπ_extendHomologyIso_hom
CategoryTheory.Iso.inv_hom_id_assoc
homologyπ_extendHomologyIso_inv_assoc 📖mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
homology
homologyπ
extend
CategoryTheory.Iso.inv
extendHomologyIso
extendCyclesIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyπ_extendHomologyIso_inv
instQuasiIsoExtendMap 📖mathematicalHasHomologyQuasiIso
extend
extendMap
extend.instHasHomology
extend.instHasHomology
quasiIso_extendMap_iff
pOpcycles_extendOpcyclesIso_hom 📖mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
extend
opcycles
pOpcycles
CategoryTheory.Iso.hom
extendOpcyclesIso
extendXIso
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
pOpcycles_extendOpcyclesIso_inv
CategoryTheory.Iso.hom_inv_id_assoc
pOpcycles_extendOpcyclesIso_hom_assoc 📖mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
extend
opcycles
pOpcycles
CategoryTheory.Iso.hom
extendOpcyclesIso
extendXIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pOpcycles_extendOpcyclesIso_hom
pOpcycles_extendOpcyclesIso_inv 📖mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
opcycles
extend
pOpcycles
CategoryTheory.Iso.inv
extendOpcyclesIso
extendXIso
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.ShortComplex.RightHomologyData.pOpcycles_comp_opcyclesIso_hom_assoc
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.ShortComplex.RightHomologyData.p_comp_opcyclesIso_inv
pOpcycles_extendOpcyclesIso_inv_assoc 📖mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
opcycles
pOpcycles
extend
CategoryTheory.Iso.inv
extendOpcyclesIso
extendXIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pOpcycles_extendOpcyclesIso_inv
quasiIsoAt_extendMap_iff 📖mathematicalComplexShape.Embedding.fQuasiIsoAt
extend
extendMap
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
CategoryTheory.MorphismProperty.RespectsIso.isomorphisms
extendHomologyIso_hom_naturality
quasiIso_extendMap_iff 📖mathematicalHasHomologyQuasiIso
extend
extendMap
extend.instHasHomology
extend.instHasHomology
extend.instHasHomologyF
quasiIsoAt_extendMap_iff
quasiIsoAt_iff_exactAt
extend_exactAt

HomologicalComplex.extend

Definitions

NameCategoryTheorems
homologyData 📖CompOp
3 mathmath: homologyData_left, homologyData_iso, homologyData_right
homologyData' 📖CompOp
9 mathmath: homologyData'_left_H, homologyData'_right_H, homologyData'_iso, homologyData'_right_p, homologyData'_left_i, homologyData'_right_ι, homologyData'_right_Q, homologyData'_left_π, homologyData'_left_K
leftHomologyData 📖CompOp
5 mathmath: leftHomologyData_π, homologyData_left, leftHomologyData_H, leftHomologyData_i, leftHomologyData_K
rightHomologyData 📖CompOp
8 mathmath: HomologicalComplex.truncGE.rightHomologyMapData_φQ, rightHomologyData_p, rightHomologyData_g', rightHomologyData_ι, rightHomologyData_H, HomologicalComplex.truncGE.rightHomologyMapData_φH, homologyData_right, rightHomologyData_Q

Theorems

NameKindAssumesProvesValidatesDepends On
comp_d_eq_zero_iff 📖mathematicalComplexShape.Embedding.f
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.extend
CategoryTheory.Iso.inv
HomologicalComplex.extendXIso
ComplexShape.next_eq'
ComplexShape.Embedding.rel
HomologicalComplex.extend_d_eq
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Limits.zero_comp
CategoryTheory.Category.assoc
HomologicalComplex.shape
CategoryTheory.Limits.comp_zero
HomologicalComplex.extend_d_from_eq_zero
d_comp_eq_zero_iff 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.extend
CategoryTheory.Iso.hom
HomologicalComplex.extendXIso
ComplexShape.prev_eq'
ComplexShape.Embedding.rel
HomologicalComplex.extend_d_eq
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.comp_zero
HomologicalComplex.shape
CategoryTheory.Limits.zero_comp
HomologicalComplex.extend_d_to_eq_zero
hasHomology 📖mathematicalComplexShape.Embedding.fHomologicalComplex.HasHomology
HomologicalComplex.extend
CategoryTheory.ShortComplex.HasHomology.mk'
homologyData'_iso 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.HomologyData.iso
HomologicalComplex.sc
HomologicalComplex.extend
homologyData'
HomologicalComplex.sc'
homologyData'_left_H 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.LeftHomologyData.H
HomologicalComplex.sc'
HomologicalComplex.extend
CategoryTheory.ShortComplex.HomologyData.left
HomologicalComplex.sc
homologyData'
homologyData'_left_K 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.LeftHomologyData.K
HomologicalComplex.sc'
HomologicalComplex.extend
CategoryTheory.ShortComplex.HomologyData.left
HomologicalComplex.sc
homologyData'
homologyData'_left_i 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.LeftHomologyData.i
HomologicalComplex.sc'
HomologicalComplex.extend
CategoryTheory.ShortComplex.HomologyData.left
HomologicalComplex.sc
homologyData'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.LeftHomologyData.K
HomologicalComplex.X
CategoryTheory.Iso.inv
HomologicalComplex.extendXIso
homologyData'_left_π 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.LeftHomologyData.π
HomologicalComplex.sc'
HomologicalComplex.extend
CategoryTheory.ShortComplex.HomologyData.left
HomologicalComplex.sc
homologyData'
homologyData'_right_H 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.RightHomologyData.H
HomologicalComplex.sc'
HomologicalComplex.extend
CategoryTheory.ShortComplex.HomologyData.right
HomologicalComplex.sc
homologyData'
homologyData'_right_Q 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.RightHomologyData.Q
HomologicalComplex.sc'
HomologicalComplex.extend
CategoryTheory.ShortComplex.HomologyData.right
HomologicalComplex.sc
homologyData'
homologyData'_right_p 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.RightHomologyData.p
HomologicalComplex.sc'
HomologicalComplex.extend
CategoryTheory.ShortComplex.HomologyData.right
HomologicalComplex.sc
homologyData'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.ShortComplex.RightHomologyData.Q
CategoryTheory.Iso.hom
HomologicalComplex.extendXIso
homologyData'_right_ι 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.RightHomologyData.ι
HomologicalComplex.sc'
HomologicalComplex.extend
CategoryTheory.ShortComplex.HomologyData.right
HomologicalComplex.sc
homologyData'
homologyData_iso 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.HomologyData.iso
HomologicalComplex.sc'
HomologicalComplex.extend
homologyData
homologyData_left 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.HomologyData.left
HomologicalComplex.sc'
HomologicalComplex.extend
homologyData
leftHomologyData
homologyData_right 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.HomologyData.right
HomologicalComplex.sc'
HomologicalComplex.extend
homologyData
rightHomologyData
instHasHomology 📖mathematicalHomologicalComplex.HasHomologyHomologicalComplex.extendinstHasHomologyF
HomologicalComplex.isZero_extend_X
CategoryTheory.ShortComplex.HasHomology.mk'
CategoryTheory.Limits.IsZero.eq_of_tgt
CategoryTheory.Limits.IsZero.eq_of_src
instHasHomologyF 📖mathematicalHomologicalComplex.HasHomology
HomologicalComplex.extend
ComplexShape.Embedding.f
hasHomology
leftHomologyData_H 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.LeftHomologyData.H
HomologicalComplex.sc'
HomologicalComplex.extend
leftHomologyData
leftHomologyData_K 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.LeftHomologyData.K
HomologicalComplex.sc'
HomologicalComplex.extend
leftHomologyData
leftHomologyData_i 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.LeftHomologyData.i
HomologicalComplex.sc'
HomologicalComplex.extend
leftHomologyData
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.LeftHomologyData.K
CategoryTheory.ShortComplex.X₂
CategoryTheory.Iso.inv
HomologicalComplex.X
HomologicalComplex.extendXIso
leftHomologyData_π 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.LeftHomologyData.π
HomologicalComplex.sc'
HomologicalComplex.extend
leftHomologyData
rightHomologyData_H 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.RightHomologyData.H
HomologicalComplex.sc'
HomologicalComplex.extend
rightHomologyData
rightHomologyData_Q 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.RightHomologyData.Q
HomologicalComplex.sc'
HomologicalComplex.extend
rightHomologyData
rightHomologyData_g' 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.RightHomologyData.g'
HomologicalComplex.sc'
HomologicalComplex.extend
rightHomologyData
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.RightHomologyData.Q
CategoryTheory.ShortComplex.X₃
HomologicalComplex.X
CategoryTheory.Iso.inv
HomologicalComplex.extendXIso
CategoryTheory.cancel_epi
CategoryTheory.ShortComplex.RightHomologyData.instEpiP
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.ShortComplex.RightHomologyData.p_g'
CategoryTheory.Category.assoc
HomologicalComplex.extend_d_eq
CategoryTheory.ShortComplex.RightHomologyData.p_g'_assoc
HomologicalComplex.shortComplexFunctor'_obj_g
rightHomologyData_p 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.RightHomologyData.p
HomologicalComplex.sc'
HomologicalComplex.extend
rightHomologyData
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
HomologicalComplex.X
CategoryTheory.ShortComplex.RightHomologyData.Q
CategoryTheory.Iso.hom
HomologicalComplex.extendXIso
rightHomologyData_ι 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.RightHomologyData.ι
HomologicalComplex.sc'
HomologicalComplex.extend
rightHomologyData

HomologicalComplex.extend.leftHomologyData

Definitions

NameCategoryTheorems
cokernelCofork 📖CompOp
isColimitCokernelCofork 📖CompOp
isLimitKernelFork 📖CompOp
1 mathmath: lift_d_comp_eq_zero_iff
kernelFork 📖CompOp
1 mathmath: lift_d_comp_eq_zero_iff

Theorems

NameKindAssumesProvesValidatesDepends On
lift_d_comp_eq_zero_iff 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
HomologicalComplex.X
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.KernelFork.ofι
HomologicalComplex.d_comp_d
CategoryTheory.Limits.IsLimit.lift
HomologicalComplex.extend
kernelFork
isLimitKernelFork
lift_d_comp_eq_zero_iff'
HomologicalComplex.d_comp_d
CategoryTheory.Limits.IsLimit.fac
lift_d_comp_eq_zero_iff' 📖ComplexShape.Embedding.f
ComplexShape.prev
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Limits.Fork.ι
HomologicalComplex.extend
CategoryTheory.Iso.inv
HomologicalComplex.extendXIso
ComplexShape.prev_eq'
ComplexShape.Embedding.rel
CategoryTheory.Limits.Fork.IsLimit.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_inv
HomologicalComplex.extend_d_eq
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.comp_zero
HomologicalComplex.shape
CategoryTheory.Limits.zero_comp
HomologicalComplex.extend_d_to_eq_zero

HomologicalComplex.extend.rightHomologyData

Definitions

NameCategoryTheorems
cokernelCofork 📖CompOp
1 mathmath: d_comp_desc_eq_zero_iff
isColimitCokernelCofork 📖CompOp
1 mathmath: d_comp_desc_eq_zero_iff
isLimitKernelFork 📖CompOp
kernelFork 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
d_comp_desc_eq_zero_iff 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
HomologicalComplex.X
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.CokernelCofork.ofπ
HomologicalComplex.d_comp_d
CategoryTheory.Limits.IsColimit.desc
HomologicalComplex.extend
cokernelCofork
isColimitCokernelCofork
d_comp_desc_eq_zero_iff'
HomologicalComplex.d_comp_d
CategoryTheory.Limits.IsColimit.fac
CategoryTheory.Category.assoc
d_comp_desc_eq_zero_iff' 📖ComplexShape.Embedding.f
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
HomologicalComplex.X
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cofork.π
HomologicalComplex.extend
CategoryTheory.Iso.hom
HomologicalComplex.extendXIso
ComplexShape.next_eq'
ComplexShape.Embedding.rel
CategoryTheory.Limits.Cofork.IsColimit.hom_ext
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_hom
HomologicalComplex.extend_d_eq
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Limits.zero_comp
HomologicalComplex.shape
CategoryTheory.Limits.comp_zero
HomologicalComplex.extend_d_from_eq_zero

---

← Back to Index